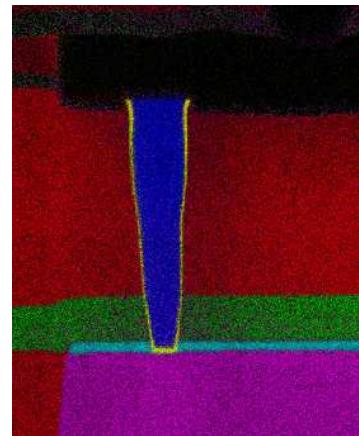
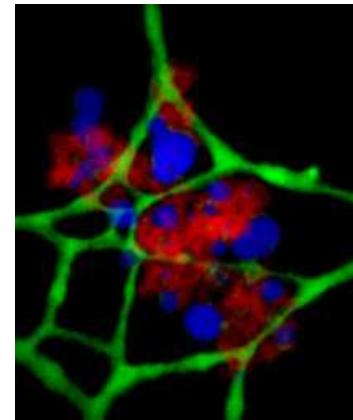


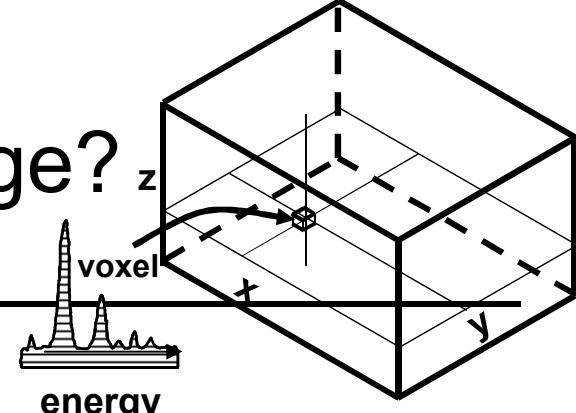
Multivariate Statistical Analysis Strategies for Hyperspectral Data: EDS and EFTEM/EELS



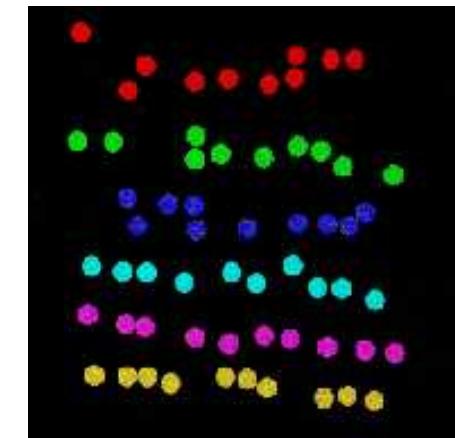
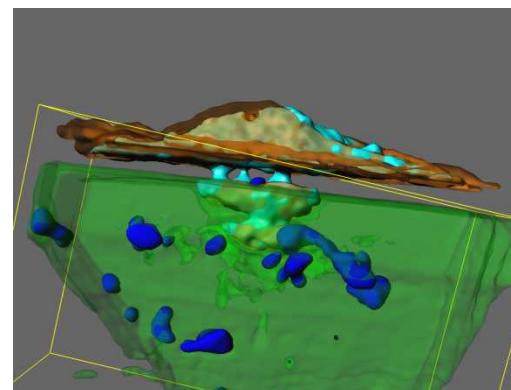
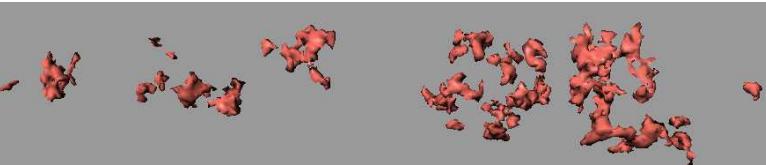
*Paul G. Kotula and Mark H. Van Benthem
Sandia National Laboratories
Albuquerque, NM, USA*

Thanks to Joe Michael, Michael Rye, Garry Bryant, and Bonnie McKenzie (all SNL) for technical assistance. EFTEM data courtesy Gene Lucadamo (formerly SNL). GIF spectrum line courtesy Ian Anderson and Jim Bentley (formerly ORNL). EDS data courtesy Dmitry Klenov and Sebastian von Harrach from FEI Company

What is a spectral image?



- A series of complete spectra resolved in 2- or higher dimensions
 - Conventional spectral images-2D
 - Tomographic spectral images-3D
 - Direct-FIB, Metallography
 - Computed-Tilt series of spectral images
 - Confocal
 - Resolved in other dimensions
 - Time, process condition, projection, etc.
- As far as MSA is concerned these can all be treated equivalently
 - Non-image-resolved data work the same



Data types discussed today

- STEM-EDS from the Tecnai Osiris (0.9sr)
 - CMOS specimen
 - 200,000 pixels acquired in 4 minutes
 - Acquired in frames
- GIF Spectrum Line
 - Oxide interface
 - Acquired as a single ‘image’
 - Distance by energy-loss
- ETEM spectrum image
 - Catalyst specimen
 - Acquired image-plane by image plane
 - Image alignment critical to a successful analysis



What is Multivariate Statistical Analysis?

- MSA comprises many techniques for factoring spectral image data into other hopefully more useful forms
- Makes use of high-degree of redundancy in data
 - Many observations of similar, noisy spectral or image features, tens of thousands to billions
 - Noisy data can be used to advantage
 - Large number of spectral channels, 50-100000
- Typically used to reduce dimensionality of the data and filter noise of known structure
- A 128x128 pixel by 1024 channel data set has 1024 dimensions, of which only a handful will represent chemical information...MSA helps find the correlations
- Should be fast
 - Seconds for small data sets to at most tens of minutes for the largest data sets.

What are the basic steps of MSA?

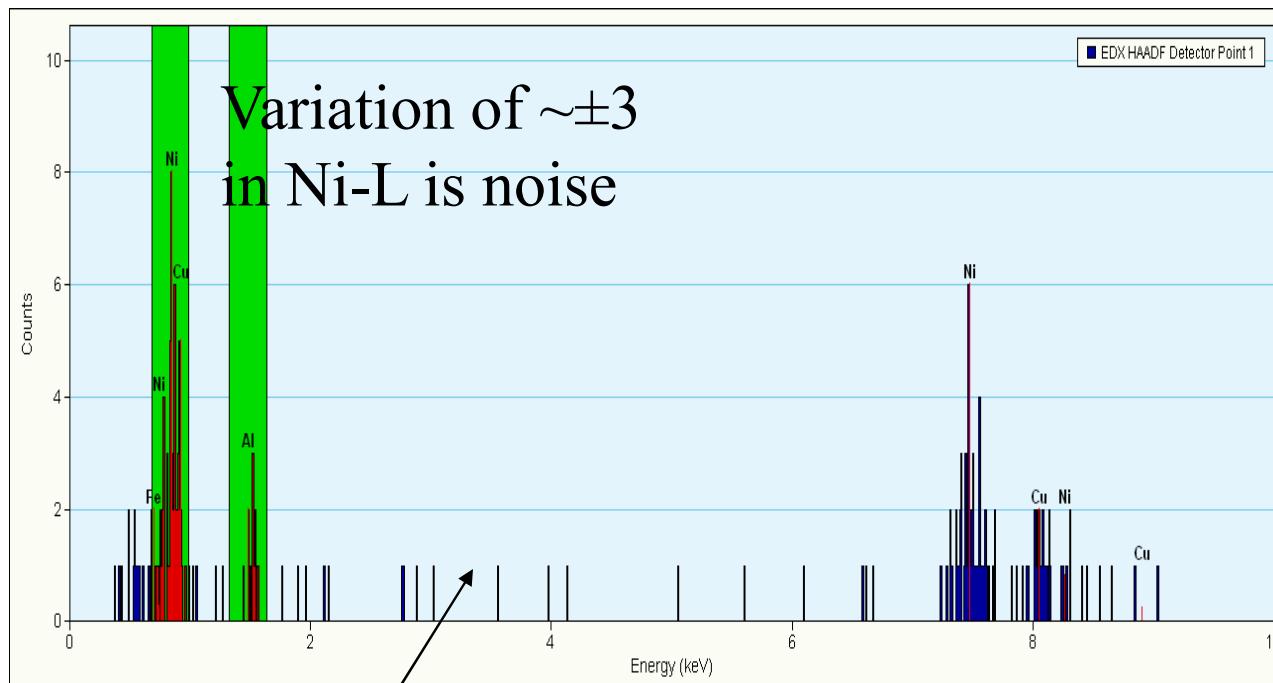
- Keenan, M.R., *Multivariate analysis of spectral images composed of count data*, in *Techniques and applications of hyperspectral image analysis*, H. Grahn and P. Geladi, Editors. 2007, John Wiley & Sons: Chichester.
- Scale data for non-uniform noise*
 - Assumption here-we know the noise structure in these counting experiments
 - Down-weights large variations in intense spectral or image features which are due to noise
 - Rank 1 approximation to the noise
 - In the image domain divide by the square-root of the mean image
 - In the spectral domain divide by the square-root of the mean spectrum
 - Essentially the same answer as maximum likelihood methods with but far less computational complexity**

*M.R. Keenan and P.G. Kotula, *Surf. Int. Anal.* **36** (2004) 203-212

M.R. Keenan, *J. Vac. Sci. Tech. A* **23 [4] (2005) 746-750

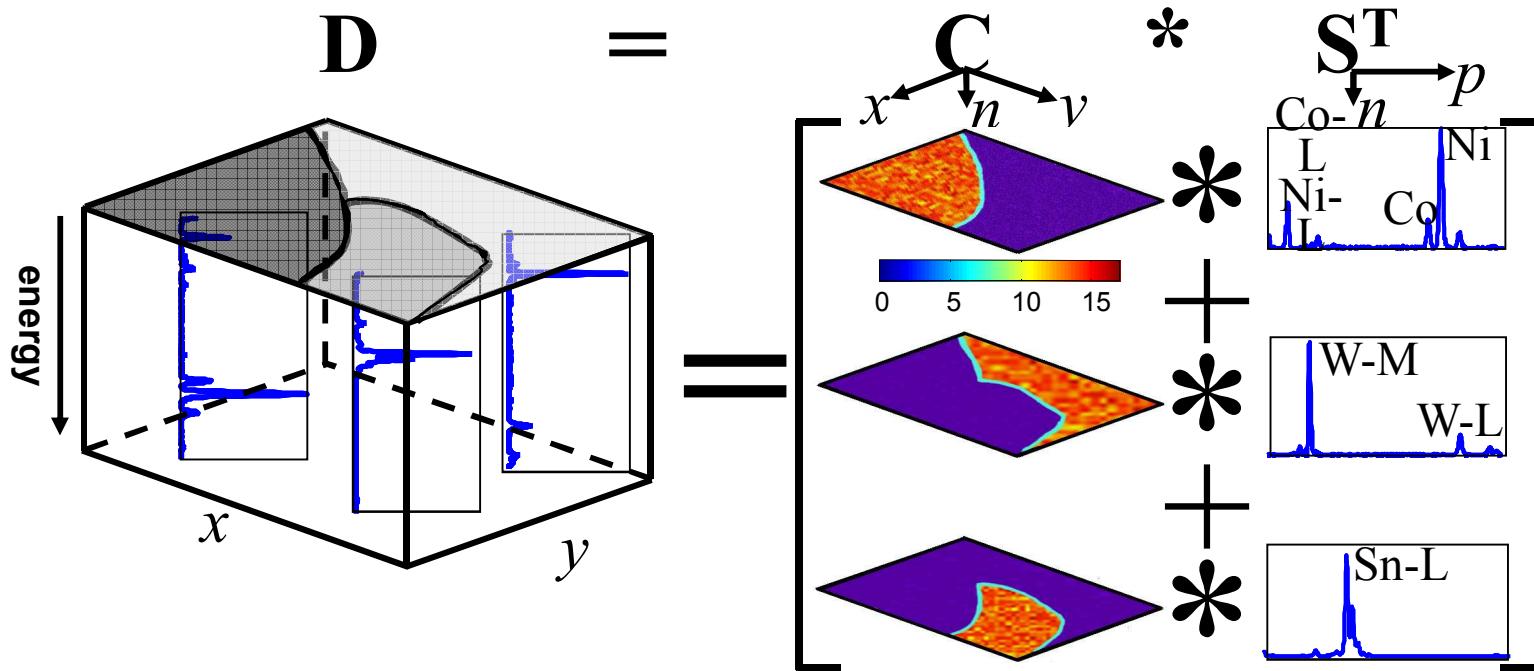
Normalizing for noise

Typical x-ray spectrum from STEM-EDS



3 counts in this part of the spectrum would be significant

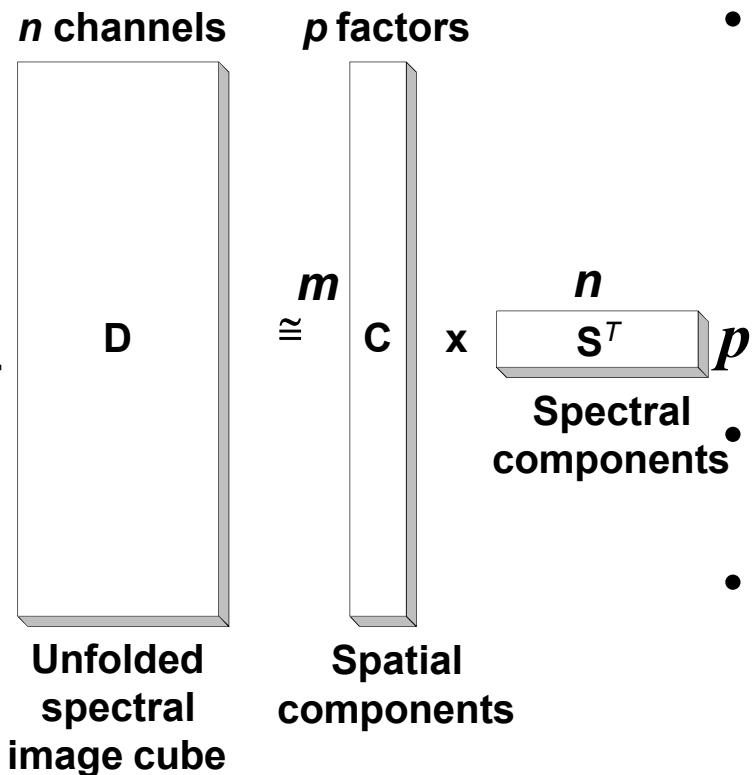
Multivariate Analysis: All Methods Assume a Linear Additive Model



Multivariate Processing:

- Scale data for Poisson counting statistics
- Determine the number of components to keep
- Factor the data matrix (D) into C and S
- Inverse scale the components

We have several options in our multivariate “Toolbox”



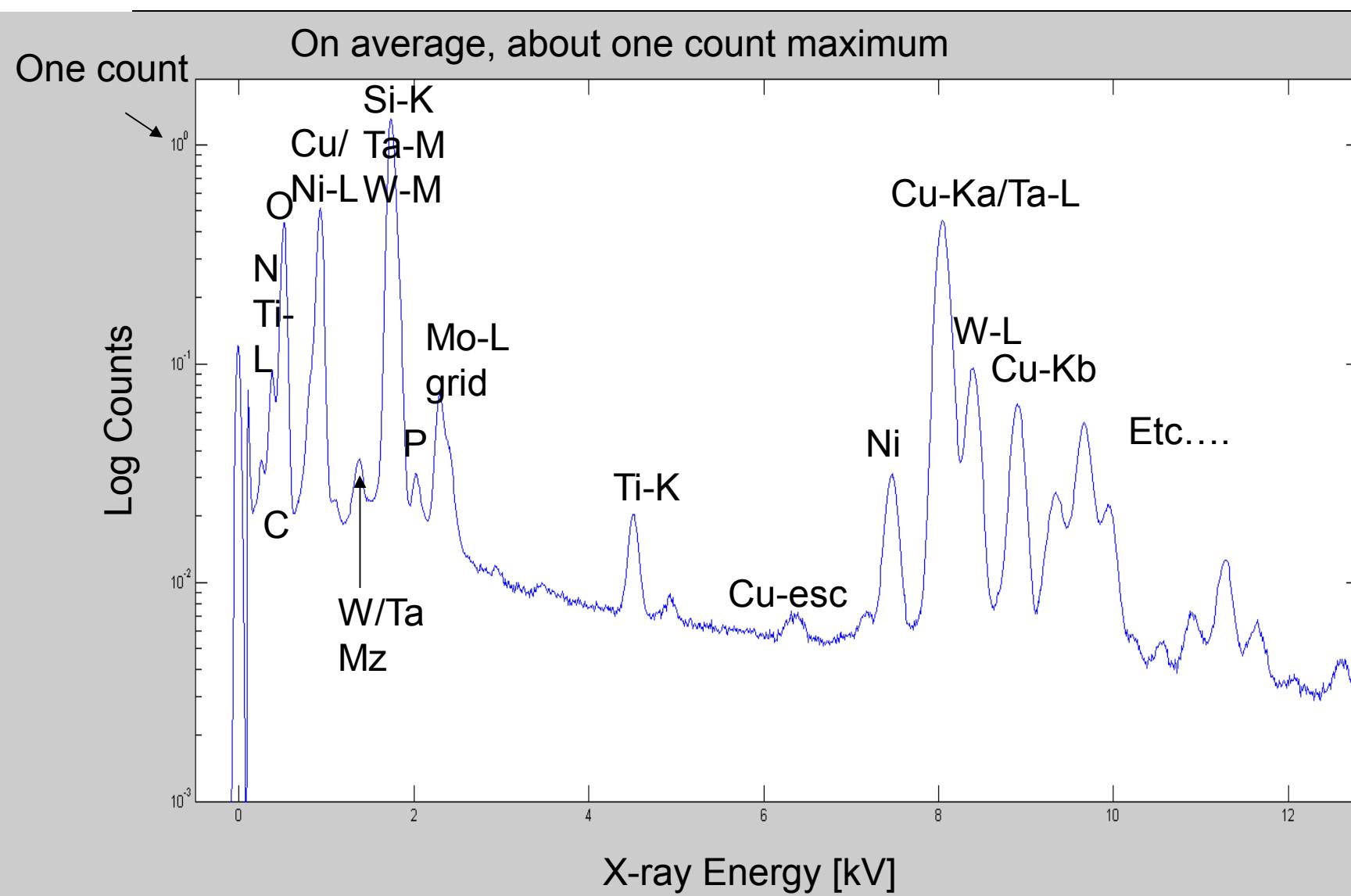
Analysis goal: Obtain an easily interpretable representation of the data

- Principal Component Analysis (PCA)
 - Factors are orthogonal
 - Factors serially maximize variance
 - Provides best LS fit to data
 - Non-physical constraints
 - Factors are abstract
- PCA + factor rotation (Varimax)
 - Rotate factors to “simple structure”
- MCR-ALS
 - A refinement of Rotated PCA
 - Non-negativity of C and/or S
 - Equality, closure and others
 - Constraints may not be effective

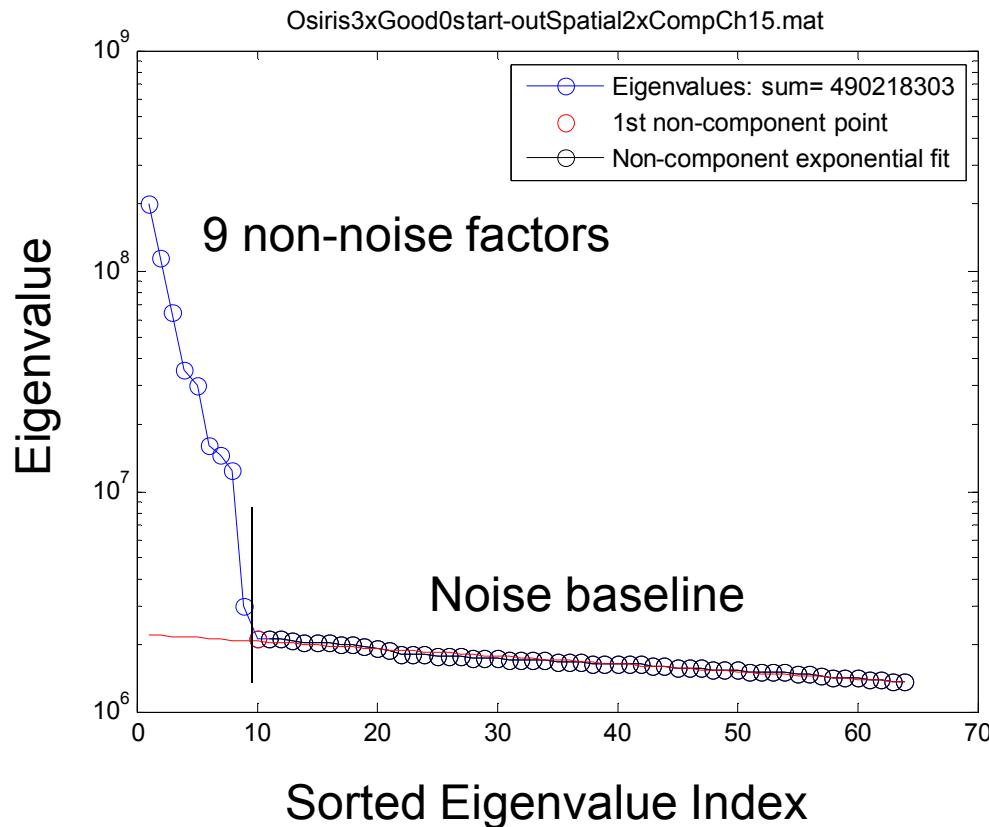
Spectral- vs. Spatial-Domain Simplicity: Analysis of CMOS

- Planarized CMOS in-situ lift out specimen on a Mo grid
- Data acquired on a FEI Tecnai Osiris, 200kV FEG with SuperX (0.9sr)
- The data are 400 x 500 pixels by 4096+channels
- >99% sparse (~811M elements = 0, ~7.7M elements >0)
 - But it's important to note the data are randomly distributed
- Data acquisition 249 seconds @ 1.5nA or 1.245msec/pixel
- ~10.6M total counts
 - 43kcps summed or 11kcounts/second/spectrometer
 - Average of 53 counts per spectrum
- Data analysis took 144 seconds on a decent lab workstation (XP-x64)

Mean Spectrum from the CMOS spectral image



Eigenanalysis of the CMOS SI data



Clearly 9 factors automatically resolved above the noise

Spatial Domain Simplicity*

Often the elemental viewpoint

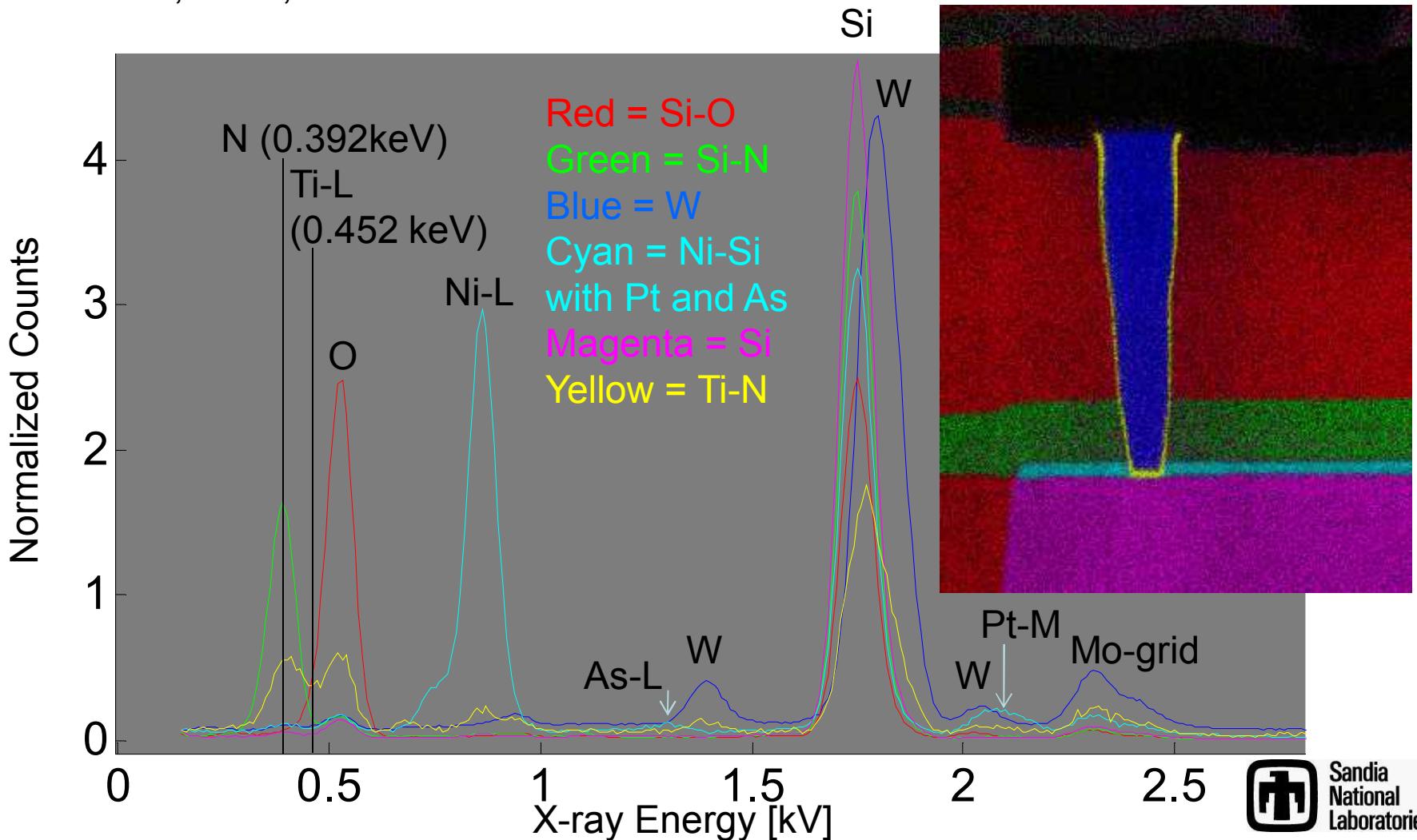
- **$D = CS^T$ (Goal: Factor raw data into C and S...linear model)**
 - D is an m -pixel \times n -channel raw spectral-data matrix
 - S is an $n \times p$ matrix containing the p pure-component spectra shapes
 - C is an $m \times p$ matrix containing their spatial distributions/abundances
- Data is scaled to account for non-uniform (Poisson) noise**
- Number of factors to retain is chosen (Eigenanalysis)
- PCA is performed on the scaled data such the **spectral** components are orthogonal and the **spatial** components are orthonormal
- Rotate the orthonormal **spatial** components to maximize their mutual simplicity with the VARIMAX procedure
- Apply the inverse rotation to the **spectral** components which relaxes orthogonality in this domain
- Optionally: Impose non-negativity (e.g., via CLS etc.)
- Inversely scale the components for Poisson noise

* M.R. Keenan, *Surf. Int. Anal.* **41** (2009) 79-87.

M.R. Keenan and P.G. Kotula, *Surf. Int. Anal.* **36 (2004) 203-212.

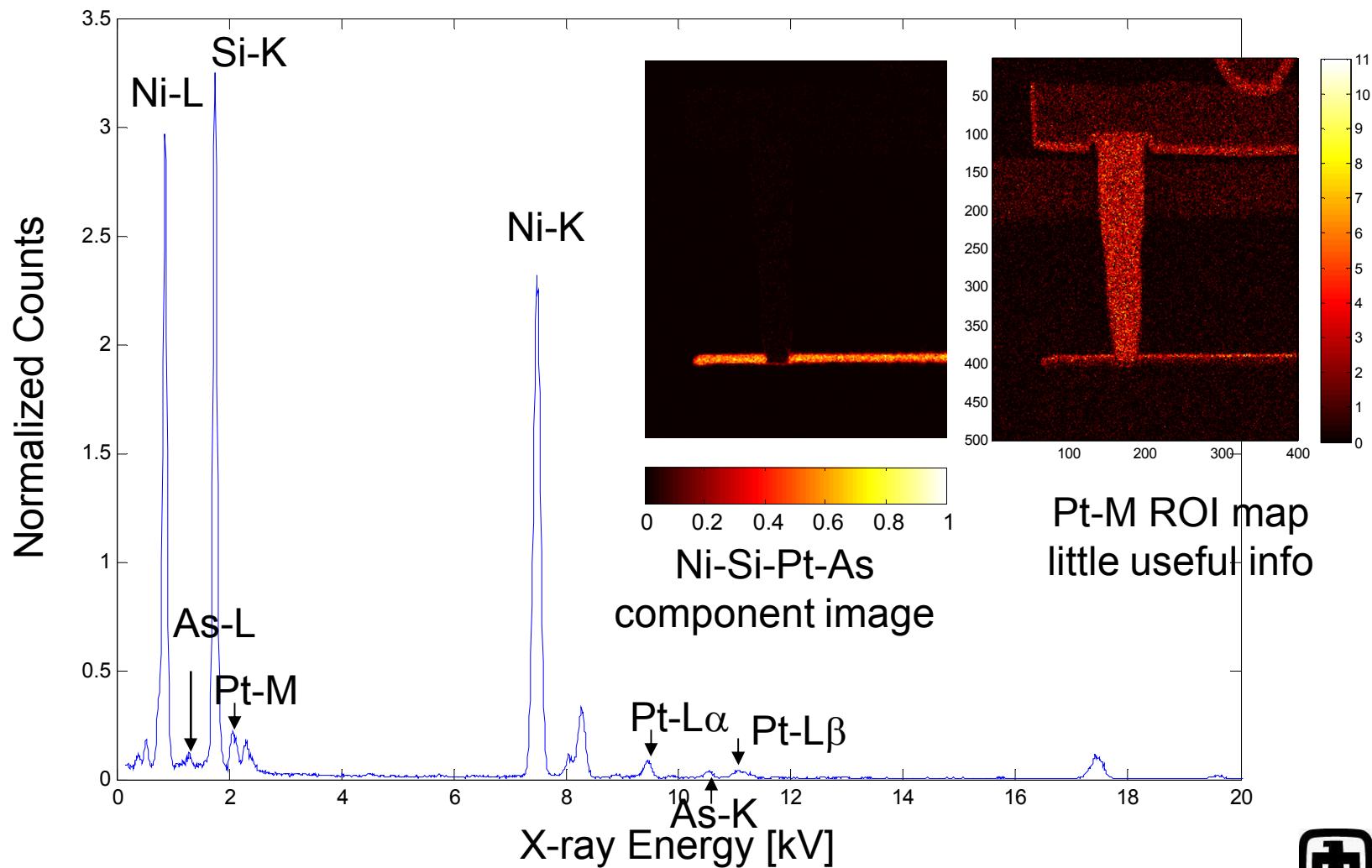
Spatial-Domain Simplicity Best Spatial 'Contrast'

Note Cu, Ta-Si, and low-k dielectric not shown



Spatial-Domain Simplicity

Ni-silicide contact, MSA shows minor elements



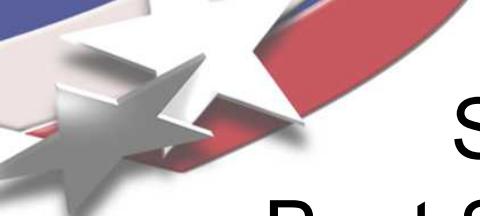
Spectral Domain Simplicity*

Often the phase viewpoint

- **$D = CST$ (Goal: Factor raw data into C and S...linear model)**
 - D is an m -pixel \times n -channel raw spectral-data matrix
 - S is an $n \times p$ matrix containing the p pure-component spectra shapes
 - C is an $m \times p$ matrix containing their spatial distributions/abundances
- Data is scaled to account for non-uniform (Poisson) noise**
- Number of factors to retain is chosen (Eigenanalysis)
- PCA is performed on the scaled data such the **spatial** components are orthogonal and the **spectral** components are orthonormal
- Rotate the orthonormal **spectral** components to maximize their mutual simplicity with the VARIMAX procedure
- Apply the inverse rotation to the **spatial** components which relaxes orthogonality in this domain
- Optionally: Impose non-negativity (e.g. via MCR-ALS)
- Inversely scale the components for Poisson noise

* M.R. Keenan, *Surf. Int. Anal.* **41** (2009) 79-87.

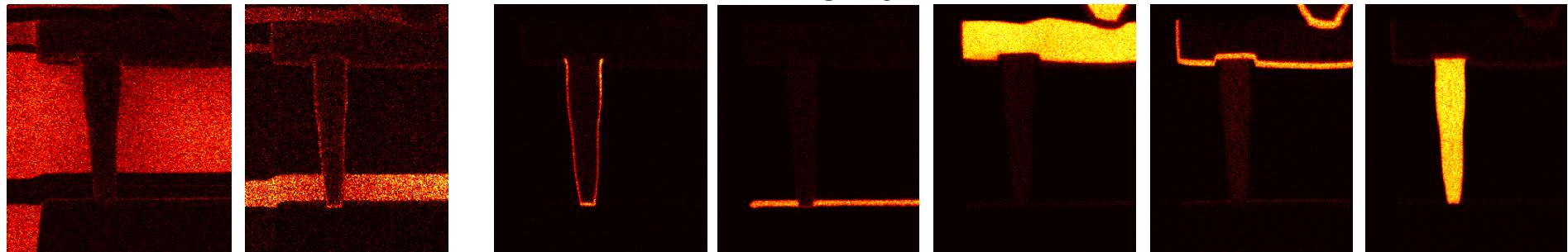
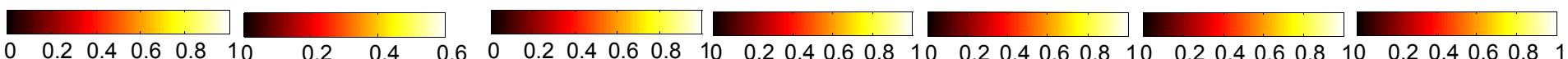
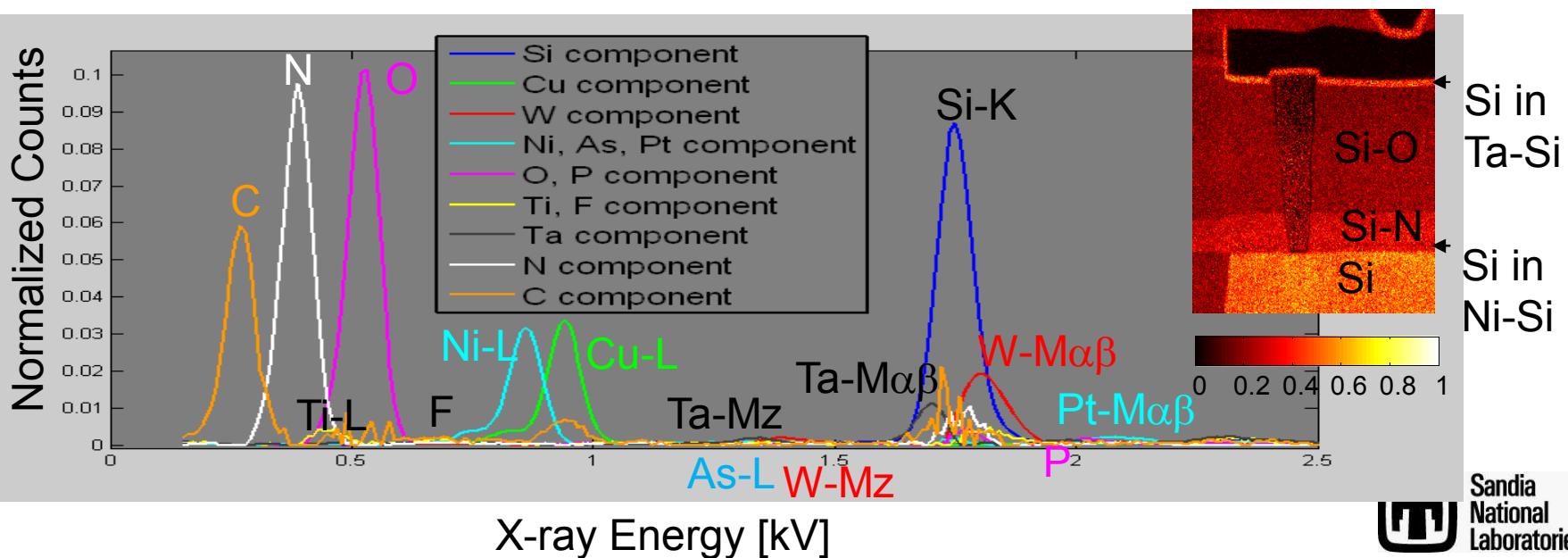
M.R. Keenan and P.G. Kotula, *Surf. Int. Anal.* **36 (2004) 203-212.



Spectral-Domain Simplicity

Best Spectral or Elemental 'Contrast'

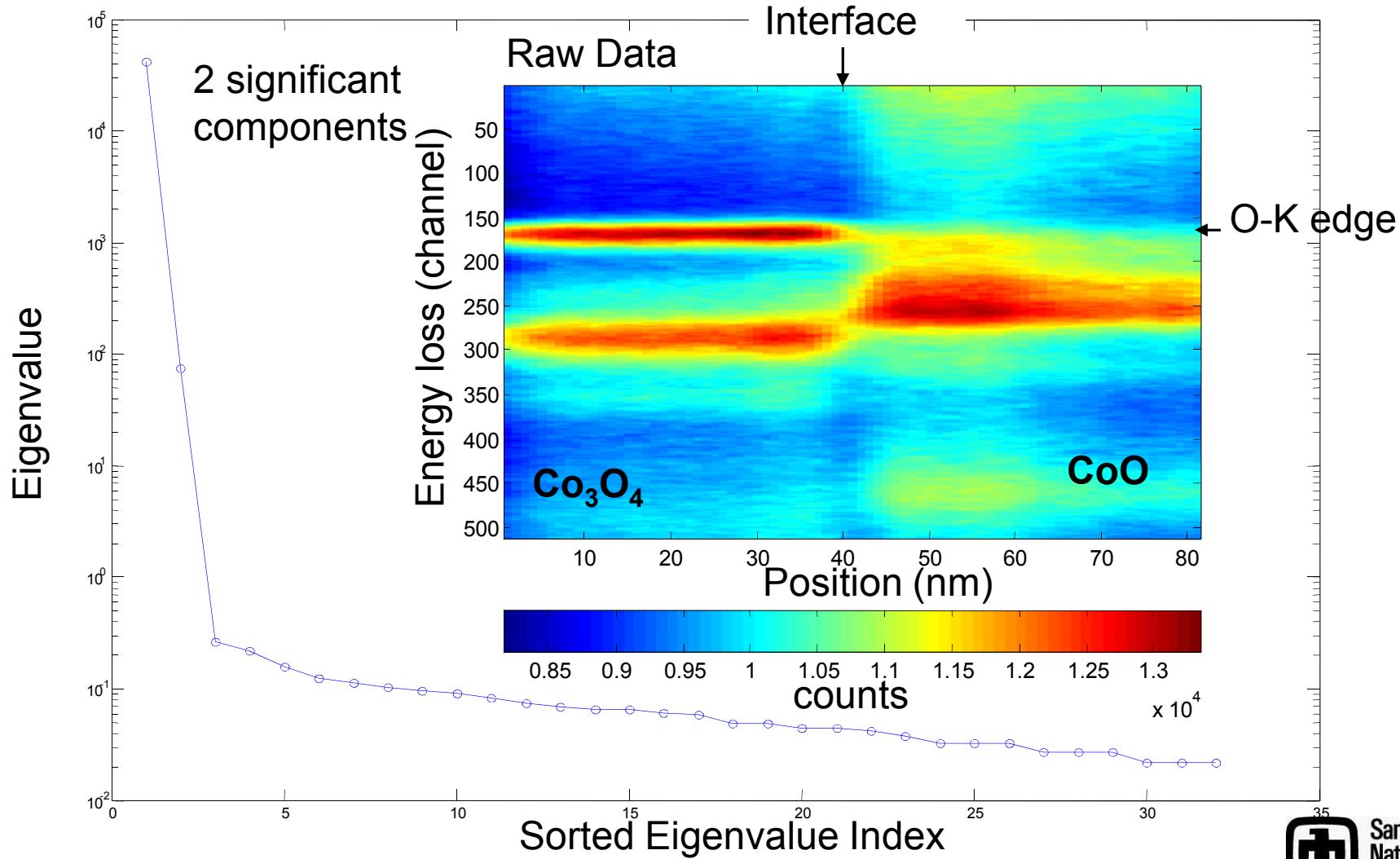
O N Ti Ni-As-Pt Cu Ta W



Spatial-domain simplicity of GIF

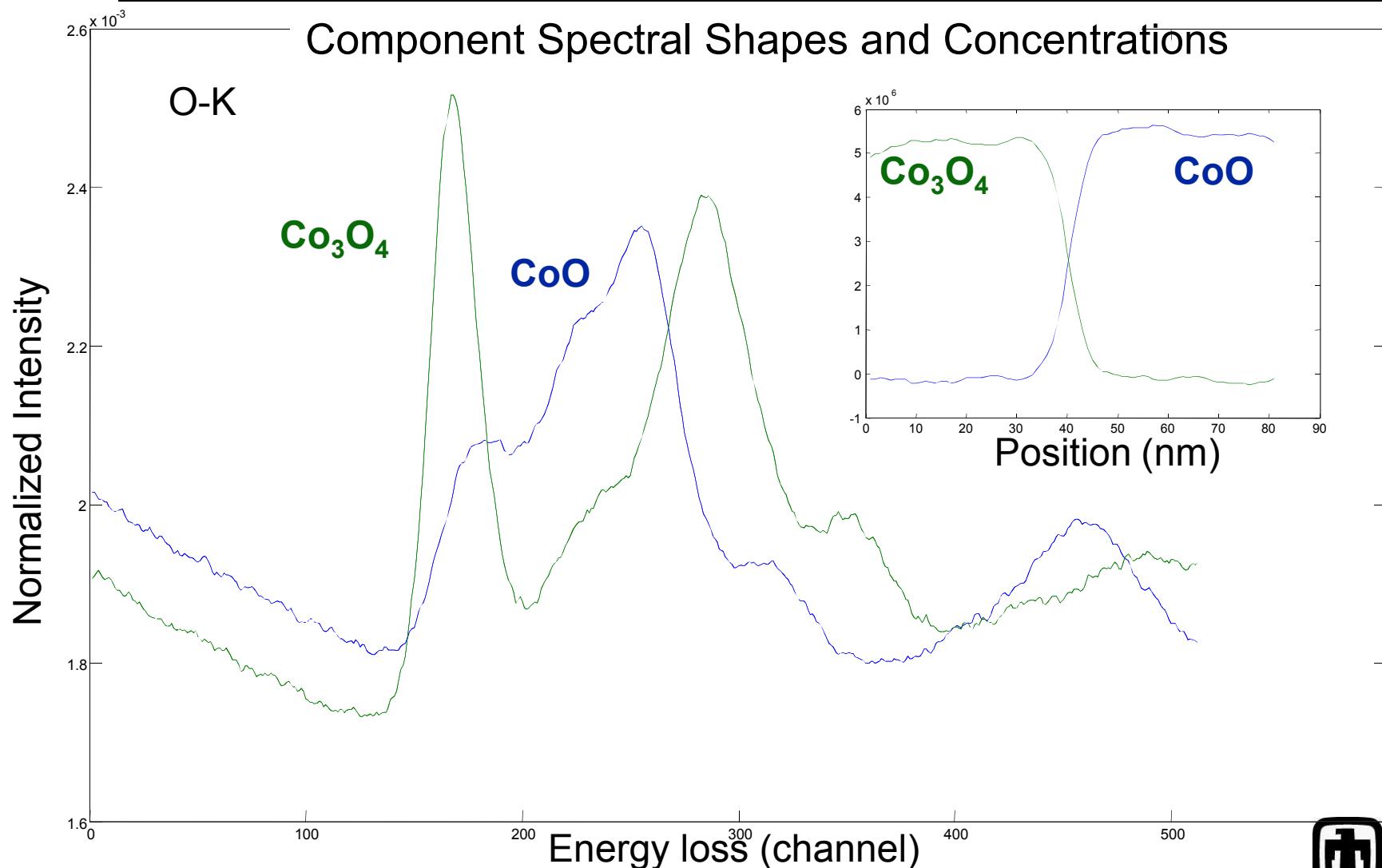
Spectrum-Line, O-K Edge, CoO/Co₃O₄

Drift spatially, HT, etc. distort everything so no pre-processing necessary

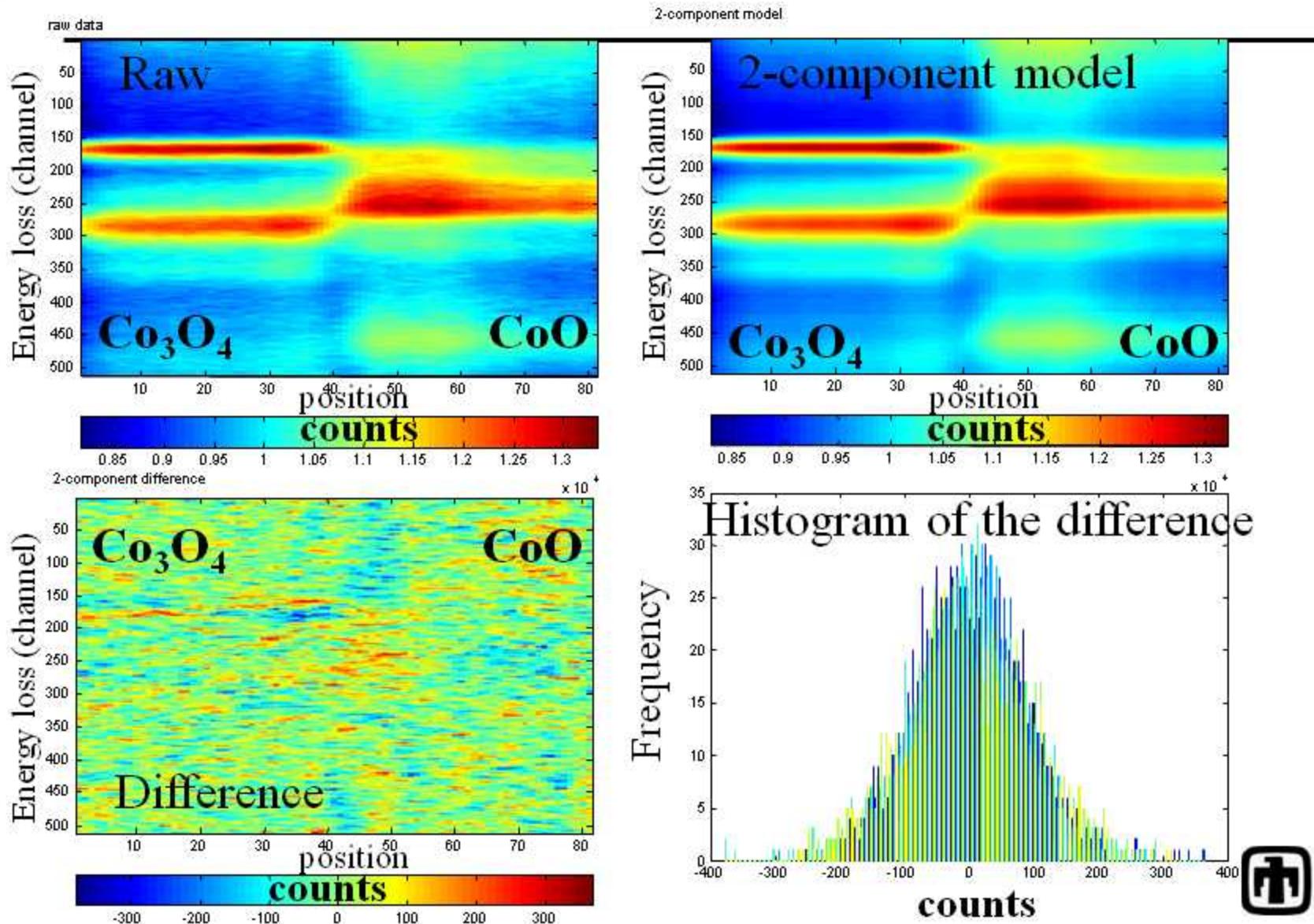


Spatial-domain simplicity of GIF Spectrum-Line, O-K Edge, CoO/Co₃O₄

Solution captures significant near-edge fine structure changes with no *a priori* knowledge



Spatial-domain simplicity of GIF Spectrum-Line, O-K Edge, CoO/Co₃O₄

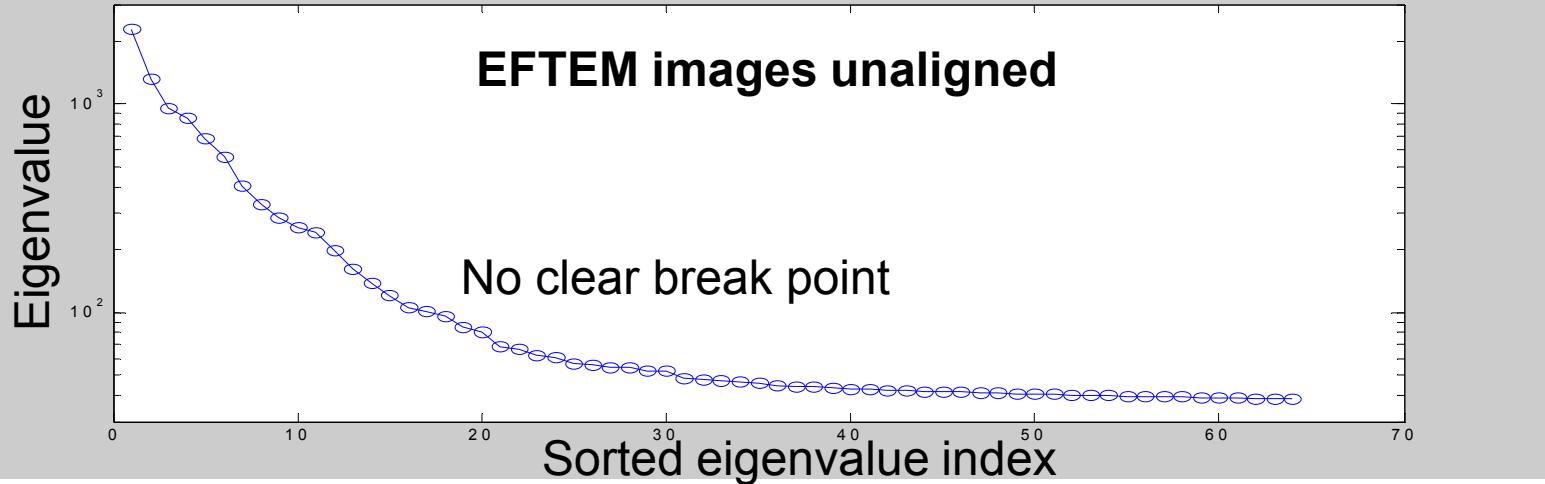
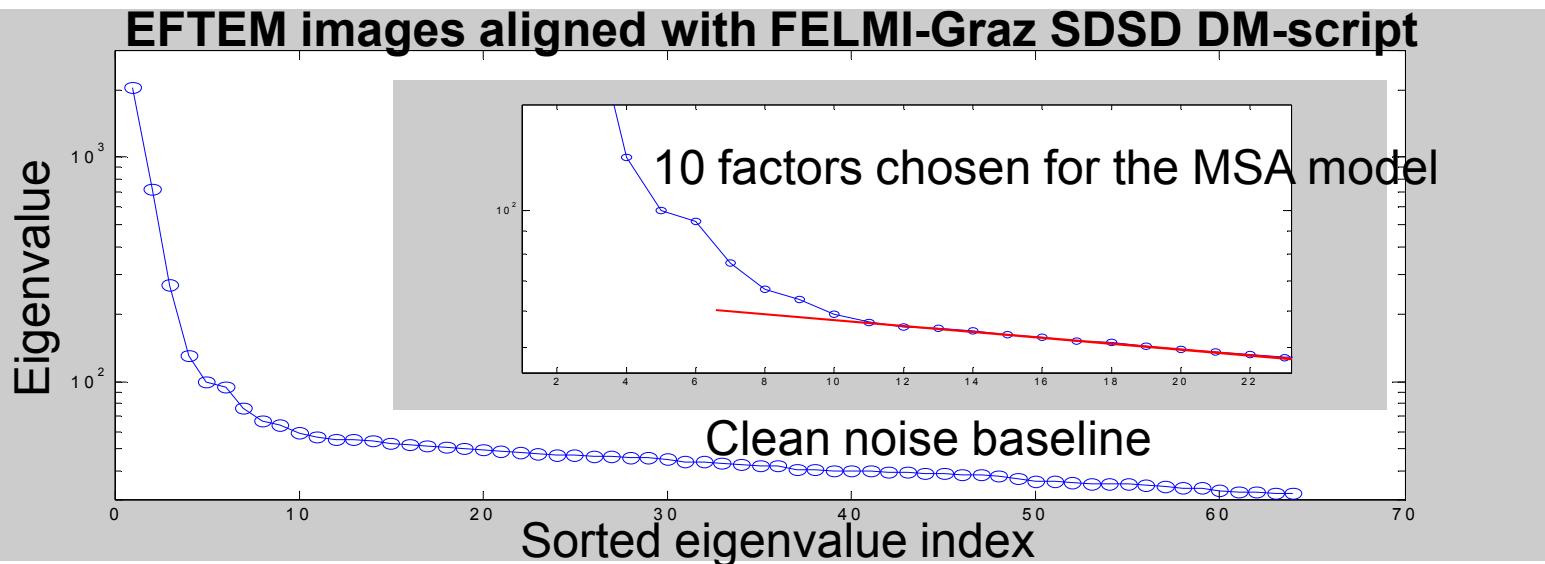


Spatial-Domain Simplicity of and EFTEM-SI of a catalyst

- 79 EFTEM images, 256x256 pixels were acquired at 5eV intervals from 225-620eV
 - JEOL 2010F with Gatan GIF-2001
 - 32 nm/pixel
- Images were aligned with the FELMI-Graz DM-script “SDSD” (Schaffer et al., *Ultramicroscopy* **102/1** (2004) pp.27-36)
 - Critical step prior to MSA
 - 254x209 pixels after alignment (8.1 x 6.7 μm)
 - Also x-rays filtered prior to image alignment
- Data set not perfect as sample distorted slightly during acquisition

Spatial-Domain Simplicity of and EFTEM-SI of a catalyst

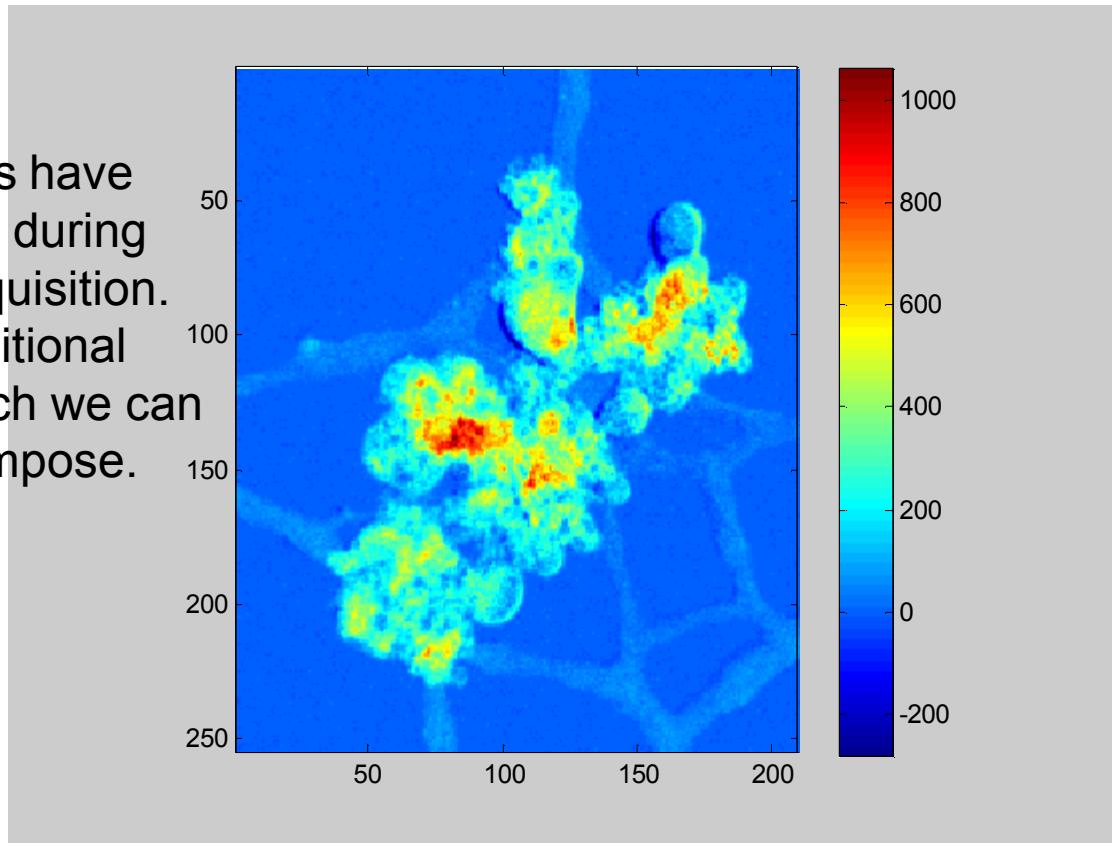
Image alignment prior to MSA is critical



Spatial-Domain Simplicity of and EFTEM-SI of a catalyst

Some extra components are due to sample distortion during acquisition

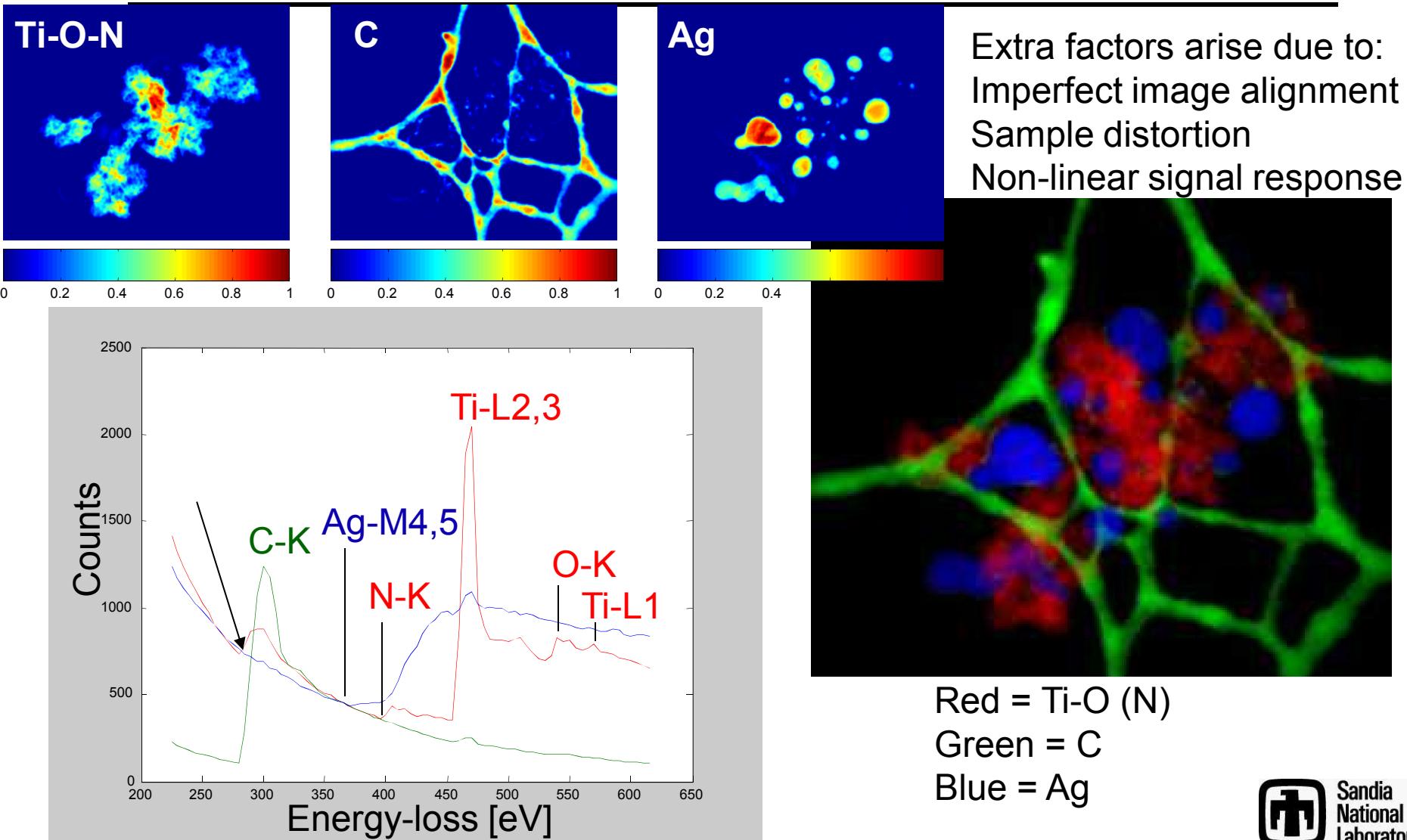
Note the particles have moved/damaged during image series acquisition. This will add additional MSA factors which we can manually superimpose.



Difference image of Channel 1 and Channel 79

Spatial-Domain Simplicity of and EFTEM-SI of a catalyst

Inspection of the 10 MSA factors reveals 3 underlying relevant ones



Conclusions

- MSA methods are every useful for simplifying the analysis of large, complex data sets
 - Importance of Poisson normalization
 - Factor rotation, MCR, etc. give different viewpoints
- Unbiased analysis powerful for forensics, materials science, etc. Needle in the haystack....
- Annular x-ray detector geometry makes STEM in SEM microanalysis practical
- High count rates (>100kcps typically) from thin samples, >1Mcps of bulk samples
- High throughput bio-forensics application