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ABSTRACT

A critical stage in microstructurally small fatigue crack
growth in AA 7075-T651 is the nucleation of cracks originating
in constituent particles into the matrix material. Previous work
has focused on a geometric approach to modeling microstruc-
turally small fatigue crack growth in which damage metrics de-
rived from an elastic-viscoplastic constitutive model are used to
predict the nucleation event [1, 2]. While a geometric approach
based on classical finite elements was successful in explicitly
modeling the polycrystalline grain structure, singularities at the
crack tip necessitated the use of a nonlocal sampling approach
to remove mesh size dependence.

This study is an initial investigation of the peridynamic for-
mulation of continuum mechanics as an alternative approach to
modeling microstructurally small fatigue crack growth. Peridy-
namics, a nonlocal extension of continuum mechanics, is based
on an integral formulation that remains valid in the presence
of material discontinuities. To capture accurately the material
response at the grain scale, an elastic-viscoplastic constitutive
model is adapted for use in non-ordinary state-based peridy-
namics through the use of a regularized deformation gradient.
The peridynamic approach is demonstrated on a baseline model
consisting of a hard elastic inclusion in a single crystal. Cou-
pling the elastic-viscoplastic material model with peridynamics
successfully facilitates the modeling of plastic deformation and
damage accumulation in the vicinity of the particle inclusion.
Lattice orientation is shown to have a strong influence on mate-
rial response.

INTRODUCTION

Microstructurally small fatigue crack (MSFC) growth com-
prises the majority of a component’s life in the high-cycle fatigue
regime [3]. To improve the accuracy of life estimation for the
aluminum alloy AA 7075-T651, MSFC crack growth has been
analyzed in terms of three phases: incubation, nucleation, and
propagation [1]. For this material, fatigue cracks leading to com-
ponent failure have been observed to form almost exclusively
at particle inclusions. These inclusions provide incubation sites
for fatigue cracks by way of pre-existing cracks that result from,
for example, machining operations. The incubation phase con-
sists of evolving grain-scale precursors to crack nucleation, for
instance the formation of dislocation structures in the crystal lat-
tice. The nucleation event is defined as the spawning of a matrix
crack from a cracked particle inclusion into a surrounding grain.
Nucleation is followed by microstructurally-small crack propa-
gation, which may lead to the formation of a macro-scale fatigue
crack and the eventual failure of a component.

A primary challenge in modeling MSFC growth in AA
7075-T651 is capturing the evolution of lattice-scale mechanisms
in the direct vicinity of a pre-existing crack in a particle inclu-
sion. Here, modeling efforts are forced to contend with singular-
ities at the crack tip which typically preclude mesh convergence.
The previous work of Hochhalter, et. al, addressed this problem
through the use of a nonlocal sampling technique in which non-
convergent metrics were sampled at a prescribed distance from
the crack tip [2]. Peridynamics offers an alternative approach in
which material discontinuities are handled naturally, removing
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the need for auxilluary techniques.
The present study aims to apply peridynamics to the mod-

eling of MSFC formation in AA 7075-T651. Peridynamics is
a nonlocal extension of continuum mechanics that provides a
mathematical description of material response that remains valid
in the presence of discontinuities such as cracks. Two aspects
of peridynamics are particularly well suited to modeling MSFC
formation in AA 7075-T651: The ability to achieve mesh con-
vergence in the vicinity of a crack, and the ability to model ma-
terial failure through the breaking of peridynamic bonds. The
current study is concerned primarily with the implementation of
a (local) crystal plasticity material model within the (nonlocal)
framework of peridynamics, and on a set of proof-of-concept
simulations carried out using a simple baseline model. Coupling
a crystal plasticity material model with peridynamics provides
the groundwork for future studies on the application of damage
metrics computed at the lattice scale as bond failure criteria.

PERIDYNAMICS METHODOLOGY
Peridynamics is a nonlocal extension of classical solid me-

chanics [4–6]. The peridynamic balance of linear momentum is
formulated as an integral equation that remains valid in the pres-
ence of material discontinuities such as cracks. This is in con-
trast to classical continuum mechanics, in which the governing
equations contain spatial derivatives that lead to singularities at
material discontinuities.

The peridynamic model assumes direct nonlocal interaction
between a point x and all points x′ within the neighborhood of
x. The neighborhood of x is defined by a radius δ centered at x,
where δ is termed the horizon. The vector x′−x is called a bond.

The peridynamic balance of linear momentum is

ρ(x)ü(x, t) = Lu (x, t)+b(x, t) ∀x ∈B, t ≥ 0, (1)

Lu (x, t) =
∫

B

{
T[x, t]

〈
x′−x

〉
−T′[x′, t]

〈
x−x′

〉}
dVx′ .

Here, B is the reference configuration of the body, ρ is the den-
sity in the reference configuration, u is the displacement, and b
is the body force density.

The interaction between point x and a point x′ in its neigh-
borhood is governed by the force state at x at time t, denoted
T[x, t], and the force state at x′ at time t, denoted T′[x′, t]. A
force state is a function that associates with any bond x′− x a
force density per unit volume, T[x, t]〈x′−x〉, acting on x.

The numerical implementation of peridynamics employed
in the current study is a meshless method in which the body B
is discretized in the reference configuration into a finite number
of spherical cells with each cell containing a single node at its
center. The integral in Equation (1) is then be replaced by a sum-

mation,

ρ(x)üh(x, t) = (2)
N

∑
i=0

{
T[x, t]

〈
x′i−x

〉
−T′[x′i, t]

〈
x−x′i

〉}
∆Vx′i

+b(x, t),

where N is the number of cells in the neighborhood of x, x′i is the
position of the node centered in cell i, and ∆Vx′i

is the volume of
cell i.

Equation (2) requires evaluation of the force states T[x, t]
and T′[x′i, t]. Force states are constitutive relationships that deter-
mine the pairwise force between a point x and each of its neigh-
bors x′i. In general, the force state at x is a function of the defor-
mations of all points within its neighborhoods and possibly other
variables as well.

CRYSTAL ELASTIC-PLASTIC CONSTITUTIVE MODEL
In this study, constitutive behavior for AA 7075-T651 is cap-

tured with a crystal elastic-viscoplastic material model [1, 7, 8].
The material model, developed for use with classical finite ele-
ment analysis, is adapted for peridynamics using the regularized
deformation gradient scheme of Silling, et. al [5].

The constitutive model is based on a multiplicative decom-
position of the deformation gradient [9],

F = eF pF, (3)

where eF and pF are the elastic and plastic deformation gradients,
respectively. The elastic Green-Lagrange strain tensor is given
by

eÊ =
1
2
(eFT eF− I

)
, (4)

where eFT eF is the elastic Cauchy-Green deformation tensor,
eC. Here, ˆ denotes the elastically unloaded configuration.

Behavior in the elastic regime is governed by a hyperelastic
potential,

Ŵ = Ŵ(eF) =
1
2

eE : L : eE, (5)

where L is the fourth-order elasticity tensor. The second Piola-
Kirchhoff stress is given by

Ŝ = 2
∂Ŵ
∂ eC

= L : eÊ. (6)
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Elastic behavior is assumed anisotropic with cubic symmetry,

Li jkn = L jikn = Li jnk = Lkni j. (7)

The Cauchy stress is found as the push-forward of the second
Piola-Kirchhoff stress,

σ = eF
(

1
det(eF)

S
)

eFT . (8)

The plastic response is determined by crystallographic slip
on each of the twelve slip systems in the face-centered cubic
(FCC) lattice. The plastic velocity gradient, pL̂, is given by

pL̂ =
12

∑
α=1

γ̇
α Pα , (9)

where γ̇α and Pα are the rate of shearing and the Schmid tensor
for slip system α , respectively. The Schmid tensor is given as

Pα = sα ⊗mα , (10)

where mα and sα are the slip plane normal and the slip direction.
The slip rate on slip system α is related to the resolved shear

stress on that slip system, τα , using a power law,

γ̇
α = γ̇o

τα

gα

∣∣∣∣τα

gα

∣∣∣∣ 1
m−1

. (11)

Here, γ̇o is a reference slip rate, gα is the hardness (resistance to
slip) for slip system α , and m is a rate sensitivity parameter. The
resolved shear stress on slip system α is found as

τ
α =

(eC Ŝ
)

: Pα . (12)

The hardness values gα evolve to capture hardening effects,

ġα = Go

(
gs−gα

gs−go

)
∑
β

2
∣∣∣Pα

sym : Pβ
sym

∣∣∣ ∣∣∣γ̇β

∣∣∣ , (13)

where Go is a hardening rate parameter, go is the initial hardness,
gs is the saturation hardness, and Psym is the symmetric part of
the Schmid tensor. The saturation hardness is given by

gs = gso

∣∣∣∣ γ̇

γ̇s

∣∣∣∣ω , (14)

where ω is a material parameter, gso is the initial saturation hard-
ness, and γ̇ is the total slip rate over all slip systems,

γ̇ =
12

∑
α=1
|γ̇α | . (15)

A series of damage metrics for the crystal plasticity constitu-
tive model was investigated by Bozek, et. al, and Hochhalter, et.
al [1, 2, 10]. Of these metrics, the Fatemi-Socie damage metric
was selected for use in the current study [2, 11]. The Fatemi-
Socie metric, as evaluated in the present study, is given by

DFatemi Socie = max
p

∫ t

0

Nd

∑
α=0

∣∣γ̇α
p
∣∣(1+ k

〈
σ

p
n
〉

go

)
dt. (16)

Here, maxp denotes the maximum value over the four slip planes,
Nd is the number of slip systems per plane (three), and

〈
σ

p
n
〉

is
the tensile stress on slip plane p. The parameter k dictates the
relative importance of tensile stress relative to plastic slip and is
set to 0.5 as suggested by Fatemi and Socie.

ADAPTION OF THE CRYSTAL ELASTIC-PLASTIC CON-
STITUTIVE MODEL FOR USE WITH PERIDYNAMICS

The crystal plasticity material model described above was
adapted for use with peridynamics using the method of non-
ordinary state-base peridynamics developed by Silling, et al. [5].
The approach is based on an approximate (regularized) deforma-
tion gradient, F̄, evaluated at x,

F̄ =

(
N

∑
i=0

ω i Yi⊗Xi ∆Vxi

)
K−1, (17)

where K is the shape tensor, defined as

K =
N

∑
i=0

ω i Xi⊗Xi ∆Vxi . (18)

Here, Xi denotes a vector directed from x to x′i in the reference
configuration, and, Yi denotes a vector directed from x to x′i in the
deformed configuration. The operator⊗ denotes dyadic product.
The term ω denotes an influence function that assigns a relative
weighting to each neighbor x′i, for example based on the distance
between x and x′ in the reference configuration.

The approximate deformation gradient, as defined by Equa-
tion (17), provides the necessary kinematic input for a classical
material model, e.g., a material model developed for use with
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classical finite element analysis. The stress state determined by
the classical material model can then be transformed into peridy-
namic pairwise forces as follows,

T
〈
x′−x

〉
= ω PK−1 〈x′−x

〉
, (19)

where P is the first Piola-Kirchhoff stress.
Equations (17) and (19) provide a means for applying the

crystal plasticity constitutive model within the framework of
peridynamics. Specifically, the approximate deformation gradi-
ent defined by Equation (17) is applied on the left-hand side of
Equation (3). The Cauchy stress, found using Equation (8), is
then converted to the first Piola-Kirchhoff stress by the relation

P = det(eF)σ
eF−T , (20)

which allows for evaluation of the peridynamic pairwise forces
using Equation (19).

SIMULATION OF A PARTICLE INCLUSION IN A SINGLE
GRAIN

The peridynamic crystal plasticity model was evaluated
through a set of simulations of a single crystal containing a single
particle inclusion. The simulations were modeled after the ‘base-
line’ simulations of Bozek, et. al, which were designed to be rep-
resentative of conditions at the inner surface of a bolt hole where
fatigue cracks have been observed to nucleate into the matrix ma-
terial from cracked particle inclusions [1]. A representative vol-
ume containing a single crystal was constructed and 1% tensile
strain applied in the horizontal direction (rolling direction), fixed
boundary conditions applied in the vertical direction (normal di-
rection), fixed boundary conditions applied on the back surface
(tangential direction), and no boundary conditions applied on the
front surface (i.e., a free surface corresponding to the inner sur-
face of the bolt hole). A single semi-hemispherical particle four
microns in diameter was modeled on the free surface. The rep-
resentative volume was constructed with an edge length equal
to ten times the particle diameter in the vertical and horizontal
directions, and five times the particle diameter in the direction
normal to the free surface. The discretization of the model is
shown in Figure 1.

Material properties for the aluminum alloy AA 7075-T651
were applied to the crystalline portion of the model, while the
particle inclusion was modeled as linear elastic. The mate-
rial properties for AA 7075-T651, given in Table 1, were de-
rived by Bozek, et. al, using experimental data obtained by Jor-
dan, et. al [1, 12]. For each simulation, one of two crystallo-
graphic orientations, denoted orientation A and orientation B,
was assigned to the matrix material. Euler (Bunge) angles for the

FIGURE 1. MODEL DISCRETIZATION

TABLE 1. MATERIAL PARAMETERS FOR AA 7075-T651

Parameter Value

ρ 2.81e-9 tonne/mm3

λ 60.9e3 MPa

µ 28.3e3 MPa

η 5.1e3 MPa

m 0.005

go 220.0 MPa

γ̇o 1.0 s−1

G0 120.0 MPa

gso 250.0 MPa

γ̇s 5.0e10 s−1

ω 0.0

two crystal orientations are given in Table 2. The particle inclu-
sion, modeled as isotropic linear elastic, was assigned a modulus
of elasticity equal to 110% that of AA 7075-T651, and a Pois-
son’s ratio and density equal to that of AA 7075-T651. Material
properties for the particle inclusion are given in Table 3.

Simulations were carried out using the Sierra Mechanics
analysis code at Sandia National Laboratories [13]. Time inte-
gration was implicit quasi-static, consisting of twenty equal load
steps. Analyses were performed in parallel on eight CPU cores,
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TABLE 2. LATTICE ORIENTATIONS (RADIANS)

Euler Angles (φ1, Φ, φ2)

Orientation A (0.9738, 0.4322, -1.3822)

Orientation B (1.9490, 0.8644, -2.120)

TABLE 3. MATERIAL PARAMETERS FOR HARD INCLUSION

Parameter Value

ρ 2.81e-9 tonne/mm3

λ 66.99e3 MPa

µ 31.13e3 MPa

η 0.0 MPa

with run times of approximately one hour.
The influence of crystallographic orientation was evaluated

under several conditions. For each of the lattic orientations listed
in Table 2, a simulation was carried out using an intact parti-
cle, followed by a simulation in which the particle contained a
pre-crack normal to the loading direction, as described in the fol-
lowing section.

RESULTS
Result are presented below for the case of an uncracked par-

ticle inclusion and of a cracked particle inclusion. In both cases,
simulations were carried out using two different lattice orienta-
tions to investigate the influence of grain orientation on material
response.

For the purpose of visualizing material response in the vicin-
ity of the particle inclusion, Figures 2–6 include images corre-
sponding to a cubic section of the model approximately ten mi-
crons in each dimension. Here, the front face corresponds to the
free surface and is centered around the particle inclusion. The in-
clusion itself was ommitted from these illustrations to allow for
visualization of the subsurface material response.

Uncracked Particle Inclusion
Material response for the uncracked particle simulations is

presented in Figures 2, 3, and 4. Plots of the average stress in
the particle inclusion and of the total crystallographic slip over
the representative volume are presented in Figure 2. Orientation
B was found to be more favorable for crystallographic slip under
the prescribed loading conditions. As a result, the final average
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FIGURE 2. MATERIAL RESPONSE FOR THE UNCRACKED
PARTICLE SIMULATIONS

stress in the particle inclusion was higher for orientation A.
Plastic flow on each of the twelve available slip systems over

the course of the simulation is presented in Figures 3(a) and 4(a).
Orientation A shows a single dominate slip system, while a pair
of dominate slip systems is active for orientation B. As illustrated
in Figures 3 and 4, orientation A contains a pronounced plane of
plastic flow in the vicinity of the particle inclusion, while ori-
entation B displays a highly symmetric pattern of plastic flow.
A high concentration of deformation is observed at the top and
bottom of the inclusion for orientation B.

Cracked Particle Inclusion
Material response for the simulations containing a cracked

particle inclusion are presented in Figures 5 and 6. As expected,
the presence of a crack through the diameter of the particle inclu-
sion has a pronounced effect on system response. Deformation is
now concentrated at the top and bottom of the particle inclusion
for both orientation A and B. Due to their direct proximity to the
crack tip, these areas undergo significant plastic deformation and
are possible sites for crack nucleation from the cracked particle
into the neighboring grain.

The Fatemi-Socie damage metric, defined in Equation (16),
is illustrated in Figures 5(c) and 6(c). The Fatemi-Socie metric
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is a function of both stress and plastic deformation in the vicinity
of the crack tip, reflecting the idea that plastic deformation (e.g.
dislocation entanglement) is a precursor to crack nucleation that
is triggered by the stress state. The results suggest that crack
nucleation into the matrix material may be more likely in the
case of orientaiton B than in the case of orientation A.

DISCUSSION AND CONCLUSIONS
In this study, a crystal elasto-viscoplastic material model

was adapted for use within the peridynamic framework for non-
local mechanics. This was motivated by the need to model accu-
rately the deformation state in the vicinity of cracked particle in-
clusions in AA 7075-T651. The crystal plasticity material model
was coupled to peridynamics by way of an approximate defor-
mation gradient. This approach was validated through the sim-
ulation of tensile loading applied to a single crystal containing
a single particle inclusion. The lattice orientation of the crystal
was found to have a strong influence on the material response,
including the stress state, plastic deformation, and material dam-
age as modeled by a Fatemi-Socie metric.

Current Work
The present study provides a foundation for ongoing work

in nonlocal crystal plasticity. Current areas of research include
mesh-independent modeling of plastic zones in the vicinity of a
crack tip, the modeling of crack nucleation and subsequent crack
propagation into the matrix material, and peridynamic simula-
tions of realistic polycrystal models. Also underway is the study
of zero-energy model supression for non-ordinary state-based
peridynamics, and the performance of non-ordinary state-based
peridynamics on nonuniform discretizations.
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