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» A series of complete spectra resolved in

2- or higher dimensions
— Conventional spectral images-2D
— Tomographic spectral images-3D
» Direct-FIB, Metallography

« Computed-Tilt series of spectral images
- Confocal Suse B8y ..

— Resolved in other dimensions

energy

-l

« Time, process condition, projection, etc.
« As far as MSA is concerned these can all be treated
equivalently
— Non-image-resolved
data work the same
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? Data types discussed today

« STEM-EDS from the Tecnai Osiris (0.9sr)

— CMOS specimen
— 200,000 pixels acquired in 4 minutes
— Acquired in frames

* GIF Spectrum Line
— Oxide interface
— Acquired as a single ‘image’
— Distance by energy-loss
« EFTEM spectrum image
— Catalyst specimen
— Acquired image-plane by image plane
— Image alignment critical to a successful analysis
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Mhat is Multivariate Statistical Analysis?

« MSA comprises many techniques for factoring spectral
image data into other hopefully more useful forms
« Makes use of high-degree of redundancy in data

— Many observations of similar, noisy spectral or image
features, tens of thousands to billions

— Noisy data can be used to advantage
— Large number of spectral channels, 50-100000

« Typically used to reduce dimensionality of the data and
filter noise of known structure

« A 128x128 pixel by 1024 channel data set has 1024
dimensions, of which only a handful will represent
chemical information...MSA helps find the correlations

 Should be fast

— Seconds for small data sets to at most tens of minutes for
the largest data sets. @ Sondi
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* What are the basic steps of MSA?

 Keenan, M.R., Multivariate analysis of spectral images
composed of count data, in Techniques and applications of
hyperspectral image analysis, H. Grahn and P. Geladi, Editors.
2007, John Wiley & Sons: Chinchester.

» Scale data for non-uniform noise*

— Assumption here-we know the noise structure in these
counting experiments

— Down-weights large variations in intense spectral or image
features which are due to noise

— Rank 1 approximation to the noise
 |In the image domain divide by the square-root of the mean image

 In the spectral domain divide by the square-root of the mean spectrum

« Essentially the same answer as maximum likelihood methods with but
far less computational complexity**

*M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212 —
**M.R. Keenan, J. Vac. Sci. Tech. A 23 [4] (2005) 746-750 @ National
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} Normalizing for noise

Typical x-ray spectrum from STEM-EDS
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Multivariate Analysis:

All Methods Assume a Linear Additive Model

Multivariate Processing:

Scale data for Poisson counting statistics

Determine the number of components to keep

Factor the data matrix (D) into C and S Soni
Inverse scale the components @ sl



#‘ We have several options in our

multivariate “Toolbox”

nchannels  pfactors * Principal Component Analysis (PCA)
— Factors are orthogonal
— Factors serially maximize variance
— Provides best LS fit to data
é m "T — Non-physical constraints
o D A S P _ Factors are abstract
) comoonee PCA + factor rotation (Varimax)
— Rotate factors to “simple structure”
« MCR-ALS
Unfolded Spatial — Arefinement of Rotated PCA
imsap:: g:,loe components — Non-negativity of C and/or S
— Equality, closure and others
Analysis goal: Obtain an — Constraints may not be effective
easily interpretable
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*i Spectral- vs. Spatial-Domain

Simplicity: Analysis of CMOS

Planarized CMOS in-situ lift out specimen on a Mo grid

Data acquired on a FEI Tecnai Osiris, 200kV FEG with
SuperX (0.9sr)

The data are 400 x 500 pixels by 4096+channels
>99% sparse (~811M elements = 0, ~7.7M elements >0)

« Butit's important to note the data are randomly
distributed

Data acquisition 249 seconds @ 1.5nA or 1.245msec/pixel
~10.6M total counts

« 43kcps summed or 11kcounts/second/spectrometer

« Average of 53 counts per spectrum

Data analysis took 144 seconds on a decent lab
workstation (XP-x64)
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*i Mean Spectrum from the CMOS

spectral image

On average, about one count maximum
One count
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Eigenanalysis of the CMOS Sl data

Osiris3xGoodOstart-outSpatial2xCompCh15.mat
1 0 C T T T T T T

—O— Eigenvalues: sum= 490218303 |1
O 1st non-component point |
—<— Non-component exponential fit ||

9 non-noise factors

Eigenvalue

70

Sorted Eigenvalue Index

Clearly 9 factors automatically resolved above the noise
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Spatial Domain Simplicity’

Often the elemental viewpoint
D = CST(Goal: Factor raw data into C and S...linear model)

D is an m-pixel x n-channel raw spectral-data matrix
S is an n x p matrix containing the p pure-component spectra shapes

C is an m x p matrix containing their spatial distributions/abundances
Data is scaled to account for non-uniform (Poisson) noise**
Number of factors to retain is chosen (Eigenanalysis)

PCA is performed on the scaled data such the spectral components are orthogonal
and the spatial components are orthonormal

Rotate the orthonormal spatial components to maximize their mutual simplicity with
the VARIMAX procedure

Apply the inverse rotation to the spectral components which relaxes orthogonally in
this domain

Optionally: Impose non-negativity (e.g., via CLS etc.)

Inversely scale the components for Poisson noise

* M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87. -
**M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212. [lil) National
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Spatial-Domain Simplicity
Best Spatial ‘Contrast’

Note Cu, Ta-Si, and low-k dielectric not shown
Si

Cyan = Ni-Si
with Pt and As

Yellow = Ti-N
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Spatial-Domain Simplicity
Ni-silicide contact, MSA shows minor elements
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Spectral Domain Simplicity’

Often the phase viewpoint
D = CST(Goal: Factor raw data into C and S...linear model)

D is an m-pixel x n-channel raw spectral-data matrix
S is an n x p matrix containing the p pure-component spectra shapes

C is an m x p matrix containing their spatial distributions/abundances
Data is scaled to account for non-uniform (Poisson) noise**
Number of factors to retain is chosen (Eigenanalysis)

PCA is performed on the scaled data such the spatial components are orthogonal and
the spectral components are orthonormal

Rotate the orthonormal spectral components to maximize their mutual simplicity
with the VARIMAX procedure

Apply the inverse rotation to the spatial components which relaxes orthogonally in
this domain

Optionally: Impose non-negativity (e.g. via MCR-ALS)
Inversely scale the components for Poisson noise

* M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212. @ Sandia
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Spectral-Domain Simplicity
Best Spectral or Elemental ‘Contrast’
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e~ 4 'Spatial-domain simplicity of GIF
Spectrum-Line, O-K Edge, CoO/Co;0,

Drift spatially, HT, etc. distort everything so no pre-processing necessary
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Normalized Intensity
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Spatial-domain simplicity of GIF

Spectrum-Line, O-K Edge, CoO/Co;0,

Solution captures significant near-edge fine structure changes with no a priori knowledge
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raw data

Spatial-domain simplicity of GIF
Spectrum-Line, O-K Edge, CoO/Co;0,

2-companent model
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Mpatial-Domain Simplicity of and

EFTEM-SI of a catalyst

79 EFTEM images, 256x256 pixels were
acquired at 5eV intervals from 225-620eV
— JEOL 2010F with Gatan GIF-2001
— 32 nm/pixel

* Images were aligned with the FELMI-Graz DM-
script “SDSD” (Schaffer et al., Ultramicroscopy
102/1 (2004) pp.27-36)

— Critical step prior to MSA
— 254x209 pixels after alignment (8.1 x 6.7 um)
— Also x-rays filtered prior to image alignment

« Data set not perfect as sample distorted slightly
during acquisition @Samﬁa
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P 4 'Spatial-Domain Simplicity of and
# EFTEM-SI of a catalyst

Image alignment prior to MSA is critical

EFTEM images unaligned
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No clear break point
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EFTEM images aligned with FELMI-Graz SDSD DM-script
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Spatial-Domain Simplicity of and
EFTEM-SI of a catalyst

Some extra components are due to sample distortion during acquisition

Note the particles have
moved/damaged during
image series acquisition.
This will add additional '
MSA factors which we can
manually superimpose. 1so
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'Spatlal Domain Simplicity of and
EFTEM-SI of a catalyst

Inspection of the 10 MSA factors reveals 3 underlying relevant ones

Extra factors arise due to:
Imperfect image alignment
Sample distortion
Non-linear signal response
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# Conclusions

MSA methods are every useful for simplifying the
analysis of large, complex data sets

— Importance of Poisson normalization
— Factor rotation, MCR, etc. give different viewpoints

Unbiased analysis powerful for forensics, materials
science, etc. Needle in the haystack....

Annular x-ray detector geometry makes STEM in
SEM microanalysis practical

High count rates (>100kcps typically) from thin
samples, >1Mcps of bulk samples

High throughput bio-forensics application
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