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Quiz (True or False)

MPI-only has the best parallel performance.
Future parallel applications will not have MPI__Init().
All future programmers will need to write parallel code.

Use of “markup”, e.g., OpenMP pragmas, is the least
Intrusive approach to parallelizing a code.

DRY is not possible across CPUs and GPUs.

Extended precision is too expensive to be useful.
Resilience will be built into algorithms.

GPUs are a harbinger of CPU things to come.

Fortran Developers are in trouble in a manycore world.

0. Global SIMT is sufficient parallelism for scientific computing.
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Registered User by Region

Registered Users by Region (5640 Total)

o
65 Europe

265 6

BUS (except Sandia)

O Sandia (includes unregistered)

U Asia

B Americas (except US)

O Australia/NZ

® Africa
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Registered Users by Type

Registered Users by Type
(5640 Total)

Industry; 622
Other; 133

O University
=
Personal; 688 Government

U Personal

University; 0

3369 Industry
Government; ® Other
828

)
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Ubuntu/Debian: Other sources

Ubuntu -- Details of source package trilinos in maverick

< ‘ »> + |3 http://packages.ubuntu.com/source/maverick/math/trilinos & | [ Q ubuntu petsc download

Y
[0 i TrilinosHan...Google Code Report Time Dex White Pa...le for Free SRN Browser RemoteSandia.Gov Google Maps News (455)v Popularv How to Conn...sions (RDP) »
~
\. Search ) | source package names & |
< » | U U n U e
>>Ubuntu >> Packages >> maverick >> Source >> math >> trilinos
[ karmic ][ lucid ][ maverick ]
Source Package: trilinos (10.0.4.dfsg-1.1) [universe]
The following binary packages are built from this source package: | ‘
libtrilinos Debian -- Details of source package trilinos in sid
parallel solver libraries within an obj | « ‘ > + @ http://packages.debian.org/source/sid/trilinos ¢ | Q- trilinos debian download (+)
I|btnI|nos-”dl|) I librari ithi b [ i TrilinosHan...Google Code Report Time Dex White Pa...le for Free SRN Browser Remote.Sandia.Gov Google Maps News (455)v Popularv How to Conn...sions (RDP) »
parallel solver libraries within an ob;
H S ~
libtrilinos-dev ) _ . M (‘search ) [ source package names ¥ !
parallel solver libraries within an ob; e Ian
libtrilinos-doc alloptions

parallel_ §olver libraries within an ob] NS FUNFFINS Packages >> sid (unstable) >> Source >> math >> trilinos
python-pytrilinos .
parallel solver libraries within an ob; [ squeeze ][ sid ]

Source Package: trilinos (10.4.0.dfsg-1)

Other Packages Related
I ) bu"d_dependsl @ buld-depends.nd: The following binary packages are built from this source package:
'™ libtrilinos Links for trilinos
£dbs parallel solver libraries within an object-oriented software framework

common build system for Debi

@ auilt libtrilinos-dbg Debian Resources:
quit . parallel solver libraries within an object-oriented software framework
Tool to work with series of pat libtrilinos-dev * Bug Reports
@ debhelper (>= 7) s U R T T R X P S R DV S S o Developer Information (PTS)

maherou@jaguar13 /ccs/home/maherou> module ava|I trilinos o

| lopt/cray/modulefiles oo, Ml A
' trilinos/10.0.1(default) trilinos/10.2.0 —

[sw/xt5/modulefiles
trilinos/10.0.4 trilinos/10.2.2 trilinos/10.4.0 trilinos/8.0.3 trilinos/9.0.2

@ python-central @ libopenmpi-dev
register and build utility for Py high performance message passing library -- header files
@ libsuperlu3-dev
Download trilinos Direct solution of large, sparse systems of linear equations



Capability Leaders:
Layer of Proactive Leadership

= Areas:
¢ Framework, Tools & Interfaces (J. Willenbring).
+ Software Engineering Technologies and Integration (R. Bartlett).
¢ Discretizations (P. Bochev).
+ Geometry, Meshing & Load Balancing (K. Devine).
¢ Scalable Linear Algebra (M. Heroux).
¢ Linear & Eigen Solvers (J. Hu).

¢ Nonlinear, Transient & Optimization Solvers (A. Salinger).
¢ Scalable 1/0: (R. Oldfield)

= Each leader provides strategic direction across all Trilinos packages
within area.



Trilinos Package Summary

Objective

Package(s)

Discretizations

Meshing & Discretizations

STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos
Automatic Differentiation Sacado

Methods
Mortar Methods Moertel
Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos
Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Services Load Balancing Zoltan, Isorropia
“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika
C++ utilities, I/0O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx
Iterative linear solvers AztecOO, Belos, Komplex
Direct sparse linear solvers Amesos, Amesos?2
Direct dense linear solvers Epetra, Teuchos, Pliris
Iterative eigenvalue solvers Anasazi, Rbgen
ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Solvers

Multilevel preconditioners ML, CLAPS
Block preconditioners Meros, Teko
Nonlinear system solvers NOX, LOCA

Optimization (SAND)

MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs

Stokhos
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Three Design Points

 Terascale Laptop: Uninode-Manycore

» Petascale Deskside: Multinode-Manycore

« Exascale Center: Manynode-Manycore
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Basic Concerns: Trends, Manycore

« Stein’s Law: If a trend cannot

continue, it will stop.

Herbert Stein, chairman of the Council of
Economic Advisers under Nixon and
Ford.

* Trends at risk:
— Power.
— Single core performance.
— Node count.
— Memory size & BW.

— Concurrency expression in
existing Programming
Models.

— Resilience.

11

Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

1E+05 1E+06

‘“Status Quo” ~ MPI-only

p32 x t16

/\
/A/A —8-p128 x t4
= —a=p512 X t1

1E+07

3D Grid Points with 27pt stencil

Strong Scaling Potential

Edwards: SAND2009-8196
Trilinos ThreadPool Library v1.1.
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Observations

* MPI-Only is not sufficient, except ... much of the time.

* Near-to-medium term:

— MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI]

— Long term, too?
« Concern:

— Best hybrid performance: 1 MPI rank per UMA core set.
— UMA core set size growing slowly =» Lots of MPI tasks.

* Long- term:

— Something hierarchical, global in scope.

» Conjecture:

— Data-intensive apps need non-SPDM model.
— Will develop new programming model/env.
— Rest of apps will adopt over time.

— Time span: 10-20 years.
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What Can we Do Right Now?

« Study why MPI was successful.
« Study new parallel landscape.

* Try to cultivate an approach similar to MPI (and
others).
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MPI Impresssions
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 Observations

— “assembly language” of para” 4 EoA
] > % Q/))
— lowest common denomi~ o & .k
?\o ‘0\\", Qo /o Q/;
« portable across ar~’ ,0“ o, &, Yy

— upfront effort r-



aoma {n (0], n2 03, Kk}
3) , .1, -1..115

LgAE P19 (s, R

JReTaRe i cdERph A float

hetude 'glébais ﬂl/ﬁv 0.125, 0.0625/) ;

79,k in Stencil] float
3 teger nly nz, ASv\kk (31=0) + (k!=0));
ponse pnecx!xon ma{nl, n2 n3)
integerpaxis— ide;

o noty dqad%kk§uhtysauce
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ey "RiR (e oce) )5

ive3( axis, +1, u, nl, n2, n3, kk

call give3( axis, -1, u, nl, n2, n3, kk

call sync_all()
call take3( axis, -1, u, nl, n2, n3 )
call take3( axis, +1, u, nl, n2, n3 )
else
call commlp( axis, u, nl, n2, n3, kk )

do axis =1, 3
call sync all()
call sync_all()

enddo
call zero3(u,nl,n2,n3)

endif
return
end

subroutine give3( axis, dir, u, nl, n2, n3, k
use caf_intrinsics
implicit none

include 'cafnpb.h’'
include 'globals.h'

integer axis, dir, nl, n2, n3, k, ierr
double precision u( nl, n2, n3 )

integer i3, i2, il, buff len buff_id

buff_id =

- 2 + dir
buff len = 0

if( axis .eq. 1 )then
if( dir .eq. -1 )then

do i3=2,n3-1
do i
buff len = buff_len + 1
buff (buff_len,buff_id ) = u( 2,
i2,i3)
enddo
enddo

buff (1:buff_len,buff_id+l) [nbr (axis,dir k)]
> buff (1:buff_len buff_id)

else if( dir .eq. +1 ) then

i2=2,n2-1
buff_len = buff +
buff(buff_len, huif xd ) = u(nl-1,
i2,i3)
enddo
enddo

buff (1:buff_len,buff_id+1) [nbr (axis,dir k)]
> buff (1:buff_len,buff_id)

endif
endif

fi£( axis .eq. 2 )then
if( dir .eq. -1 )then

11

3D Stencil in NAS MG

=1,n1
£ len = buff_len + 1
buff (buff_len, buff_id ) = u( il,

buff (1:buff_len,buff_id+1) [nbr (axis,dir k)]

> buff (1:buff_len, buff_id)

else if ( dir .eq. +1 ) then

il=1,n1
buff_len = buff_len + 1
buff(buff_len, buff id )= u( il,n2-

buff (1:buff_len,buff_id+1) [nbr (axis,dir k)]

> buff (1:buff_len buff_id)

endif
endif

if( axis .eq. 3 )then
if( dir .eq. -1 )then

do i2=1,n2
do il=1,
buff len =
buff (buff_: len, buii xd ) = u(
i1,12,2
enddo
enddo

buff (1:buff_len,buff_id+1) [nbr (axis,dir k)]

> buff (1:buff_len, buff_id)

else if( dir .eq. +l ) then

do i2=1,n2
do il=1,nl
buff_len = buff_len + 1
buff(buff_len, buff id ) = u(
i1,12,n3-1)
enddo
enddo

buff (1:buff_len,buff_id+1) [nbr (axis,dir k)]

> buff (1:buff_len, buff_id)

endif
endif

return

subroutine take3( axis, dir, u, nl, n2, n3 )
use caf_intrinsics
implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3
double precision u( nl, n2, n3 )

integer buff_id, indx
integer i3, i2, il

buff_id = 3 + dir
indx = 0

if( axis .eq. 1 )then
if( dir .eq. -1 )then

u(nl,i2,i3)
enddo
enddo

= buff (indx, buff_id )

else if( dir .eq. +1 ) then

do i3=2,n3-1
do ;2—2 n2 1

1
u11 T2, x3i buff(indx, buff_id )

if( axis .eq. 2 )then
if( dir .eq. -1 )then

ndx + 1
= buff (indx, buff_id )

else if( dir .eq. +1 ) then

do

1
i indx + 1
u(il,1,i3) = buff (indx, buff_id )

if( axis .eq. 3 )then
£( dir .eq. -1 )then

do i2=1,n2

,nl
n¢ indx + 1
u(il,i2,n3) = buff (indx, buff_id )

else if ( dir .eq. +1 ) then

i indx + 1
u(il,i2,1) = buff(indx, buff_id )

return
end

subroutine commlp( axis, u, nl, n2, n3, kk )
use caf_intrinsics
implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3
double precision u( nl, n2, n3

integer i3, i2, il, buff_len,buff_id
integer i, kk, indx

dir = -1

uff_id = 3 + dir
uff _len = nm2

do i=1,nm2
buff (i,buff_id) = 0.0D0
enddo

dir = +1

buff_id
buff_len

do

=1,nm2
buff (i,buff_id) = 0.0D0
enddo

buff_id
buff_len = 0

if( axis .eq. 1 )then
do 13=2,n3-1
do

i2=2,n2-1
buff_len = buff_len + 1

butfbuft len, Buff_id ) =
i2,i3)
enddo
enddo
endif
if( axis .eq. 2 )then
lo i3=2,n3-1
do 1

il=1,nl
buff_len = buff len + 1

butfbaft_len, “buff id )= u( il,n2-

3 )then
2

=1,n1
buff_len = buf:
buff (buff_len, buff xd ) =

if( axis .eq. 1 )then
o i -2,n3—

g 192 n2-1

butt fon = buff len + 1

buff (buff_len,buff_id ) =
enddo
enddo
endif
if( exis -eq. 2 )then
13=2,n3-1
© a0 iis

nl
buff len = buff len + 1
buff (buff_len, buff_id ) =

if( axis .eq. 3 )then
i2=1,n
do il=1,
buff_; fen - buff_len + 1
buff (buff_len, buff id ) =
o

buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)
enddo
dir = -1

u( ni-

u( i1,

u( 2,

u( i1,

u( i1,

buff_id = 3 + dir
indx = 0

if( axis .eq. 1 )then
o i3=2,n3-1
do i2=2,n2-
indx = indx + 1
u(nl,i2,i3) = buff(indx, buff_id
enddo
enddo
endif
if( axis .eq. 2 )then
o ,n3-1
ndx = indx + 1
V1,n2,15) bufflindx, buff_id
enddo
enddo

if( axis .eq. 3 )then
do i2

1,

do

g ndx + 1
u(il,i2,n3) = buff (indx, buff_id )

i2=2,
indx = indx + 1

u(l,i2,i3) = buff (indx, buff id )
enddo
i2,n3- enddo
endif
2 )then
1
= buf£11ndx, buff_id )
if( axis .eq. 3 )then
do i
,nl
i2,13) in indx + 1
u(il,i2,1) = buff(indx, buff_id )
enddo
enddo
endif
return
"’End
i2,2)

R ASY”

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf
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MPI Reality




Tramonto
WJDC
Functional

* New functional.
* Bonded systems.
* 552 lines C code.

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems.

How much MPI-specific code?



dft_fill_wjdc.c
MPI-specific
code
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Reasons for MPI Success?
* Portability? Yes.
e Standardized? Yes.
e Momentum? Yes.

« Separation of many
Parallel & Algorithms
concerns? Big Yes.

* Once framework in place:
— Sophisticated physics added as serial code.
— Ratio of science experts vs. parallel experts: 10:1.

« Key goal for new parallel apps: Preserve this ratio

Sandia
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Computational Domain Expert Writing MPI Code




—

g
Computational Domain Expert Writing Future
Parallel Code
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Evolving Parallel Programming Model




1\

/;gﬂ"
Parallel Programming Model:
Multi-level/Multi-device

Inter-node/inter-device (distributed)

parallelism and resource management Message Passing

network of l
computational
nodes Node-local control flow (serial)
______________ $________________.
4 )
Intra-node (manycore)
computational parallelism and resource Threading |
node with management
manycore CPUs \_ J
and/or l
GPGPU Stateless computational kernels

stateless kernels |
run on each core

Sandia
Adapted from slide of H. Carter Edwards II'I National

25 Laboratories
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Domain Scientist’'s Parallel Palette

* MPI-only (SPMD) apps:
— Single parallel construct.
— Simultaneous execution.

— Parallelism of even the messiest serial code.

 MapReduce:

— Plug-n-Play data processing framework - 80% Google cycles.

* Pregel: Graph framework (other 20%)

* Next-generation PDE and related applications:

— Internode:
* MPI, yes, or something like it.
« Composed with intranode.
— Intranode:
« Much richer palette.
« More care required from programmer.

* What are the constructs in our new palette?

Sandia
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Obvious Constructs/Concerns

 Parallel for:
— No loop-carried dependence.
— Rich loops.

— Use of shared memory for temporal reuse, efficient
device data transfers.

* Parallel reduce:

— Couple with other computations.
— Concern for reproducibility.
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Other construct: Pipeline

» Sequence of filters.
 Each filter is:
— Sequential (grab element ID, enter global assembly) or
— Parallel (fill element stiffness matrix).
* Filters executed in sequence.
* Programmer’s concern:
— Determine (conceptually): Can filter execute in parallel?
— Write filter (serial code).
— Register it with the pipeline.
 Extensible:
— New physics feature.
— New filter added to pipeline.
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TBB Pipeline for FE assembly

[Launoh elem-data} - [Compute stiffnesses J - [ Assemble rows of stiffness}

from mesh & loads into global matrix
Serial Filter Parallel Filter Several Serial Filters in series
6 7 8 Each assembly filter assembles certain rows from a
FE Mesh / stiftness, then passes it on to the next assembly filter
E3 E4
3 4 > \ :
2 > Rows
El E2 5 6.7.8
0 I 2 4

o

7

Element-stiffness
matrices computed
in parallel

N co L K
01O L BN~ O
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Alternative
TBB Pipeline for FE assembly

from mesh & loads into global matrix

Serial Filter Parallel Filter Parallel Filter

0 Each parallel call to the assembly

6 7 8 1 \ filter assembles all rows from the
FE Mesh 4 7 stiftness, using locking to avoid
E3 E4 3 race conflicts with other threads.

[Launoh elem-data} - [Compute stiffnesses J - [ Assemble rows of stiffness}

Element-stiffness
matrices computed
in parallel
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m National

Laboratories




‘l‘\

Base-line FE Assembly Timings

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows

The finite-element assembly performs 4096000 matrix-row sum-into operations
(8 per element) and 4096000 vector-entry sum-into operations.

MPI-only, no threads. Linux dual quad-core workstation.

Assembly | Assembly

-time -time
Intel 111 [ GCC 444

1 1.80s 1.95s
4 0.45s 0.50s
8 0.24s 0.28s
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FE Assembly Timings

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows

The finite-element assembly performs 4096000 matrix-row sum-into operations

(8 per element) and 4096000 vector-entry sum-into operations.

No MPI, only threads. Linux dual quad-core workstation.

25
2 '\
15 \ —
0.5 . 8
0 . . |

0 00 00 » A B A A A

0o A o 00 A o 00 D -~

95917
7938
3180

64536
5892
1618

Vector-
conflicts

959
25

1306
49

Assembly

2.16s
2.09s
2.08s
1.01s
0.74s
0.69s
0.87s
0.45s
0.38s
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Other construct: Thread team

» Multiple threads.

* Fast barrier.

« Shared, fast access memory pool.

« Example: Nvidia SM

« X86 more vague, emerging more clearly in future.
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Preconditioners for Scalable Multicore Systems
Charon Timing Breakdown on TLCC Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)
Strong Scaling 28M Unknowns s s
# Linear Solver Iterations
100% Charon minus solver
per Newton Step
o 80% 180 129 153
-E 60% Solve time due to iter v 3 111 117 117 125
2 ° increase 9 w
S 40% ' ‘ - &
o Solve time due to iter A
* 20% cost
0% Precondiﬁoner Setup 128 256 512 1024 2048 4096
128 256 512 1024 2048 4096 # MPI Ranks
# Procs
» Observe: Iteration count increases with number of subdomains.
» With scalable threaded smoothers (LU, ILU, Gauss-Seidel):
— Solve with fewer, larger subdomains. Ll : (S
— Better kernel scaling (threads vs. MPI processes). 2048 2 129
— Better convergence, More robust. 1024 4 125
. - T . o
Exascale Potential: Tiled, pipelined implemeiitation. = . P
* Three efforts: 256 6 .
— Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).
— Decomposition by partitioning 128 32 111

34

— Multithreaded direct factorization

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and
Michael A. Heroux and Erik G. Boman, VECPAR 2010.
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Thread Team Advantanges

* Qualitatively better algorithm:
— Threaded triangular solve scales.

— Fewer MPI ranks means fewer iterations, better
robustness.

 Exploits:
— Shared data.

— Fast barrier.
— Data-driven parallelism.
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Finite Elements/Volumes/Differences
and parallel node constructs

 Parallel for, reduce, pipeline:
— Sufficient for vast majority of node level computation.

— Supports:
« Complex modeling expression.
 Vanilla parallelism.

— Must be “stencil-aware” for temporal locality.
* Thread team:

— Complicated.

— Requires true parallel algorithm knowledge.

— Useful in solvers.
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Portable Multi/Manycore Programming
Trilinos/Kokkos Node API




—

Another Manycore architecture: Intel MIC

Knights Ferry:

» 32 x86 cores
— 4-way hyperthreading
— 128 threads total

* 512-bit vector unit
— 16 floats, 8 doubles

Fixed Function Logic

In-Order | In-Order [n-Order | In-Order
EElcore[iERcore CPU core | CPU core
Interprocessor Ring Network
Coherent | Coherent Coherent | Coherent
L2 cache | L2 cache L2 cache | L2 cache
Coherent | Coherent Coherent | Coherent
L2 cache | L2 cache L2 cache | L2 cache
Interprocessor Ring Network
In-Order | In-Order [n-Order | In-Order
CPU core | CPU core CPU core | CPU core

« 1.20GHz

* PCI-E 2.0

« 2GB GDDRS5 global mem
— 8MB shared L2 cache

— 64KB L1 Data, 64KB L1 Inst

Memory & I/O Interfaces

Programming Env:
* OpenMP,

* TBB,
* Pthreads
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Tpetra and Kokkos

* Tpetra is an implementation of the Petra Object Model.
— Design is similar to Epetra, with appropriate deviation.
— Fundamental differences:

* heavily exploits templates
* utilizes hybrid (distributed + shared) parallelism via Kokkos Node API

» Kokkos is an API for shared-memory parallel nodes

— Provides parallel_for and parallel_reduce skeletons.

— Support shared memory APIs:
 ThreadPool Interface (TPI; Carter Edwards’s pthreads Trilinos package)
* Intel Threading Building Blocks (TBB)
* NVIDIA CUDA-capable GPUs (via Thrust)
* OpenMP (implemented by Radu Popescu/EPFL, awaiting my git push)



Generic Shared Memory Node

» Abstract inter-node comm provides DMP support.
* Need some way to portably handle SMP support.

« Goal: allow code, once written, to be run on any parallel
node, regardless of architecture.

» Difficulty #1: Many different memory architectures
— Node may have multiple, disjoint memory spaces.

— Optimal performance may require special memory
placement.

» Difficulty #2: Kernels must be tailored to architecture

— Implementation of optimal kernel will vary between archs
— No universal binary = need for separate compilation paths

* Practical goal: Cover 80% kernels with generic code.

Sandia
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-» Kokkos Node API

» Kokkos provides two main components:
— Kokkos memory model addresses Difficulty #1
« Allocation, deallocation and efficient access of memory
« compute buffer: special memory used for parallel computation
* New: Local Store Pointer and Buffer with size.
— Kokkos compute model addresses Difficulty #2

 Description of kernels for parallel execution on a node
* Provides stubs for common parallel work constructs
« Currently, parallel for loop and parallel reduce

* Code is developed around a polymorphic Node obiject.

« Supporting a new platform requires only the
implementation of a new node type.

Sandia
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Kokkos Memory Model

* A generic node model must at least:
— support the scenario involving distinct device memory
— allow efficient memory access under traditional scenarios

* Nodes provide the following memory routines:

ArrayRCP<T> Node:

void Node:

void Node:

ArrayRCP<T> Node:

void Node:

:allocBuffer<T>(size t sz);
:copyToBuffer<T>( T * src,
ArrayRCP<T> dest);
:copyFromBuffer<T> (ArrayRCP<T> src,

T * dest);

:viewBuffer<T> (ArrayRCP<T> buff);
:readyBuffer<T> (ArrayRCP<T> buff);

Sandia
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Kokkos Compute Model

* How to make shared-memory programming generic:
— Parallel reduction is the intersection of aot () and norm1 ()
— Parallel for loop is the intersection of axpy () and mat-vec
— We need a way of fusing kernels with these basic constructs.

* Template meta-programming is the answer.
— This is the same approach that Intel TBB and Thrust take.
— Has the effect of requiring that Tpetra objects be templated on Node type.

» Node provides generic parallel constructs, user fills in the rest:

template <class WDP> template <class WDP>

void Node::parallel for( WDP: :ReductionType Node::parallel reduce(
int beg, int end, WDP workdata); int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides: Work-data pair (WDP) struct provides:

* loop body via Wwpp: :execute (i) * reduction type WDP: : ReductionType

* element generation via WDP: : generate (i)
* reduction via WDP: : reduce (x, y)

s
s L
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Example Kernels: axpy () and dot ()

template <class WDP> template <class WDP>
void WDP: :ReductionType
Node::parallel for(int beg, int end, Node: :parallel reduce(int beg, int end,
WDP workdata ) WDP workdata )
template <class T> template <class T>
struct AxpyOp { struct DotOp {
const T * x; typedef T ReductionType;
T *vy; const T * x, * vy;
T alpha, beta; T identity() { return (T)0; }
void execute(int i) T generate(int i) { return x[i]*y[i]; }
{ y[i] = alpha*x[i] + beta*y[i]; } T reduce(T x, T y) { return x + y; }
}s }s
AxpyOp<double> op; DotOp<float> op;
op.X = ...; op.alpha = ...; Op.X = ...; OpP.Y = ...}
op.y = ...; op.beta = ...; float dot;
node.parallel for< AxpyOp<double> > dot = node.parallel_reduce< DotOp<float> >
(0, length, op); (0, length, op);

Sandia
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Time (sec)

Kokkos Node API vs Native Implementation
Axpy, len=10K, float, int data

2.50E-04

i float Kokkos init time

i float native init time =

2.00E-04

float Kokkos sum time
i float native sum time

£ int Kokkos init time

1.50E-04

int native init time
int Kokkos sum time

int native sum time

1.00E-04

5.00E-05

.

0.00E+00

SerialNode 10000 1

TBBNode 10000 1

TBBNode 10000 2 TPINode 10000 1 TPINode 100002  ThrustGPUNode 10000

1
Node Type, Prob Size, # Threads
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Time (sec)

1.20E-03

1.00E-03

8.00E-04

6.00E-04

4.00E-04

2.00E-04

0.00E+00

Kokkos Node API vs Native Implementation
Axpy, len=1M

i float Kokkos init time

i float native inittime
= float Kokkos sum time

i float native sum time

& int Kokkos init time —

“int native init time

“int Kokkos sum time

“int native sum time

SerialNode 10000001  TBBNode 1000000 1 TBBNode 1000000 2 TPINode 1000000 1 TPINode 10000002  ThrustGPUNode 1000000
1

Node Type, Prob Size, # threads

Sandia
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Kokkos Node API vs Native Implementation
Axpy, len=10M, float, int data
1.20E-02
i float Kokkos init time
1.00E-02 i float native init time  —
= float Kokkos sum time
i float native sum time
8.00E-03 i int Kokkos init time
. int native init time
2 I int Kokkos sum time
°E’ 6.00E-03 I int native sum time
=
4.00E-03
2.00E-03
0.00E+00
SerialNode 10000000 1 TBBNode 10000000 1 TBBNode 10000000 2 TPINode 100000001 TPINode 10000000 2 ThrustGPUNode
10000000 1
Node Type, Prob Size, # Threads
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What’s the Big Deal about Vector-Vector Operations?

Examples from OOQP (Gertz, Wright)
Vv, <y, +axz ,i=1l.n v, <<y, /x, ,i=l.n

ymin _ yi lfyl < ymin

y, =y =y, ify >py™ Jd=1.n
0 ifymin Sy, Symax

oc— {maxa :x+oad =B}

Example from TRICE (Dennis, Heinkenschloss, Vicente)

(b—u),"* if w, <0 and b, < +oo
d 1 . 111: W ;8 ang bi=dee Many differept and unusual
(u—a); = 1fw; 20 and a;.> —eo vector operations are needed
1 if w, 20 and q,.= —o . . .
) by interior point methods for
Example from IPOPT (Waechter) optimization!
f U L
[xf +G’;xl)] if£h > xY,
2 o | Currently in MOOCHO :
X ) X thx, <x% i=1m > 40 vector operations!
)%Ui ifxl. > )ACUi

xt = minGiL +n€ciU —xl.L)xl.L +5) @ Sandia

Where: B QL QU L) U 5) National
X i =max\x, -k, —Xx, )x, — Laboratories



Tpetra RTI Components

 Set of stand-alone non-member methods:

— unary transform<UOP>(Vector &v, UOP op)
— binary transform<BOP>(Vector &vl, const Vector &v2, BOP op)
— reduce<G>(const Vector &vl, const Vector &v2, G op glob)

— binary pre transform reduce<G>( Vector &vl,
const Vector &v2,

G op_glob)

* These are non-member methods of Tpetra::RTl which are
loosely coupled with Tpetra::MultiVector and Tpetra::Vector.

- Tpetra::RTl also provides Operator-wrappers:

— class KernelOp<..., Kernel > : Tpetra::Operator<...>
— class BinaryOp<...,BinaryOp> : Tpetra::Operator<...>



Tpetra RTI Example

// isn’t this nicer than a bunch of typedefs?

auto &platform = Tpetra::DefaultPlatform: :getDefaultPlatform() ;
auto comm = platform.getComm() ;

auto node = platform.getNode() ;

// create Map and some Vector objects
Tpetra::global size t numGlobalRows = ...;
auto map = createUniformContigMapWithNode<int,int> (numGlobalRows, comm, node) ;
const size_t numLocalRows = map->getNodeNumElements () ;
auto x = Tpetra::createVector<float>(map),
y = Tpetra::createVector<float> (map) ;
auto z Tpetra: :createVector<double> (map) ,
w = Tpetra::createVector<double> (map) ;

// parallel initialization of x[i] = 1.0 using C++-0x lambda function

Tpetra: :RTI::unary transform( *x, [] (float xi) {return 1.0£f;} );

// parallel initialization of y[i] = x[i]

Tpetra::RTI::binary transform( *y, *x, [](float, float xi) {return xi;} );

// parallel y[i] = x[i] + y[i]

Tpetra: :RTI: :binary transform( *y, *x, std::plus<float>() );

// parallel single precision dot(x,y)

fresult = Tpetra::RTI::reduce( *x, *y, reductionGlob<ZeroOp<float>>(
std: :multiplies<float>(),
std: :plus<float>() ));



Multiprecision possibilities

= Tpetra 1s a templated version of the Petra distributed
linear algebra model in Trilinos.

¢ Objects are templated on the underlying data types:

MultiVector<scalar=double, local ordinal=int,
global ordinal=local ordinal> ..

CrsMatrix<scalar=double, local ordinal=int,
global ordinal=local ordinal> ..

¢ Examples:

MultiVector<double, int, long int> V;
CrsMatrix<float> A;

float double speedup

Speedup of float over double
in Belos linear solver. 18 s 26 s 1.42x

double- quad-

Scalar float  double . o qouble

. Arbitrary precision solves
Solve time (s) 2.6 53 29.9 76.5 using Tpetra and Belos @ Sandia

. National
Accuracy 10-6 10-12 1024 1048 linear solver package Laboratories



FP Accuracy Analysis:
FloatShadowDouble Datatype

class FloatShadowDouble { = Templates enable
oublic: Hew g.ri'fﬂ.y oI5
FloatShadowDouble( ) { capabpilities
f=0.0f = Example: Float with
d=00; } “shadow” double.
FloatShadowDouble( const FloatShadowDouble & fd) {
f = fd.f;
d =fd.d; }

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd ) {
f +=fd.f;
d +=fd.d;
return *this; }

inline std::ostream& operator<<(std::ostreamé& os, const FloatShadowDouble& fd) {
os << fd.f<<"f" << fd.d <<"d"; return os;}




FloatShadowDouble

Sample usage:

#include “FloatShadowDouble.hpp”

Tpetra::Vector<FloatShadowDouble> x, y;
Tpetra::CrsMatrix<FloatShadowDouble> A;

A.apply(x, y); // Single precision, but double results also computed, available

Initial Residual = 455.194f 455.194d
lteration = 15 Residual = 5.07328f 5.07618d
lteration = 30 Residual = 0.00147022f 0.00138466d
lteration =45 Residual = 5.14891e-06f 2.09624e-06d
lteration = 60 Residual = 4.03386e-09f 7.91927e-10d
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Hybrid CPU/GPU Computing




Writing and Launching
Heterogeneous Jobs

* Anode is a shared-memory domain.

* Multiple nodes are coupled via a communicator.
— This requires launching multiple processes.

* In a heterogeneous cluster, this requires code written
for multiple node types.

* It may be necessary to template large parts of the code
and run the appropriate instantiation on each rank.
* For launching, two options are available:

— Multiple single-node executables, complex dispatch
— One diverse executable, early branch according to rank



Tpetra::HybridPlatform

* Encapsulate main in a templated class method:

template <class Node>
class myMainRoutine ({
static void run (ParameterList &runParams,
const RCP<const Comm<int> > &comm,
const RCP<Node> &node)
{
// do something interesting
}
};

- HybridPlatform maps the communicator rank to the
Node type, instantiates a node and the run routine:

int main(...) {
Comm<int> comm = ...
ParameterList machine file = ...
// instantiate appropriate node and myMainRoutine
Tpetra: :HybridPlatform platform( comm , machine file );
platform.runUserCode< myMainRoutine >() ;
return O;



HybridPIatform Machine File

SM=N [M,N] default
hostname0 hostnamel

ThrustGPUNode ! TPINode

ThrustGPUNode ! TPINode

<ParameterList>
<ParameterlList name="%2=0">
<Parameter name="NodeType"

type="string" wvalue="Kokkos:

<Parameter name="Verbose" type="int" value="1"/>
<Parameter name="Device Number" type="int" value="0"/>
<Parameter name="Node Weight" type="int" value="4"/>

</ParameterList>

<Parameterlist name="%2=1">
<Parameter name="NodeType"
<Parameter name="Verbose"
<Parameter name="Num Threads"
<Parameter name="Node Weight"

</ParameterList>

</ParameterList>

type="string" value="Kokkos:

type="int" value="1"/>
type="int" value="15"/>
type="int" value="15"/>

: ThrustGPUNode" />

:TPINode" />



HybridPlatformTest Output

[tpetra/example/HybridPlatform] mpirun -np 4 ./Tpetra HybridPlatformTest.exe

--machine-file=machines/G+15.xml

Every proc machine parameters from: machines/G+15.xml

Teuchos: :GlobalMPISession
Running test with Node ==
ThrustGPUNode attached to

Teuchos: :GlobalMPISession:

Running test with Node ==

Teuchos: :GlobalMPISession:

Running test with Node
TPINode initializing with
ThrustGPUNode attached to

Teuchos: :GlobalMPISession:

Running test with Nod
TPINode initializing with

::GlobalMPISession(): started with name lens31l and rank 0!
Kokkos: : ThrustGPUNode on rank 0/4
device #0 "Tesla C1060", of compute capability 1.3

:GlobalMPISession(): started with name lens31 and rank 1!
Kokkos: :TPINode on rank 1/4

:GlobalMPISession(): started with name lensl0 and rank 2!
Kokkos: : ThrustGPUNode on rank 2/4
numThreads == 15

device #0 "Tesla C1060", of compute capability 1.3

:GlobalMPISession () : started with name lensl0 and rank 3!
Kokkos: :TPINode on rank 3/4
numThreads == 15

See HybridPlatformAnasazi.cpp and HybridPlatformBelos.cpp for more fun!
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Programming Today for Tomorrow’s
Machines
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Programming Today for Tomorrow’s Machines

 Parallel Programming in the small:
— Focus: writing sequential code fragments.
— Programmer skills:
* 10%: Pattern/framework experts (domain-aware).
* 90%: Domain experts (pattern-aware)
« Languages needed are already here.
— Exception: Large-scale data-intensive graph?
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FE/FV/FD Parallel Programming Today

for ((i,j,k) in points/elements on subdomain) {
compute coefficients for point (i, ],k)

inject into global matrix

}

Notes:

» User in charge of:

ngn . 7 : - X \' v
— Writing physics code. 4’%@{&”"&%@“ f.\&l ’
— lteration space traversal. | E&g%ﬁ%}!%é)‘g%ﬁ%%ﬁ i
— Storage association. Aﬂwgﬁ@ﬁ,‘ ,, D i e !
'.'(“ v ”_'_D‘_‘,‘. ATAY

 Pattern/framework/runtime in charge of:
— SPMD execution.

IR
i

R
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FE/FV/FD Parallel Programming Tomorrow

pipeline <i,j,k> {
filter (addPhysicsLayerl<i,j,k)>);

filter (addPhysicsLayern<i,j,k>);
filter(injectIntoGlobalMatrix<i,j, k>);

}
Notes:
» User in charge of: ; , x
— Writing physics code (filter). ) < ’%&ﬁ(ﬂyg{é"“ |
— Registering filter with framework. "i‘%ﬂ‘ﬁ!{:ﬁ“}ﬂﬁ%"%‘%ﬁ /
o PSR () 1
« Pattern/framework/runtime in charge of: 4 _ﬁ‘ézgt".'&f,%‘fg;ﬁ{mgr ORI
SRR '

— SPMD execution. %
— lteration space traversal.
o Sensitive to temporal locality.
— Filter execution scheduling.
— Storage association.
« Better assignment of responsibility (in general).

QASRIKPORE 7
AR |
4"1!%’" g
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Resilient Algorithms
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My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

“At 8 nm process technology, it will be harder
totella1froma0.”

(W. Camp)
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Users’ View of the System Now

* “All nodes up and running.”

* Certainly nodes fail, but invisible to user.
*No need for me to be concerned.

* Someone else’s problem.
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Users’ View of the System
Future

* Nodes in one of four states.

1. Dead.

2. Dying (perhaps producing faulty results).
3. Reviving.

4. Running properly:

a) Fully reliable or...
b) Maybe still producing an occasional bad resuilt.

Sandia
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Hard Error Futures

« C/R will continue as dominant approach:
— Global state to global file system OK for small systems.
— Large systems: State control will be localized, use SSD.
» Checkpoint-less restart:
— Requires full vertical HW/SW stack co-operation.
— Very challenging.
— Stratified research efforts not effective.
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Soft Error Futures

 Soft error handling: A legitimate algorithms issue.
* Programming model, runtime environment play role.
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Consider GMRES as an example of how soft
errors affect correctness

« Basic Steps

1)

Compute Krylov subspace (preconditioned sparse matrix-
vector multiplies)

Compute orthonormal basis for Krylov subspace (matrix
factorization)

Compute vector yielding minimum residual in subspace
(linear least squares)

Map to next iterate in the full space
Repeat until residual is sufficiently small

 More examples in Bronevetsky & Supinski, 2008

69
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Why GMRES?

* Many apps are implicit.

* Most popular (nonsymmetric) linear solver is
preconditioned GMRES.

* Only small subset of calculations need to be
reliable.
— GMRES is iterative, but also direct.

70
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Every calculation matters Soft Error Resilience
Descrlptlon FLOPS | Recursive | Solution Error
Residual
Error
-H..- * New Programming Model Elements: SW-
All Correct 343M  46e-15  1.0e-6 enabled, highly reliable:
el « Data storage, paths.
Iter=2, y[1] += . :
1.0 35  343M 6.7e-15  3.7e+3 Compute regions.
SpMV incorrect « Idea: New algorithms with minimal usage
Ortho subspace of high reliability.
Q][] += 1.0 N/IC N/A 7.7e02  59e+5

Non-ortho « First new algorithm: Flexible-operator
subspace (FO)-GMRES.

 Resilient to soft errors.
*  Only orthogonalization vectors and

« Small PDE Problem: ILUT/GMRES

» Correct result:35 lters, 343M FLOPS computations highly reliable.
* 2 examples of a single bad op. - Vast majority of data, ops done with
» Solvers: base reliability:

— 50-90% of total app operations. «  Operator, preconditioner data

— Soft errors most likely in solver.

* Need new algorithms for soft errors:
— Well-conditioned wrt errors.
— Decay proportional to number of errors.
— Minimal impact when no errors.

SpMV, Preconditioner
application

Sandia
M. Heroux, M. Hoemmen m Plaat}:?rg?rl)ries
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Software Development and Delivery
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“Are C++ templates safe? No, but they are good.”

Compile-time Polymorphism

Templates and Sanity upon a shifting foundation

Software delivery:
» Essential Activity

How can we:

* Implement mixed precision algorithms?

* Implement generic fine-grain parallelism?
» Support hybrid CPU/GPU computations?
» Support extended precision?

» Explore redundant computations?

* Prepare for both exascale “swim lanes™?

C++ templates only sane way:

* Moving to completely templated Trilinos
libraries.

» Other important benefits.
» A usable stack exists now in Trilinos.

73

Template Benefits:

Compile time polymorphism.
True generic programming.

No runtime performance hit.
Strong typing for mixed precision.
Support for extended precision.
Many more...

Template Drawbacks:
— Huge compile-time performance hit:
« But good use of multicore :)
» Eliminated for common data types.
- Complex notation:
— Esp. for Fortran & C programmers).
— Can insulate to some extent.
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Phase I packages: SPMD, int/double

Solver Software Stack

Phase II packages: Templated

.
O
/e

Optimization
Unconstrained:

Find uw e R" that minimizes g(u)

Constrained: Find ze€®R®™ and uwe&R* that
onstrained: minimizes g¢g(x,u) s.t. f(x,u) =0
Given nonlinear operator F(z,u) € R*T™ |
Bifurcation Analysi OF
areation AnavEE ey F(x,u) =0 find space uweU 98—
x

Transient Problems
DAEs/ODEs:

Solve f(z(t),z(t),t) =0 /
t€[0,7],x2(0) = zg,2(0) = zg
for z(t) e R",t € [0,T]

Nonlinear Problems

Given nonlinear operator

F(x) e R — _
Solve F(x) =0 zeR" :

Linear Problems
Linear Equations:
Eigen Problems:

Given Linear Ops (Matrices) A,B € R™*
Solve Az =0b for ze&R"
Solve Av = ABv for (all) v e R",

>
M

vities

Sensiti

(Automatic Differentiation: Sacado)

MOOCHO

LOCA

Rythmos

NOX

Anasazi

Ifpack, ML, etc...
AztecOO

Distributed Linear Algebra
Matrix/Graph Equations:

Vector Problems:
74

Compute y = Az; A= A(G); A € R™<" G e X"

Compute y = azx + fw;a = (z,y);z,y € R"

Epetra

Teuchos




—

Phase I packages

Phase II packages

Solver Software Stack

Phase III packages: Manycore*, templated

Optimization
Unconstrained:

Find uw e R" that minimizes g(u)

Comstraiad: Find zc®™ and weR" that 8| moocHo
onstrained: minimizes g(x,u) s.t. f(x,u) =0 e
Given nonlinear operator F(x,u) € gnTm | 8
Bif tion Analysi oOF . -
pareation AnAsE  eop F(x,u) =0 find space wecU > — c B T--OCA
Ox )
el
Transient Problems Solve f(z(t),z(t),t) =0 3
i
DAEs/ODEs: t €[0,7],2(0) = xqg,z(0) = xg GC, Rythmos
for xz(t) e R™,t € [0,T] qq:)
n =
Nonlinear Problems Given nonlinear operator F(z) € R — O N
n T NOX | T-NOX
Solve F(z)=0 xzeR = o
i)
Ll | m -
Linear Problems Given Linear Ops (Matrices) A, B € R™* "5 & ACEE
Linear Equations: Solve Az =1b for zeR" c 2% Belos*
. n Q@ = | lfpack, |[T-lfpack®,
Eigen Problems: Solve Av=ABv for (all) veR", Aelegy < ML, etc...T-ML*, etc]..
Distributed Linear Algebra Epetra Tpetra
Matrix/Graph Equation$:Compute y = Az; A = A(G); A € R™*" G € IMX" Kokkos

Vector Problems:
75

Compute y = azx + fw;a = (z,y);z,y € R"

Teuchos
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Summary

Some app targets will change:

— Advanced modeling and simulation: Gives a better answer.
— Kernel set changes (including redundant computation).

Resilience requires an integrated strategy:
— Most effort at the system/runtime level.

— C/R (with localization) will continue at the app level.

— Resilient algorithms will mitigate soft error impact.
— Use of validation in solution hierarchy can help.

Building the next generation of parallel applications requires enabling

domain scientists:
—  Write sophisticated methods.
— Do so with serial fragments.

— Fragments hoisted into scalable, resilient fragment.

Success of manycore will require breaking out of global SIMT-only.

Migration of Fortran apps to manycore will be painful.
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Quiz (True or False)

MPI-only has the best parallel performance.
Future parallel applications will not have MPI__Init().
All future programmers will need to write parallel code.

Use of “markup”, e.g., OpenMP pragmas, is the least
Intrusive approach to parallelizing a code.

DRY is not possible across CPUs and GPUs

Extended precision is too expensive to be useful.
Resilience will be built into algorithms.

GPUs are a harbinger of CPU things to come.

Fortran Developers are in trouble in a manycore world.

0. Global SIMT is sufficient parallelism for scientific computing.
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