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What is a spectral image?

• A series of complete spectra resolved in

2- or higher dimensions
– Conventional spectral images-2D

– Tomographic spectral images-3D
• Direct-FIB, Metallography

• Computed-Tilt series of spectral images

• Confocal

– Resolved in other dimensions
• Time, process condition, projection, etc.

• As far as MSA is concerned these can all be treated 
equivalently
– Non-image-resolved

data work the same
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Data types discussed today

• STEM-EDS from the Tecnai Osiris (0.9sr)
– CMOS specimen

– 200,000 pixels acquired in 4 minutes

– Acquired in frames

• GIF Spectrum Line
– Oxide interface

– Acquired as a single ‘image’

– Distance by energy-loss

• EFTEM spectrum image
– Catalyst specimen

– Acquired image-plane by image plane

– Image alignment critical to a successful analysis



What is Multivariate Statistical Analysis?

• MSA comprises many techniques for factoring spectral 
image data into other hopefully more useful forms

• Makes use of high-degree of redundancy in data
– Many observations of similar, noisy spectral or image 

features, tens of thousands to billions
– Noisy data can be used to advantage
– Large number of spectral channels, 50-100000

• Typically used to reduce dimensionality of the data and 
filter noise of known structure

• A 128x128 pixel by 1024 channel data set has 1024 
dimensions, of which only a handful will represent 
chemical information…MSA helps find the correlations

• Should be fast
– Seconds for small data sets to at most tens of minutes for 

the largest data sets.



What are the basic steps of MSA?

• Keenan, M.R., Multivariate analysis of spectral images 
composed of count data, in Techniques and applications of 
hyperspectral image analysis, H. Grahn and P. Geladi, Editors. 
2007, John Wiley & Sons: Chinchester.

• Scale data for non-uniform noise*
– Assumption here-we know the noise structure in these 

counting experiments
– Down-weights large variations in intense spectral or image 

features which are due to noise
– Rank 1 approximation to the noise

• In the image domain divide by the square-root of the mean image
• In the spectral domain divide by the square-root of the mean spectrum
• Essentially the same answer as maximum likelihood methods with but 

far less computational complexity**

*M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212
**M.R. Keenan, J. Vac. Sci. Tech. A 23 [4] (2005) 746-750 



Normalizing for noise

Typical x-ray spectrum from STEM-EDS

Variation of ~±3 
in Ni-L is noise

3 counts in this part of 
the spectrum would be 
significant



Multivariate Analysis:
All Methods Assume a Linear Additive Model

Multivariate Processing:
• Scale data for Poisson counting statistics
• Determine the number of components to keep
• Factor the data matrix (D) into C and S
• Inverse scale the components
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We have several options in our 
multivariate “Toolbox”

• Principal Component Analysis (PCA)
– Factors are orthogonal

– Factors serially maximize variance

– Provides best LS fit to data

– Non-physical constraints

– Factors are abstract

• PCA + factor rotation (Varimax)
– Rotate factors to “simple structure”

• MCR-ALS
– A refinement of Rotated PCA

– Non-negativity of C and/or S

– Equality, closure and others 

– Constraints may not be effective Analysis goal: Obtain an 
easily interpretable 

representation of the data
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Spectral- vs. Spatial-Domain 
Simplicity: Analysis of CMOS

• Planarized CMOS in-situ lift out specimen on a Mo grid
• Data acquired on a FEI Tecnai Osiris, 200kV FEG with 

SuperX (0.9sr)
• The data are 400 x 500 pixels by 4096+channels
• >99% sparse (~811M elements = 0, ~7.7M elements >0)

• But it’s important to note the data are randomly 
distributed 

• Data acquisition 249 seconds @ 1.5nA or 1.245msec/pixel
• ~10.6M total counts

• 43kcps summed or 11kcounts/second/spectrometer 
• Average of 53 counts per spectrum

• Data analysis took 144 seconds on a decent lab 
workstation (XP-x64)
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Eigenanalysis of the CMOS SI data 
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Spatial Domain Simplicity*
Often the elemental viewpoint

• D = CST (Goal: Factor raw data into C and S…linear model)
D is an m-pixel  n-channel raw spectral-data matrix 

S is an n  p matrix containing the p pure-component spectra shapes

C is an m  p matrix containing their spatial distributions/abundances

• Data is scaled to account for non-uniform (Poisson) noise**

• Number of factors to retain is chosen (Eigenanalysis)

• PCA is performed on the scaled data such the spectral components are orthogonal 
and the spatial components are orthonormal

• Rotate the orthonormal spatial components to maximize their mutual simplicity with 
the VARIMAX procedure

• Apply the inverse rotation to the spectral components which relaxes orthogonally in 
this domain

• Optionally: Impose non-negativity (e.g., via CLS etc.)

• Inversely scale the components for Poisson noise

* M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212.



Spatial-Domain Simplicity
Best Spatial ‘Contrast’
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Spectral Domain Simplicity*
Often the phase viewpoint 

• D = CST (Goal: Factor raw data into C and S…linear model)
D is an m-pixel  n-channel raw spectral-data matrix 

S is an n  p matrix containing the p pure-component spectra shapes

C is an m  p matrix containing their spatial distributions/abundances

• Data is scaled to account for non-uniform (Poisson) noise**

• Number of factors to retain is chosen (Eigenanalysis)

• PCA is performed on the scaled data such the spatial components are orthogonal and 
the spectral components are orthonormal

• Rotate the orthonormal spectral components to maximize their mutual simplicity 
with the VARIMAX procedure

• Apply the inverse rotation to the spatial components which relaxes orthogonally in 
this domain

• Optionally: Impose non-negativity (e.g. via MCR-ALS)

• Inversely scale the components for Poisson noise

* M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212.
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Energy loss (channel)
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Spatial-domain simplicity of GIF 
Spectrum-Line, O-K Edge, CoO/Co3O4



Spatial-Domain Simplicity of and 
EFTEM-SI of a catalyst

• 79 EFTEM images, 256x256 pixels were 
acquired at 5eV intervals from 225-620eV
– JEOL 2010F with Gatan GIF-2001

– 32 nm/pixel

• Images were aligned with the FELMI-Graz DM-
script “SDSD” (Schaffer et al., Ultramicroscopy
102/1 (2004) pp.27-36)
– Critical step prior to MSA

– 254x209 pixels after alignment (8.1 x 6.7 m)

– Also x-rays filtered prior to image alignment

• Data set not perfect as sample distorted slightly 
during acquisition
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Spatial-Domain Simplicity of and 
EFTEM-SI of a catalyst
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Some extra components are due to sample distortion during acquisition  

Difference image of Channel 1 and Channel 79

Note the particles have 
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Imperfect image alignment
Sample distortion
Non-linear signal response



Conclusions

• MSA methods are every useful for simplifying the 
analysis of large, complex data sets
– Importance of Poisson normalization
– Factor rotation, MCR, etc. give different viewpoints

• Unbiased analysis powerful for forensics, materials 
science, etc. Needle in the haystack….

• Annular x-ray detector geometry makes STEM in 
SEM microanalysis practical

• High count rates (>100kcps typically) from thin 
samples, >1Mcps of bulk samples

• High throughput bio-forensics application


