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Quiz (True or False) 

1.  MPI-only has the best parallel performance. 
2.  Future parallel applications will not have MPI_Init(). 
3.  All future programmers will need to write parallel code. 
4.  Use of “markup”, e.g., OpenMP pragmas, is the least 

intrusive approach to parallelizing a code. 
5.  DRY is not possible across CPUs and GPUs. 
6.  Extended precision is too expensive to be useful. 
7.  Resilience will be built into algorithms. 
8.  GPUs are a harbinger of CPU things to come. 
9.  Fortran Developers are in trouble in a manycore world. 
10. Global SIMT is sufficient parallelism for scientific computing. 



Trilinos Contributors 



Trilinos Download History: 17600 Total 
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Registered User by Region 

2105 

1912 

351 

866 

265 

65 
76 

Registered Users by Region (5640 Total) 

Europe 

US (except Sandia) 

Sandia (includes unregistered) 

Asia 

Americas (except US) 

Australia/NZ 

Africa 



Registered Users by Type 

University; 
3369 

Government; 
828 

Personal; 688 

Industry; 622 
Other; 133 

Registered Users by Type  
(5640 Total) 

University 

Government 

Personal 

Industry 

Other 



Ubuntu/Debian: Other sources 

maherou@jaguar13:/ccs/home/maherou> module avail trilinos 

------------------------------------------------ /opt/cray/modulefiles ------------------------------------------------- 
trilinos/10.0.1(default) trilinos/10.2.0 

------------------------------------------------- /sw/xt5/modulefiles -------------------------------------------------- 
trilinos/10.0.4 trilinos/10.2.2 trilinos/10.4.0 trilinos/8.0.3  trilinos/9.0.2 



Capability Leaders: 
Layer of Proactive Leadership 

  Areas: 
  Framework, Tools & Interfaces (J. Willenbring). 
  Software Engineering Technologies and Integration (R. Bartlett). 
  Discretizations (P. Bochev). 
  Geometry, Meshing & Load Balancing (K. Devine). 
  Scalable Linear Algebra (M. Heroux). 
  Linear & Eigen Solvers (J. Hu). 
  Nonlinear, Transient & Optimization Solvers (A. Salinger). 
  Scalable I/O: (R. Oldfield) 

  Each leader provides strategic direction across all Trilinos packages 
within area. 



Trilinos Package Summary 
Objective Package(s) 

Discretizations 
Meshing & Discretizations STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite 

Time Integration Rythmos 

Methods 
Automatic Differentiation Sacado 

Mortar Methods Moertel 

Services 

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos 

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards 

Load Balancing Zoltan, Isorropia 

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika 

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx 

Solvers 

Iterative linear solvers AztecOO, Belos, Komplex 

Direct sparse linear solvers Amesos, Amesos2 

Direct dense linear solvers Epetra, Teuchos, Pliris 

Iterative eigenvalue solvers Anasazi, Rbgen 

ILU-type preconditioners AztecOO, IFPACK, Ifpack2 

Multilevel preconditioners ML, CLAPS 

Block preconditioners Meros, Teko 

Nonlinear system solvers NOX, LOCA 

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack 

Stochastic PDEs Stokhos 



Three Design Points 

• Terascale Laptop:  Uninode-Manycore 

• Petascale Deskside:  Multinode-Manycore  

• Exascale Center:  Manynode-Manycore 



Basic Concerns: Trends, Manycore 

• Stein’s Law: If a trend cannot 
continue, it will stop. 

Herbert Stein, chairman of the Council of 
Economic Advisers under Nixon and 
Ford. 

•  Trends at risk: 
–  Power. 
–  Single core performance. 
– Node count. 
– Memory size & BW. 
– Concurrency expression in 

existing Programming 
Models. 

– Resilience. 
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3D Grid Points with 27pt stencil 

Parallel CG Performance 512 Threads 
32 Nodes = 2.2GHz AMD 4sockets X 4cores 

p32 x t16 

p128 x t4 

p512 x t1 

Edwards: SAND2009-8196 
Trilinos ThreadPool Library v1.1.	



“Status Quo” ~ MPI-only	



11 

Strong Scaling Potential	





Observations 

• MPI-Only is not sufficient, except … much of the time. 
• Near-to-medium term: 

– MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI] 
–  Long term, too? 

• Concern: 
–  Best hybrid performance: 1 MPI rank per UMA core set. 
– UMA core set size growing slowly  Lots of MPI tasks. 

•  Long- term: 
–  Something hierarchical, global in scope. 

• Conjecture:  
– Data-intensive apps need non-SPDM model. 
– Will develop new programming model/env. 
– Rest of apps will adopt over time. 
–  Time span: 10-20 years. 



What Can we Do Right Now? 

• Study why MPI was successful. 
• Study new parallel landscape. 
• Try to cultivate an approach similar to MPI (and 
others). 



MPI Impresssions 

14 
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Workshop on the Road Map for the 

	

Revitalization of High End 
	

Computing ���
	

June 16-18, 2003	



Tim Stitts, CSCS	


SOS14 Talk	


March 2010	



“ MPI is often considered the 
“portable assembly language” of 
parallel computing, …”	


Brad Chamberlain, Cray, 2000.	
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3D Stencil in NAS MG

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if( .not. dead(kk) )then
do  axis = 1, 3

if( nprocs .ne. 1) then
call sync_all()
call give3( axis, +1, u, n1, n2, n3, kk 

)
call give3( axis, -1, u, n1, n2, n3, kk 

)
call sync_all()
call take3( axis, -1, u, n1, n2, n3 )
call take3( axis, +1, u, n1, n2, n3 )

else
call comm1p( axis, u, n1, n2, n3, kk )

endif
enddo

else
do  axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3( axis, dir, u, n1, n2, n3, k )
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u( n1, n2, n3 )

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir 
buff_len = 0

if( axis .eq.  1 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id ) = u( 2,  

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( n1-1, 

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

endif
endif

if( axis .eq.  2 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,  

2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len,  buff_id )= u( i1,n2-

1,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

endif
endif

if( axis .eq.  3 )then
if( dir .eq. -1 )then

do  i2=1,n2
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( 

i1,i2,2)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i2=1,n2
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( 

i1,i2,n3-1)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3( axis, dir, u, n1, n2, n3 )
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u( n1, n2, n3 )

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if( axis .eq.  1 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i2=2,n2-1

indx = indx + 1

u(n1,i2,i3) = buff(indx, buff_id )
enddo

enddo

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id )

enddo
enddo

endif
endif

if( axis .eq.  2 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id )

enddo
enddo

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id )

enddo
enddo

endif
endif

if( axis .eq.  3 )then
if( dir .eq. -1 )then

do  i2=1,n2
do  i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id )

enddo
enddo

else if( dir .eq. +1 ) then

do  i2=1,n2
do  i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id )

enddo
enddo

endif
endif

return
end

subroutine comm1p( axis, u, n1, n2, n3, kk )
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u( n1, n2, n3 )

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do  i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do  i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir 
buff_len = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( n1-1, 

i2,i3)
enddo

enddo
endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len,  buff_id )= u( i1,n2-

1,i3)
enddo

enddo
endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir 
buff_len = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id ) = u( 2,  i2,i3)

enddo
enddo

endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,  

2,i3)
enddo

enddo
endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,i2,2)

enddo
enddo

endif

do  i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id )

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id )

enddo
enddo

endif

return
end

param coeff: domain(1) = [0..3];
param Stencil: domain(3) = [-1..1, -1..1, -1..1];

function rprj3(S, R) {

param w: [coeff] float
= (/0.5, 0.25, 0.125, 0.0625/);

param w3d: [(i,j,k) in Stencil] float
= w((i!=0) + (j!=0) + (k!=0));

const SD = S.Domain,

Rstr = R.stride;

S = [ijk in SD] sum reduce

[off in Stencil]

(w3d(off) * R(ijk + Rstr*off));

}

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf	





MPI Reality 
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Tramonto 
WJDC 

Functional 

•  New functional. 
•  Bonded systems. 
•  552 lines C code. 

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman. 
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J. 
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems. 	



How much MPI-specific code?	



dft_fill_wjdc.c	





dft_fill_wjdc.c 
MPI-specific 

code 



MFIX  
Source term for 

pressure 
correction 

•  MPI-callable, OpenMP-enabled. 
•  340 Fortran lines. 
•  No MPI-specific code. 
•  Ubiquitous OpenMP markup 

(red regions). 

MFIX: Multiphase Flows with Interphase eXchanges (https://www.mfix.org/)	



source_pp_g.f	





Reasons for MPI Success? 

• Portability?   Yes. 
• Standardized?   Yes. 
• Momentum?   Yes. 
• Separation of many  
Parallel & Algorithms  
concerns?   Big Yes. 

• Once framework in place: 
– Sophisticated physics added as serial code. 
– Ratio of science experts vs. parallel experts: 10:1. 

• Key goal for new parallel apps: Preserve this ratio 



Computational Domain Expert Writing MPI Code 



Computational Domain Expert Writing Future 
Parallel Code 



Evolving Parallel Programming Model 

24 



Parallel Programming Model:  
Multi-level/Multi-device 

Stateless computational kernels!
run on each core!

Intra-node (manycore) 
parallelism and resource 

management!

Node-local control flow (serial)!

Inter-node/inter-device (distributed) 
parallelism and resource management!

Threading!

Message Passing!

stateless kernels!

computational 
node with 

manycore CPUs!
and / or!
GPGPU!

network of 
computational 

nodes!

25 Adapted from slide of H. Carter Edwards	





Domain Scientist’s Parallel Palette 
• MPI-only (SPMD) apps: 

–  Single parallel construct. 
–  Simultaneous execution. 
–  Parallelism of even the messiest serial code. 

• MapReduce:  
–  Plug-n-Play data processing framework - 80% Google cycles. 

• Pregel: Graph framework (other 20%) 
• Next-generation PDE and related applications: 

–  Internode: 
•  MPI, yes, or something like it. 
•  Composed with intranode. 

–  Intranode:  
•  Much richer palette. 
•  More care required from programmer. 

• What are the constructs in our new palette? 



Obvious Constructs/Concerns 

• Parallel for: 
– No loop-carried dependence. 
– Rich loops. 
– Use of shared memory for temporal reuse, efficient 

device data transfers. 
• Parallel reduce: 

– Couple with other computations. 
– Concern for reproducibility. 



Other construct: Pipeline 

• Sequence of filters. 
• Each filter is: 

– Sequential (grab element ID, enter global assembly) or  
– Parallel (fill element stiffness matrix). 

• Filters executed in sequence. 
• Programmer’s concern: 

– Determine (conceptually): Can filter execute in parallel? 
– Write filter (serial code). 
– Register it with the pipeline. 

• Extensible: 
– New physics feature. 
– New filter added to pipeline. 
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Element-stiffness 
matrices computed 

in parallel 

Launch elem-data 
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Serial Filter Parallel Filter Several Serial Filters in series 

Each assembly filter assembles certain rows from a 
stiffness, then passes it on to the next assembly filter 
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Base-line FE Assembly Timings 

Num-
procs 

Assembly
-time 
Intel 11.1 

Assembly
-time 
GCC 4.4.4 

1 1.80s 1.95s 

4 0.45s 0.50s 

8 0.24s 0.28s 

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows 
The finite-element assembly performs 4096000 matrix-row sum-into operations 
(8 per element) and 4096000 vector-entry sum-into operations. 

MPI-only,  no threads. Linux dual quad-core workstation. 



FE Assembly Timings 

Num-
threads 

Elem-
group
-size 

Matrix-
conflicts 

Vector-
conflicts 

Assembly
-time 

1 1 0 0 2.16s 

1 4 0 0 2.09s 

1 8 0 0 2.08s 

4 1 95917 959 1.01s 

4 4 7938 25 0.74s 

4 8 3180 4 0.69s 

8 1 64536 1306 0.87s 

8 4 5892 49 0.45s 

8 8 1618 1 0.38s 

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows 
The finite-element assembly performs 4096000 matrix-row sum-into operations 
(8 per element) and 4096000 vector-entry sum-into operations. 

No MPI, only threads. Linux dual quad-core workstation. 
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Other construct: Thread team 

• Multiple threads. 
• Fast barrier. 
• Shared, fast access memory pool. 
• Example: Nvidia SM 
• X86 more vague, emerging more clearly in future.  



•  Observe: Iteration count increases with number of subdomains. 
•  With scalable threaded smoothers (LU, ILU, Gauss-Seidel): 

–  Solve with fewer, larger subdomains. 
–  Better kernel scaling (threads vs. MPI processes). 
–  Better convergence, More robust. 

•  Exascale Potential: Tiled, pipelined implementation. 
•  Three efforts: 

–  Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel). 
–  Decomposition by partitioning 
–  Multithreaded direct factorization 

Preconditioners for Scalable Multicore Systems 

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)	



MPI 
Tasks Threads Iterations 

4096 1 153 

2048 2 129 

1024 4 125 

512 8 117 

256 16 117 

128 32 111 

34 
Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and ���
Michael A. Heroux and Erik G. Boman, VECPAR 2010.	



# MPI Ranks	





Thread Team Advantanges 

• Qualitatively better algorithm: 
– Threaded triangular solve scales. 
– Fewer MPI ranks means fewer iterations, better 

robustness. 
• Exploits: 

– Shared data. 
– Fast barrier. 
– Data-driven parallelism. 



Finite Elements/Volumes/Differences 
and parallel node constructs 

• Parallel for, reduce, pipeline: 
– Sufficient for vast majority of node level computation. 
– Supports: 

• Complex modeling expression. 
• Vanilla parallelism. 

– Must be “stencil-aware” for temporal locality. 
• Thread team: 

– Complicated. 
– Requires true parallel algorithm knowledge. 
– Useful in solvers. 



Portable Multi/Manycore Programming 
Trilinos/Kokkos Node API 
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Another Manycore architecture: Intel MIC 

Knights Ferry: 
• 32 x86 cores 

– 4-way hyperthreading 
– 128 threads total 

• 512-bit vector unit 
– 16 floats, 8 doubles 

• 1.20GHz 
• PCI-E 2.0 
• 2GB GDDR5 global mem 

– 8MB shared L2 cache 
– 64KB L1 Data, 64KB L1 Inst 

Programming Env: 
• OpenMP,  
• TBB,  
• Pthreads 



Tpetra and Kokkos 

•  Tpetra is an implementation of the Petra Object Model. 
–  Design is similar to Epetra, with appropriate deviation. 
–  Fundamental differences: 

•  heavily exploits templates 
•  utilizes hybrid (distributed + shared) parallelism via Kokkos Node API 

• Kokkos is an API for shared-memory parallel nodes 
–  Provides parallel_for and parallel_reduce skeletons. 
–  Support shared memory APIs: 

•  ThreadPool Interface (TPI; Carter Edwards’s pthreads Trilinos package) 
•  Intel Threading Building Blocks (TBB) 
•  NVIDIA CUDA-capable GPUs (via Thrust) 
•  OpenMP (implemented by Radu Popescu/EPFL, awaiting my git push) 



Generic Shared Memory Node 

• Abstract inter-node comm provides DMP support. 
• Need some way to portably handle SMP support. 
• Goal: allow code, once written, to be run on any parallel 
node, regardless of architecture. 

• Difficulty #1: Many different memory architectures 
– Node may have multiple, disjoint memory spaces. 
– Optimal performance may require special memory 

placement. 
• Difficulty #2: Kernels must be tailored to architecture 

–  Implementation of optimal kernel will vary between archs 
– No universal binary  need for separate compilation paths 

• Practical goal: Cover 80% kernels with generic code. 
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Kokkos Node API 

• Kokkos provides two main components: 
– Kokkos memory model addresses Difficulty #1 

• Allocation, deallocation and efficient access of memory 
•  compute buffer: special memory used for parallel computation 
• New: Local Store Pointer and Buffer with size. 

– Kokkos compute model addresses Difficulty #2 
• Description of kernels for parallel execution on a node 
• Provides stubs for common parallel work constructs 
• Currently, parallel for loop and parallel reduce 

• Code is developed around a polymorphic Node object. 
• Supporting a new platform requires only the 
implementation of a new node type. 
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Kokkos Memory Model 

• A generic node model must at least: 
– support the scenario involving distinct device memory 
– allow efficient memory access under traditional scenarios 

• Nodes provide the following memory routines: 
 ArrayRCP<T> Node::allocBuffer<T>(size_t sz); 

 void        Node::copyToBuffer<T>(  T * src, 

                                     ArrayRCP<T>  dest); 
 void        Node::copyFromBuffer<T>(ArrayRCP<T> src, 

                                     T * dest); 

 ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff); 

 void        Node::readyBuffer<T>(ArrayRCP<T> buff); 



Kokkos Compute Model 

•  How to make shared-memory programming generic: 
–  Parallel reduction is the intersection of dot() and norm1() 
–  Parallel for loop is the intersection of axpy() and mat-vec 
–  We need a way of fusing kernels with these basic constructs. 

•  Template meta-programming is the answer. 
–  This is the same approach that Intel TBB and Thrust take. 
–  Has the effect of requiring that Tpetra objects be templated on Node type. 

•  Node provides generic parallel constructs, user fills in the rest: 

template	
  <class	
  WDP>	
  	
  
void	
  Node::parallel_for(	
  
	
  	
  int	
  beg,	
  int	
  end,	
  WDP	
  workdata);	
  

template	
  <class	
  WDP>	
  
WDP::ReductionType	
  Node::parallel_reduce(	
  
	
  	
  int	
  beg,	
  int	
  end,	
  WDP	
  workdata);	
  

Work-data pair (WDP) struct provides: 
•  loop body via WDP::execute(i) 

Work-data pair (WDP) struct provides: 
•  reduction type WDP::ReductionType 
•  element generation via WDP::generate(i) 
•  reduction via WDP::reduce(x,y) 
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Example Kernels: axpy() and dot()!

template	
  <class	
  WDP>	
  
void	
  	
  
Node::parallel_for(int	
  beg,	
  int	
  end,	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  WDP	
  workdata	
  	
  	
  	
  );	
  

template	
  <class	
  WDP>	
  
WDP::ReductionType	
  
Node::parallel_reduce(int	
  beg,	
  int	
  end,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  WDP	
  workdata	
  	
  	
  	
  );	
  

template	
  <class	
  T>	
  	
  
struct	
  AxpyOp	
  {	
  
	
  	
  const	
  T	
  *	
  x;	
  
	
  	
  T	
  *	
  y;	
  
	
  	
  T	
  alpha,	
  beta;	
  
	
  	
  void	
  execute(int	
  i)	
  	
  

	
  	
  {	
  y[i]	
  =	
  alpha*x[i]	
  +	
  beta*y[i];	
  }	
  
};	
  

template	
  <class	
  T>	
  
struct	
  DotOp	
  {	
  
	
  	
  typedef	
  T	
  ReductionType;	
  
	
  	
  const	
  T	
  *	
  x,	
  *	
  y;	
  
	
  	
  T	
  identity()	
  	
  	
  	
  	
  	
  	
  {	
  return	
  (T)0;	
  	
  	
  	
  	
  	
  }	
  
	
  	
  T	
  generate(int	
  i)	
  	
  {	
  return	
  x[i]*y[i];	
  }	
  

	
  	
  T	
  reduce(T	
  x,	
  T	
  y)	
  {	
  return	
  x	
  +	
  y;	
  	
  	
  	
  	
  }	
  
};	
  

AxpyOp<double>	
  op;	
  
op.x	
  =	
  ...;	
  	
  op.alpha	
  =	
  ...;	
  
op.y	
  =	
  ...;	
  	
  op.beta	
  	
  =	
  ...;	
  
node.parallel_for<	
  AxpyOp<double>	
  >	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (0,	
  length,	
  op);	
  

DotOp<float>	
  op;	
  
op.x	
  =	
  ...;	
  	
  op.y	
  =	
  ...;	
  
float	
  dot;	
  
dot	
  =	
  node.parallel_reduce<	
  DotOp<float>	
  >	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (0,	
  length,	
  op);	
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What’s the Big Deal about Vector-Vector Operations? 

Examples from OOQP (Gertz, Wright) 
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Example from TRICE (Dennis, Heinkenschloss, Vicente) 
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Example from IPOPT (Waechter) 
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   > 40 vector operations! 

Many different and unusual 
vector operations are needed 
by interior point methods for 
optimization! 



Tpetra RTI Components 

• Set of stand-alone non-member methods: 
–  unary_transform<UOP>(Vector &v, UOP op) 
–  binary_transform<BOP>(Vector &v1, const Vector &v2, BOP op) 
–  reduce<G>(const Vector &v1, const Vector &v2, G op_glob) 
–  binary_pre_transform_reduce<G>( Vector &v1,  

                                const Vector &v2,  
                                G op_glob) 

•  These are non-member methods of Tpetra::RTI which are 
loosely coupled with Tpetra::MultiVector and Tpetra::Vector. 

•  Tpetra::RTI also provides Operator-wrappers: 
–  class KernelOp<..., Kernel > : Tpetra::Operator<...> 
–  class BinaryOp<...,BinaryOp> : Tpetra::Operator<...> 



Tpetra RTI Example 

// isn’t this nicer than a bunch of typedefs? 
auto &platform = Tpetra::DefaultPlatform::getDefaultPlatform(); 
auto comm = platform.getComm(); 
auto node = platform.getNode(); 

// create Map and some Vector objects 
Tpetra::global_size_t numGlobalRows = ...; 
auto map = createUniformContigMapWithNode<int,int>(numGlobalRows, comm, node); 
const size_t numLocalRows = map->getNodeNumElements(); 
auto x = Tpetra::createVector<float>(map), 
     y = Tpetra::createVector<float>(map); 
auto z = Tpetra::createVector<double>(map), 
     w = Tpetra::createVector<double>(map); 

// parallel initialization of x[i] = 1.0 using C++-0x lambda function 
Tpetra::RTI::unary_transform(  *x,     [](float xi){return 1.0f;} ); 
// parallel initialization of y[i] = x[i] 
Tpetra::RTI::binary_transform( *y, *x, [](float, float xi) {return xi;} ); 
// parallel y[i] = x[i] + y[i] 
Tpetra::RTI::binary_transform( *y, *x, std::plus<float>() ); 
// parallel single precision dot(x,y) 
fresult = Tpetra::RTI::reduce( *x, *y, reductionGlob<ZeroOp<float>>(                                 
                                                     std::multiplies<float>(),  
                                                     std::plus<float>() )); 



  Tpetra is a templated version of the Petra distributed 
linear algebra model in Trilinos. 
  Objects are templated on the underlying data types: 

MultiVector<scalar=double, local_ordinal=int, !
! ! !   global_ordinal=local_ordinal> …  
CrsMatrix<scalar=double, local_ordinal=int, !
! ! !   global_ordinal=local_ordinal> …!

  Examples: 
MultiVector<double, int, long int> V;  
CrsMatrix<float> A;!

Multiprecision possibilities   

Scalar float double double-
double 

quad-
double 

Solve time (s) 2.6 5.3 29.9 76.5 

Accuracy 10-6 10-12 10-24 10-48 

Arbitrary precision solves  
using Tpetra and Belos  
linear solver package 

Speedup of float over double 
in Belos linear solver. 

float double speedup 
18 s 26 s 1.42x 



class FloatShadowDouble { 

public: 
  FloatShadowDouble( ) { 
    f = 0.0f; 
    d = 0.0;  } 
  FloatShadowDouble( const FloatShadowDouble & fd) { 
    f = fd.f; 
    d = fd.d;  } 
… 
inline FloatShadowDouble operator+= (const FloatShadowDouble & fd ) { 
    f += fd.f; 
    d += fd.d; 
    return *this;  } 
… 
inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) { 
  os << fd.f << "f " << fd.d << "d”;  return os;} 

FP Accuracy Analysis: 
FloatShadowDouble Datatype 

  Templates enable 
new analysis 
capabilities 

  Example: Float with 
“shadow” double. 



FloatShadowDouble 

Initial Residual =               455.194f         455.194d 
Iteration = 15   Residual = 5.07328f         5.07618d 
Iteration = 30   Residual = 0.00147022f   0.00138466d 
Iteration = 45   Residual = 5.14891e-06f  2.09624e-06d 
Iteration = 60   Residual = 4.03386e-09f  7.91927e-10d 

Sample usage: 
#include “FloatShadowDouble.hpp” 
Tpetra::Vector<FloatShadowDouble> x, y; 
Tpetra::CrsMatrix<FloatShadowDouble> A; 
A.apply(x, y);  // Single precision, but double results also computed, available 



Hybrid CPU/GPU Computing 
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Writing and Launching  
Heterogeneous Jobs 

• A node is a shared-memory domain. 
• Multiple nodes are coupled via a communicator. 

–  This requires launching multiple processes. 

•  In a heterogeneous cluster, this requires code written 
for multiple node types. 

•  It may be necessary to template large parts of the code 
and run the appropriate instantiation on each rank. 

•  For launching, two options are available: 
–  Multiple single-node executables, complex dispatch 
–  One diverse executable, early branch according to rank 



Tpetra::HybridPlatform 

• Encapsulate main in a templated class method: 

•  HybridPlatform maps the communicator rank to the 
Node type, instantiates a node and the run routine: 

template <class Node> 
class myMainRoutine { 
  static void run(ParameterList &runParams,  
                  const RCP<const Comm<int> > &comm,  
                  const RCP<Node> &node)  
  {  
    // do something interesting 
  } 
}; 

int main(...) { 
   Comm<int>     comm         = ... 
   ParameterList machine_file = ... 
   // instantiate appropriate node and myMainRoutine 
   Tpetra::HybridPlatform platform( comm , machine_file ); 
   platform.runUserCode< myMainRoutine >(); 
   return 0; 
} 



hostname0 

HybridPlatform Machine File 

<ParameterList> 
  <ParameterList name="%2=0"> 
    <Parameter name="NodeType"      type="string" value="Kokkos::ThrustGPUNode"/> 
    <Parameter name="Verbose"       type="int"    value="1"/> 
    <Parameter name="Device Number" type="int"    value="0"/> 
    <Parameter name="Node Weight"   type="int"    value="4"/> 
  </ParameterList> 
  <ParameterList name="%2=1"> 
    <Parameter name="NodeType"      type="string" value="Kokkos::TPINode"/> 
    <Parameter name="Verbose"       type="int"    value="1"/> 
    <Parameter name="Num Threads"   type="int"    value="15"/> 
    <Parameter name="Node Weight"   type="int"    value="15"/> 
  </ParameterList> 
</ParameterList> 

ThrustGPUNode	
   TPINode	
  

rank	
  0	
   rank	
  1	
  

hostname1 

ThrustGPUNode	
   TPINode	
  

rank	
  2	
   rank	
  3	
   ... 

round-­‐robin	
  assignment	
   interval	
  assignment	
   explicit	
  assignment	
   default	
  

%M=N [M,N] =N default 



HybridPlatformTest Output 
[tpetra/example/HybridPlatform] mpirun –np 4 ./Tpetra_HybridPlatformTest.exe  
         --machine-file=machines/G+15.xml 

Every proc machine parameters from: machines/G+15.xml 

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens31 and rank 0! 
Running test with Node == Kokkos::ThrustGPUNode on rank 0/4 
ThrustGPUNode attached to device #0 "Tesla C1060", of compute capability 1.3 

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens31 and rank 1! 
Running test with Node == Kokkos::TPINode on rank 1/4 

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens10 and rank 2! 
Running test with Node == Kokkos::ThrustGPUNode on rank 2/4 
TPINode initializing with numThreads == 15 
ThrustGPUNode attached to device #0 "Tesla C1060", of compute capability 1.3 

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens10 and rank 3! 
Running test with Node == Kokkos::TPINode on rank 3/4 
TPINode initializing with numThreads == 15 

... 

See HybridPlatformAnasazi.cpp and HybridPlatformBelos.cpp for more fun! 



Programming Today for Tomorrow’s 
Machines 
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Programming Today for Tomorrow’s Machines 

• Parallel Programming in the small: 
– Focus: writing sequential code fragments. 
– Programmer skills: 

•  10%: Pattern/framework experts (domain-aware). 
•  90%: Domain experts (pattern-aware) 

• Languages needed are already here. 
– Exception: Large-scale data-intensive graph? 



FE/FV/FD Parallel Programming Today 

for ((i,j,k) in points/elements on subdomain) {!
!compute coefficients for point (i,j,k)!
!inject into global matrix!
 }!

Notes: 
•  User in charge of: 

–  Writing physics code. 
–  Iteration space traversal. 
–  Storage association. 

•  Pattern/framework/runtime in charge of: 
–  SPMD execution. 



FE/FV/FD Parallel Programming Tomorrow 

pipeline <i,j,k> {!
  filter(addPhysicsLayer1<i,j,k)>);!
! ...!
  filter(addPhysicsLayern<i,j,k>);!
! filter(injectIntoGlobalMatrix<i,j,k>);!
 }!

Notes: 
•  User in charge of: 

–  Writing physics code (filter). 
–  Registering filter with framework. 

•  Pattern/framework/runtime in charge of: 
–  SPMD execution. 
–  Iteration space traversal. 

o  Sensitive to temporal locality. 
–  Filter execution scheduling. 
–  Storage association. 

•  Better assignment of responsibility (in general). 



Resilient Algorithms 
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My Luxury in Life (wrt FT/Resilience) 

The privilege to think of a computer as a 
reliable, digital machine. 

64 

“At 8 nm process technology, it will be harder 
to tell a 1 from a 0.”   

 (W. Camp) 



Users’ View of the System Now 

• “All nodes up and running.” 
• Certainly nodes fail, but invisible to user. 
• No need for me to be concerned. 
• Someone else’s problem. 
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Users’ View of the System 
Future 

• Nodes in one of four states. 
1.  Dead. 
2.  Dying (perhaps producing faulty results). 
3.  Reviving. 
4.  Running properly: 

a)  Fully reliable or… 
b)  Maybe still producing an occasional bad result. 
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Hard Error Futures 

• C/R will continue as dominant approach: 
– Global state to global file system OK for small systems. 
– Large systems: State control will be localized, use SSD. 

• Checkpoint-less restart: 
– Requires full vertical HW/SW stack co-operation. 
– Very challenging. 
– Stratified research efforts not effective. 



Soft Error Futures 

• Soft error handling: A legitimate algorithms issue. 
• Programming model, runtime environment play role. 



Consider GMRES as an example of how soft 
errors affect correctness 

•  Basic Steps 
1)  Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies) 
2)  Compute orthonormal basis for Krylov subspace (matrix 

factorization) 
3)  Compute vector yielding minimum residual in subspace 

(linear least squares) 
4)  Map to next iterate in the full space 
5)  Repeat until residual is sufficiently small 

•  More examples in Bronevetsky & Supinski, 2008 
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Why GMRES? 

• Many apps are implicit. 
• Most popular (nonsymmetric) linear solver is 
preconditioned GMRES. 

• Only small subset of calculations need to be 
reliable. 
– GMRES is iterative, but also direct. 

70 



Every calculation matters 

•  Small PDE Problem: ILUT/GMRES 
•  Correct result:35 Iters, 343M FLOPS 
•  2 examples of a single bad op. 
•  Solvers:  

–  50-90% of total app operations. 
–  Soft errors most likely in solver. 

•  Need new algorithms for soft errors: 
–  Well-conditioned wrt errors. 
–  Decay proportional to number of errors. 
–  Minimal impact when no errors. 

Description Iters FLOPS Recursive 
Residual 
Error 

Solution Error 

All Correct 
Calcs 

35 343M 4.6e-15 1.0e-6 

Iter=2, y[1] += 
1.0 
SpMV incorrect 
Ortho subspace 

35 343M 6.7e-15 3.7e+3 

Q[1][1] += 1.0 
Non-ortho 
subspace 

N/C N/A 7.7e-02 5.9e+5 
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Soft Error Resilience 

•  New Programming Model Elements: SW-
enabled, highly reliable: 

•  Data storage, paths. 
•  Compute regions. 

•  Idea: New algorithms with minimal usage 
of high reliability. 

•  First new algorithm: Flexible-operator 
(FO)-GMRES. 

•  Resilient to soft errors. 
•  Only orthogonalization vectors and 

computations highly reliable. 
•  Vast majority of data, ops done with 

base reliability: 
•  Operator, preconditioner data 
•  SpMV, Preconditioner 

application 

M. Heroux, M. Hoemmen	





Software Development and Delivery 
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Compile-time Polymorphism 
Templates and Sanity upon a shifting foundation 
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“Are C++ templates safe? No, but they are good.”	



Software delivery:  
•  Essential Activity 

How can we: 
•  Implement mixed precision algorithms? 
•  Implement generic fine-grain parallelism? 
•  Support hybrid CPU/GPU computations? 
•  Support extended precision? 
•  Explore redundant computations? 
•  Prepare for both exascale “swim lanes”? 

C++ templates only sane way: 
•  Moving to completely templated Trilinos 

libraries. 
•  Other important benefits. 
•  A usable stack exists now in Trilinos. 

Template Benefits: 
–  Compile time polymorphism. 
–  True generic programming. 
–  No runtime performance hit. 
–  Strong typing for mixed precision. 
–  Support for extended precision. 
–  Many more… 

Template Drawbacks: 
–  Huge compile-time performance hit: 

•  But good use of multicore :) 
•  Eliminated for common data types. 

-  Complex notation: 
-  Esp. for Fortran & C programmers). 
-  Can insulate to some extent. 



Solver Software Stack 

Bifurcation Analysis ! LOCA!

DAEs/ODEs:!
Transient Problems !

Rythmos!

Eigen Problems:!
Linear Equations:!

 Linear Problems                     !

AztecOO!
Ifpack, ML, etc...!

Anasazi!

Vector Problems:!
Matrix/Graph Equations:!

Distributed Linear Algebra! Epetra!

Teuchos!

Optimization!

MOOCHO!
Unconstrained:!
Constrained:!

Nonlinear Problems! NOX!

Se
ns

iti
vi

tie
s!

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)
!

Phase I packages: SPMD, int/double	

 Phase II packages: Templated	



74 



Solver Software Stack 

Bifurcation Analysis !

DAEs/ODEs:!
Transient Problems !

Rythmos!

Eigen Problems:!
Linear Equations:!

 Linear Problems                     !
AztecOO!

Ifpack, !
ML, etc...!

Anasazi!

Vector Problems:!
Matrix/Graph Equations:!

Distributed Linear Algebra! Epetra!

Optimization!

MOOCHO!
Unconstrained:!
Constrained:!

Nonlinear Problems! NOX!

Se
ns

iti
vi

tie
s!

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)
!

LOCA!

Phase I packages	

 Phase II packages	



Teuchos!

T-LOCA!

Belos*!

Tpetra*!
Kokkos*!

T-Ifpack*, !
T-ML*, etc...!

T-NOX!

Phase III packages: Manycore*, templated	
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Summary 

•  Some app targets will change: 
–  Advanced modeling and simulation: Gives a better answer. 
–  Kernel set changes (including redundant computation). 

•  Resilience requires an integrated strategy: 
–  Most effort at the system/runtime level. 
–  C/R (with localization) will continue at the app level. 
–  Resilient algorithms will mitigate soft error impact. 
–  Use of validation in solution hierarchy can help. 

•  Building the next generation of parallel applications requires enabling 
domain scientists: 

–  Write sophisticated methods. 
–  Do so with serial fragments. 
–  Fragments hoisted into scalable, resilient fragment. 

•  Success of manycore will require breaking out of global SIMT-only. 
•  Migration of Fortran apps to manycore will be painful. 



Quiz (True or False) 

1.  MPI-only has the best parallel performance. 
2.  Future parallel applications will not have MPI_Init(). 
3.  All future programmers will need to write parallel code. 
4.  Use of “markup”, e.g., OpenMP pragmas, is the least 

intrusive approach to parallelizing a code. 
5.  DRY is not possible across CPUs and GPUs 
6.  Extended precision is too expensive to be useful. 
7.  Resilience will be built into algorithms. 
8.  GPUs are a harbinger of CPU things to come. 
9.  Fortran Developers are in trouble in a manycore world. 
10. Global SIMT is sufficient parallelism for scientific computing. 


