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Context

• Statistical engines are part of 
VTK, which is used in many 
analytics and visualization 
applications.

• Freely available under BSD 
license:

    http://www.vtk.org/
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Outline

• Design model for scalable data analysis

• Available parallel workflows

• Example of a moment-based workflow

• Moment vs. quanta-based statistics

• Parallel example

• Class hierarchy

• Scaling study

• Observations and future work
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

 









Design Decisions

• Learn a minimal model,

• Derive quantities of interest,

• Assess observations with the model, and

• Test the validity of the model hypothesis.

(i) Mimic predominant types of data analysis workflow
(ii) Conducive to scalable parallel implementation
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Implementation

Statistics algorithms all conform to 
a simple class hierarchy:

• Abstract base class with virtual 
modeling operations

• Concrete serial implementation

• Derived parallel implementation

















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Available Workflows

• Descriptive statistics

• Order statistics

• Linear and multi-linear correlation

• Contingency statistics

• Principal Component Analysis (PCA)

• k-means clustering
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• Descriptive statistics

• Learn: minimum, maximum, mean, centered 
M2, M3, M4 aggregates

• Derive: variance, standard deviation, skewness, 
kurtosis

• Assess: mark each datum with relative 
deviation (1-D Mahalanobis distance)

• Test: Jarque-Bera statistic and χ2 test of 
goodness of fit

Moment-based Analysis
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• Order statistics

• Learn: histogram

• Derive: arbitrary quantiles

• Assess: mark each datum with quantile index

• Test: Kolmogorov-Smirnov test 

Quanta-based Analysis
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Moments vs. Quanta
• Only Learn requires communication

• Moment-based analysis: few quantities to be 
communicated and updated

‣ Model: AllGather with local update 

‣ Caveat: numerical stability

• Quanta-based analysis: variable number of 
quantities to be communicated and updated 
depending on data

‣ Model: FullReduce + broadcast 

‣ Caveat: scalability
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Parallel computation
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Parallel computation
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Strong Scaling: k-means
initial clusters provided
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initial clusters provided
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Weak Scaling: k-means

12Wednesday, May 18, 2011



σ = 500
σ = 50000
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σ = 500
σ = 50000
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σ = 5
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Weak Scaling: order
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Eglobal = 1− Nq

N

Efficiency
• Efficiency of quantizing techniques is

• Can be estimated by per-process efficiency
Eglobal ≈ min

p∈Np

(Ep)

#(quanta)
#(observations)

Engine order statistics contingency statistics
σ 5 500 50000 5 50 200
Eg 0.9999 0.9994 0.9619 0.9977 0.9866 0.8732
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Questions?

Questions?
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Weak scaling... with I/O

partition along x-axis
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An application

• Combustion simulation

• 21 chemical species

• 2025x1600x400 grid; 15000 processes

• Moment-preserving time steps

• Contingency statistics

• 4 species in one reaction of interest

• Concentrations normalized and bucketed

• Want to test whether process is Poisson
19Wednesday, May 18, 2011



An application

Data courtesty of Drs. Jacqueline Chen, Chun Sang Yoo, and Ray Grout.
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An application

Are distributions over features meaningful?
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Learn and Derive

• Joint probability: pX,Y(x,y)

• Marginal probabilities: pX(x), pY(y)

• Eliminates variables by summing.

• For n variables, 2n-1 marginal distributions.
port protocol port protocol port protocol
80 HTTP 1122 HTTP 80 SMTP
80 HTTP 80 HTTP 20 FTP
80 HTTP 25 SMTP 20 FTP
80 HTTP 25 SMTP 20 FTP
80 HTTP 25 SMTP 122 FTP
80 HTTP 25 SMTP 20 FTP
8080 HTTP 25 SMTP 20 FTP

port protocol port protocol port protocol
80 HTTP 1122 HTTP 80 SMTP
80 HTTP 80 HTTP 20 FTP
80 HTTP 25 SMTP 20 FTP
80 HTTP 25 SMTP 20 FTP
80 HTTP 25 SMTP 122 FTP
80 HTTP 25 SMTP 20 FTP
8080 HTTP 25 SMTP 20 FTP

 
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Learn and Derive

• Joint probability: pX,Y(x,y)

• Marginal probabilities: pX(x), pY(y)

• Eliminates variables by summing.

• For n variables, 2n-1 marginal distributions.
count HTTP FTP SMTP
20 0 5 0
25 0 0 5
80 7 0 1
122 0 1 0
1122 1 0 0
8080 1 0 0

count HTTP FTP SMTP
20 0 5 0
25 0 0 5
80 7 0 1
122 0 1 0
1122 1 0 0
8080 1 0 0

 
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Learn and Derive

• Joint probability: pX,Y(x,y)

• Marginal probabilities: pX(x), pY(y)

• Eliminates variables by summing.

• For n variables, 2n-1 marginal distributions.
pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

 
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Learn and Derive

• Conditional probability: pY|X(y|x)

• Normalizes joint probability by marginal.

• Undefined when marginal probability is 0.

pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

 
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Learn and Derive

• Conditional probability: pY|X(y|x)

• Normalizes joint probability by marginal.

• Undefined when marginal probability is 0.

pprtcl|prt HTTP FTP SMTP
20 0 1 0
25 0 0 1
80 0.875 0 0.125
122 0 1 0
1122 1 0 0
8080 1 0 0

pprtcl|prt HTTP FTP SMTP
20 0 1 0
25 0 0 1
80 0.875 0 0.125
122 0 1 0
1122 1 0 0
8080 1 0 0

 
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Learn and Derive

• Conditional probability: pY|X(y|x)

• Normalizes joint probability by marginal.

• Undefined when marginal probability is 0.

pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

 
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Learn and Derive

• Conditional probability: pY|X(y|x)

• Normalizes joint probability by marginal.

• Undefined when marginal probability is 0.

pprt|prtcl HTTP FTP SMTP
20 0 0.833 0
25 0 0 0.833
80 0.778 0 0.167
122 0 0.167 0
1122 0.111 0 0
8080 0.111 0 0

pprt|prtcl HTTP FTP SMTP
20 0 0.833 0
25 0 0 0.833
80 0.778 0 0.167
122 0 0.167 0
1122 0.111 0 0
8080 0.111 0 0

 
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Assess

• Pointwise mutual information:

•  

• Association of x and y relative to model

pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

pprt,prtcl HTTP FTP SMTP pprt

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476
pprtcl 0.429 0.286 0.286

PMI(x, y) = log
pX,Y (x, y)

pX(x)pY (y)

 
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Assess

• Pointwise mutual information:

•  

• Association of x and y relative to model

PMI(prt,prtcl) HTTP FTP SMTP
20 −∞ 1.26 −∞
25 −∞ −∞ 1.26
80 0.714 −∞ −0.827
122 −∞ 1.26 −∞
1122 0.847 −∞ −∞
8080 0.847 −∞ −∞

PMI(prt,prtcl) HTTP FTP SMTP
20 −∞ 1.26 −∞
25 −∞ −∞ 1.26
80 0.714 −∞ −0.827
122 −∞ 1.26 −∞
1122 0.847 −∞ −∞
8080 0.847 −∞ −∞

PMI(x, y) = log
pX,Y (x, y)

pX(x)pY (y)

 
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Test

• Null hypothesis: variables are independent

• Compare difference between joint and product of 
marginal frequencies to test independence

• Integrate tail to get probability of observed Z 
statistic of at least this size.

• Small probability indicates independence is unlikely.

Z ∼ χ2
(m−1)(n−1)

Z = N
∑

x,y

(NNx,y −NxNy)2

NxNy

p

Z

 
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