
Toward portable programming of numerical linear
algebra on manycore nodes

Michael A. Heroux
Scalable Algorithms Department

Sandia National Laboratories

Collaborators:
SNL Staff: [B.|R.] Barrett, E. Boman, R. Brightwell, H.C. Edwards, A. Williams
SNL Postdocs: M. Hoemmen, S. Rajamanickam, M. Wolf
ORNL staff: Chris Baker

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energyʼs National Nuclear Security Administration under contract DE-AC04-94AL85000. !

SAND2011-3556C

Quiz (True or False)

1.  MPI-only has the best parallel performance.
2.  Future parallel applications will not have MPI_Init().
3.  All future programmers will need to write parallel code.
4.  Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.
5.  DRY is not possible across CPUs and GPUs.
6.  Extended precision is too expensive to be useful.
7.  Resilience will be built into algorithms.
8.  GPUs are a harbinger of CPU things to come.
9.  Fortran Developers are in trouble in a manycore world.
10. Global SIMT is sufficient parallelism for scientific computing.

Trilinos Contributors

Trilinos Download History: 17600 Total

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)
*+
,!
'"

)
*-
,!
'"

./
0,!

'"

12
3,
!'
"

4
56
,!
'"

.*
7,
!(
"

)
*+
,!
("

)
*-
,!
("

./
0,!

("

12
3,
!(
"

4
56
,!
("

.*
7,
!8
"

)
*+
,!
8"

)
*-
,!
8"

./
0,!

8"

12
3,
!8
"

4
56
,!
8"

.*
7,
!9
"

)
*+
,!
9"

)
*-
,!
9"

./
0,!

9"

12
3,
!9
"

4
56
,!
9"

.*
7,
!:
"

)
*+
,!
:"

)
*-
,!
:"

./
0,!

:"

12
3,
!:
"

4
56
,!
:"

.*
7,
#!
"

)
*+
,#
!"

)
*-
,#
!"

./
0,#

!"

12
3,
#!
"

4
56
,#
!"

.*
7,
##
"

!
"#

$%
&'
()
'*
(+

,-
(.

/0
'

1(,23'

4&5-5,(0'*(+,-(./'6502(&7'1.&'899:';'<.,'89=='

#!;("

#!;&"

#!;$"

#!;!"

:;!"

9;!"

8;!"

(;!"

';!"

Registered User by Region

2105

1912

351

866

265

65
76

Registered Users by Region (5640 Total)

Europe

US (except Sandia)

Sandia (includes unregistered)

Asia

Americas (except US)

Australia/NZ

Africa

Registered Users by Type

University;
3369

Government;
828

Personal; 688

Industry; 622
Other; 133

Registered Users by Type
(5640 Total)

University

Government

Personal

Industry

Other

Ubuntu/Debian: Other sources

maherou@jaguar13:/ccs/home/maherou> module avail trilinos

-- /opt/cray/modulefiles ---
trilinos/10.0.1(default) trilinos/10.2.0

--- /sw/xt5/modulefiles --
trilinos/10.0.4 trilinos/10.2.2 trilinos/10.4.0 trilinos/8.0.3 trilinos/9.0.2

Capability Leaders:
Layer of Proactive Leadership

  Areas:
  Framework, Tools & Interfaces (J. Willenbring).
  Software Engineering Technologies and Integration (R. Bartlett).
  Discretizations (P. Bochev).
  Geometry, Meshing & Load Balancing (K. Devine).
  Scalable Linear Algebra (M. Heroux).
  Linear & Eigen Solvers (J. Hu).
  Nonlinear, Transient & Optimization Solvers (A. Salinger).
  Scalable I/O: (R. Oldfield)

  Each leader provides strategic direction across all Trilinos packages
within area.

Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Discretizations STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx

Solvers

Iterative linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos, Amesos2

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi, Rbgen

ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros, Teko

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs Stokhos

Three Design Points

• Terascale Laptop: Uninode-Manycore

• Petascale Deskside: Multinode-Manycore

• Exascale Center: Manynode-Manycore

Basic Concerns: Trends, Manycore

• Stein’s Law: If a trend cannot
continue, it will stop.

Herbert Stein, chairman of the Council of
Economic Advisers under Nixon and
Ford.

•  Trends at risk:
–  Power.
–  Single core performance.
– Node count.
– Memory size & BW.
– Concurrency expression in

existing Programming
Models.

– Resilience.

0
20
40
60
80

100
120
140
160
180

1E+05	
 1E+06	
 1E+07	

G
ig

af
lo

ps

3D Grid Points with 27pt stencil

Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

p32 x t16

p128 x t4

p512 x t1

Edwards: SAND2009-8196
Trilinos ThreadPool Library v1.1.	

“Status Quo” ~ MPI-only	

11

Strong Scaling Potential	

Observations

• MPI-Only is not sufficient, except … much of the time.
• Near-to-medium term:

– MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI]
–  Long term, too?

• Concern:
–  Best hybrid performance: 1 MPI rank per UMA core set.
– UMA core set size growing slowly  Lots of MPI tasks.

•  Long- term:
–  Something hierarchical, global in scope.

• Conjecture:
– Data-intensive apps need non-SPDM model.
– Will develop new programming model/env.
– Rest of apps will adopt over time.
–  Time span: 10-20 years.

What Can we Do Right Now?

• Study why MPI was successful.
• Study new parallel landscape.
• Try to cultivate an approach similar to MPI (and
others).

MPI Impresssions

14

!"#$%&"'()*&#*+(,%+(-./*+0%1/.#$&2(3//'$0"#$%&4

!"#$%#&%'()&*%+,%-,,.

! /0*1)23&4,5*

" #$%%&'()*+)$,-.$-&/+01+2$3$))&)+40'2.56,-

")07&%5+40''0,+8&,0'6,$503

! 2035$()&+$430%%+$34965&45.3&%+$,8+%*%5&'%

" .2130,5+&11035+3&2$68+(*

! %*%5&'+2035$(6)65*

! &:2)6465+)04$)65*+'$,$-&'&,5

! 6,*&*%35.%47894:3&4,5*

" 9.'$,+2308.456;65*

!)07<)&;&)+230-3$''6,-+'08&)

" %0157$3&+6,,0;$560,

!)6'65&8+8&;&)02'&,5+01+$)5&3,$56;&%

Dan Reed, Microsoft	

Workshop on the Road Map for the

	

Revitalization of High End
	

Computing ���
	

June 16-18, 2003	

Tim Stitts, CSCS	

SOS14 Talk	

March 2010	

“ MPI is often considered the
“portable assembly language” of
parallel computing, …”	

Brad Chamberlain, Cray, 2000.	

11

3D Stencil in NAS MG

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if(.not. dead(kk))then
do axis = 1, 3

if(nprocs .ne. 1) then
call sync_all()
call give3(axis, +1, u, n1, n2, n3, kk

)
call give3(axis, -1, u, n1, n2, n3, kk

)
call sync_all()
call take3(axis, -1, u, n1, n2, n3)
call take3(axis, +1, u, n1, n2, n3)

else
call comm1p(axis, u, n1, n2, n3, kk)

endif
enddo

else
do axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3(axis, dir, u, n1, n2, n3, k)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2,

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(

i1,i2,2)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(

i1,i2,n3-1)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u, n1, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1

u(n1,i2,i3) = buff(indx, buff_id)
enddo

enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif
endif

return
end

subroutine comm1p(axis, u, n1, n2, n3, kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

endif

do i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif

return
end

param coeff: domain(1) = [0..3];
param Stencil: domain(3) = [-1..1, -1..1, -1..1];

function rprj3(S, R) {

param w: [coeff] float
= (/0.5, 0.25, 0.125, 0.0625/);

param w3d: [(i,j,k) in Stencil] float
= w((i!=0) + (j!=0) + (k!=0));

const SD = S.Domain,

Rstr = R.stride;

S = [ijk in SD] sum reduce

[off in Stencil]

(w3d(off) * R(ijk + Rstr*off));

}

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf	

MPI Reality

17

Tramonto
WJDC

Functional

•  New functional.
•  Bonded systems.
•  552 lines C code.

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems. 	

How much MPI-specific code?	

dft_fill_wjdc.c	

dft_fill_wjdc.c
MPI-specific

code

MFIX
Source term for

pressure
correction

•  MPI-callable, OpenMP-enabled.
•  340 Fortran lines.
•  No MPI-specific code.
•  Ubiquitous OpenMP markup

(red regions).

MFIX: Multiphase Flows with Interphase eXchanges (https://www.mfix.org/)	

source_pp_g.f	

Reasons for MPI Success?

• Portability? Yes.
• Standardized? Yes.
• Momentum? Yes.
• Separation of many
Parallel & Algorithms
concerns? Big Yes.

• Once framework in place:
– Sophisticated physics added as serial code.
– Ratio of science experts vs. parallel experts: 10:1.

• Key goal for new parallel apps: Preserve this ratio

Computational Domain Expert Writing MPI Code

Computational Domain Expert Writing Future
Parallel Code

Evolving Parallel Programming Model

24

Parallel Programming Model:
Multi-level/Multi-device

Stateless computational kernels!
run on each core!

Intra-node (manycore)
parallelism and resource

management!

Node-local control flow (serial)!

Inter-node/inter-device (distributed)
parallelism and resource management!

Threading!

Message Passing!

stateless kernels!

computational
node with

manycore CPUs!
and / or!
GPGPU!

network of
computational

nodes!

25 Adapted from slide of H. Carter Edwards	

Domain Scientist’s Parallel Palette
• MPI-only (SPMD) apps:

–  Single parallel construct.
–  Simultaneous execution.
–  Parallelism of even the messiest serial code.

• MapReduce:
–  Plug-n-Play data processing framework - 80% Google cycles.

• Pregel: Graph framework (other 20%)
• Next-generation PDE and related applications:

–  Internode:
•  MPI, yes, or something like it.
•  Composed with intranode.

–  Intranode:
•  Much richer palette.
•  More care required from programmer.

• What are the constructs in our new palette?

Obvious Constructs/Concerns

• Parallel for:
– No loop-carried dependence.
– Rich loops.
– Use of shared memory for temporal reuse, efficient

device data transfers.
• Parallel reduce:

– Couple with other computations.
– Concern for reproducibility.

Other construct: Pipeline

• Sequence of filters.
• Each filter is:

– Sequential (grab element ID, enter global assembly) or
– Parallel (fill element stiffness matrix).

• Filters executed in sequence.
• Programmer’s concern:

– Determine (conceptually): Can filter execute in parallel?
– Write filter (serial code).
– Register it with the pipeline.

• Extensible:
– New physics feature.
– New filter added to pipeline.

0

4

2 1

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0
1
4
3

0
1
2
3
4
5
6
7
8

1
2
5
4

3
4
7
6

4
5
8
7

Global Matrix

Assemble
Rows
0,1,2

Assemble
Rows
3,4,5

Assemble
Rows
6,7,8

TBB Pipeline for FE assembly

FE Mesh

Element-stiffness
matrices computed

in parallel

Launch elem-data
from mesh

Compute stiffnesses
& loads

Assemble rows of stiffness
into global matrix

Serial Filter Parallel Filter Several Serial Filters in series

Each assembly filter assembles certain rows from a
stiffness, then passes it on to the next assembly filter

0

4

2 1

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0
1
4
3

0
1
2
3
4
5
6
7
8

1
2
5
4

3
4
7
6

4
5
8
7

Global Matrix

Assemble
Rows

Alternative
TBB Pipeline for FE assembly

FE Mesh

Element-stiffness
matrices computed

in parallel

Launch elem-data
from mesh

Compute stiffnesses
& loads

Assemble rows of stiffness
into global matrix

Serial Filter Parallel Filter Parallel Filter

Each parallel call to the assembly
filter assembles all rows from the
stiffness, using locking to avoid
race conflicts with other threads.

Assemble
Rows

Assemble
Rows

Assemble
Rows

Base-line FE Assembly Timings

Num-
procs

Assembly
-time
Intel 11.1

Assembly
-time
GCC 4.4.4

1 1.80s 1.95s

4 0.45s 0.50s

8 0.24s 0.28s

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows
The finite-element assembly performs 4096000 matrix-row sum-into operations
(8 per element) and 4096000 vector-entry sum-into operations.

MPI-only, no threads. Linux dual quad-core workstation.

FE Assembly Timings

Num-
threads

Elem-
group
-size

Matrix-
conflicts

Vector-
conflicts

Assembly
-time

1 1 0 0 2.16s

1 4 0 0 2.09s

1 8 0 0 2.08s

4 1 95917 959 1.01s

4 4 7938 25 0.74s

4 8 3180 4 0.69s

8 1 64536 1306 0.87s

8 4 5892 49 0.45s

8 8 1618 1 0.38s

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows
The finite-element assembly performs 4096000 matrix-row sum-into operations
(8 per element) and 4096000 vector-entry sum-into operations.

No MPI, only threads. Linux dual quad-core workstation.

0

0.5

1

1.5

2

2.5

1 4 8

1
4
8

Other construct: Thread team

• Multiple threads.
• Fast barrier.
• Shared, fast access memory pool.
• Example: Nvidia SM
• X86 more vague, emerging more clearly in future.

•  Observe: Iteration count increases with number of subdomains.
•  With scalable threaded smoothers (LU, ILU, Gauss-Seidel):

–  Solve with fewer, larger subdomains.
–  Better kernel scaling (threads vs. MPI processes).
–  Better convergence, More robust.

•  Exascale Potential: Tiled, pipelined implementation.
•  Three efforts:

–  Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).
–  Decomposition by partitioning
–  Multithreaded direct factorization

Preconditioners for Scalable Multicore Systems

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)	

MPI
Tasks Threads Iterations

4096 1 153

2048 2 129

1024 4 125

512 8 117

256 16 117

128 32 111

34
Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and ���
Michael A. Heroux and Erik G. Boman, VECPAR 2010.	

# MPI Ranks	

Thread Team Advantanges

• Qualitatively better algorithm:
– Threaded triangular solve scales.
– Fewer MPI ranks means fewer iterations, better

robustness.
• Exploits:

– Shared data.
– Fast barrier.
– Data-driven parallelism.

Finite Elements/Volumes/Differences
and parallel node constructs

• Parallel for, reduce, pipeline:
– Sufficient for vast majority of node level computation.
– Supports:

• Complex modeling expression.
• Vanilla parallelism.

– Must be “stencil-aware” for temporal locality.
• Thread team:

– Complicated.
– Requires true parallel algorithm knowledge.
– Useful in solvers.

Portable Multi/Manycore Programming
Trilinos/Kokkos Node API

37

Another Manycore architecture: Intel MIC

Knights Ferry:
• 32 x86 cores

– 4-way hyperthreading
– 128 threads total

• 512-bit vector unit
– 16 floats, 8 doubles

• 1.20GHz
• PCI-E 2.0
• 2GB GDDR5 global mem

– 8MB shared L2 cache
– 64KB L1 Data, 64KB L1 Inst

Programming Env:
• OpenMP,
• TBB,
• Pthreads

Tpetra and Kokkos

•  Tpetra is an implementation of the Petra Object Model.
–  Design is similar to Epetra, with appropriate deviation.
–  Fundamental differences:

•  heavily exploits templates
•  utilizes hybrid (distributed + shared) parallelism via Kokkos Node API

• Kokkos is an API for shared-memory parallel nodes
–  Provides parallel_for and parallel_reduce skeletons.
–  Support shared memory APIs:

•  ThreadPool Interface (TPI; Carter Edwards’s pthreads Trilinos package)
•  Intel Threading Building Blocks (TBB)
•  NVIDIA CUDA-capable GPUs (via Thrust)
•  OpenMP (implemented by Radu Popescu/EPFL, awaiting my git push)

Generic Shared Memory Node

• Abstract inter-node comm provides DMP support.
• Need some way to portably handle SMP support.
• Goal: allow code, once written, to be run on any parallel
node, regardless of architecture.

• Difficulty #1: Many different memory architectures
– Node may have multiple, disjoint memory spaces.
– Optimal performance may require special memory

placement.
• Difficulty #2: Kernels must be tailored to architecture

–  Implementation of optimal kernel will vary between archs
– No universal binary  need for separate compilation paths

• Practical goal: Cover 80% kernels with generic code.

40

Kokkos Node API

• Kokkos provides two main components:
– Kokkos memory model addresses Difficulty #1

• Allocation, deallocation and efficient access of memory
•  compute buffer: special memory used for parallel computation
• New: Local Store Pointer and Buffer with size.

– Kokkos compute model addresses Difficulty #2
• Description of kernels for parallel execution on a node
• Provides stubs for common parallel work constructs
• Currently, parallel for loop and parallel reduce

• Code is developed around a polymorphic Node object.
• Supporting a new platform requires only the
implementation of a new node type.

41

Kokkos Memory Model

• A generic node model must at least:
– support the scenario involving distinct device memory
– allow efficient memory access under traditional scenarios

• Nodes provide the following memory routines:
 ArrayRCP<T> Node::allocBuffer<T>(size_t sz);

 void Node::copyToBuffer<T>(T * src,

 ArrayRCP<T> dest);
 void Node::copyFromBuffer<T>(ArrayRCP<T> src,

 T * dest);

 ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff);

 void Node::readyBuffer<T>(ArrayRCP<T> buff);

Kokkos Compute Model

•  How to make shared-memory programming generic:
–  Parallel reduction is the intersection of dot() and norm1()
–  Parallel for loop is the intersection of axpy() and mat-vec
–  We need a way of fusing kernels with these basic constructs.

•  Template meta-programming is the answer.
–  This is the same approach that Intel TBB and Thrust take.
–  Has the effect of requiring that Tpetra objects be templated on Node type.

•  Node provides generic parallel constructs, user fills in the rest:

template	
 <class	
 WDP>	
 	

void	
 Node::parallel_for(

	
 	
 int	
 beg,	
 int	
 end,	
 WDP	
 workdata);	

template	
 <class	
 WDP>	

WDP::ReductionType	
 Node::parallel_reduce(

	
 	
 int	
 beg,	
 int	
 end,	
 WDP	
 workdata);	

Work-data pair (WDP) struct provides:
•  loop body via WDP::execute(i)

Work-data pair (WDP) struct provides:
•  reduction type WDP::ReductionType
•  element generation via WDP::generate(i)
•  reduction via WDP::reduce(x,y)

43

Example Kernels: axpy() and dot()!

template	
 <class	
 WDP>	

void	
 	

Node::parallel_for(int	
 beg,	
 int	
 end,	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 WDP	
 workdata	
 	
 	
 	
);	

template	
 <class	
 WDP>	

WDP::ReductionType	

Node::parallel_reduce(int	
 beg,	
 int	
 end,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 WDP	
 workdata	
 	
 	
 	
);	

template	
 <class	
 T>	
 	

struct	
 AxpyOp	
 {	

	
 	
 const	
 T	
 *	
 x;	

	
 	
 T	
 *	
 y;	

	
 	
 T	
 alpha,	
 beta;	

	
 	
 void	
 execute(int	
 i)	
 	

	
 	
 {	
 y[i]	
 =	
 alpha*x[i]	
 +	
 beta*y[i];	
 }	

};	

template	
 <class	
 T>	

struct	
 DotOp	
 {	

	
 	
 typedef	
 T	
 ReductionType;	

	
 	
 const	
 T	
 *	
 x,	
 *	
 y;	

	
 	
 T	
 identity()	
 	
 	
 	
 	
 	
 	
 {	
 return	
 (T)0;	
 	
 	
 	
 	
 	
 }	

	
 	
 T	
 generate(int	
 i)	
 	
 {	
 return	
 x[i]*y[i];	
 }	

	
 	
 T	
 reduce(T	
 x,	
 T	
 y)	
 {	
 return	
 x	
 +	
 y;	
 	
 	
 	
 	
 }	

};	

AxpyOp<double>	
 op;	

op.x	
 =	
 ...;	
 	
 op.alpha	
 =	
 ...;	

op.y	
 =	
 ...;	
 	
 op.beta	
 	
 =	
 ...;	

node.parallel_for<	
 AxpyOp<double>	
 >	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (0,	
 length,	
 op);	

DotOp<float>	
 op;	

op.x	
 =	
 ...;	
 	
 op.y	
 =	
 ...;	

float	
 dot;	

dot	
 =	
 node.parallel_reduce<	
 DotOp<float>	
 >	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (0,	
 length,	
 op);	

44

!"!!#$!!%

&"!!#'!&%

("!!#'!)%

("&!#'!)%

*"!!#'!)%

*"&!#'!)%

+,-./0123,%(!!!!%(% 455123,%(!!!!%(% 455123,%(!!!!%*% 467123,%(!!!!%(% 467123,%(!!!!%*% 48-9:;<6=123,%(!!!!%
(%

!"
#
$%
&'
$(
)%

*+,$%!-.$/%01+2%3"4$/%5%!61$7,'%

8+99+'%*+,$%:0;%<'%*7=<$%;#.>$#$?@7=+?%
:A.-/%>$?BCD8/%E+7@/%"?@%,7@7%

>2/;%?2@@2:%.A.;%BC,%

>2/;%A/BD,%.A.;%BC,%

>2/;%?2@@2:%:9C%%BC,%

>2/;%A/BD,%:9C%%BC,%

.A;%?2@@2:%.A.;%BC,%

.A;%A/BD,%.A.;%BC,%

.A;%?2@@2:%:9C%%BC,%

.A;%A/BD,%:9C%%BC,%

!"!!#$!!%

&"!!#'!(%

("!!#'!(%

)"!!#'!(%

*"!!#'!(%

+"!!#'!,%

+"&!#'!,%

-./012345.%+!!!!!!%+% 677345.%+!!!!!!%+% 677345.%+!!!!!!%&% 689345.%+!!!!!!%+% 689345.%+!!!!!!%&% 6:/;<=>8?345.%+!!!!!!%
+%

!"
#
$%
&'
$(
)%

*+,$%!-.$/%01+2%3"4$/%5%671$8,'%

9+::+'%*+,$%;0<%='%*8>=$%<#.?$#$@68>+@%
;A.-/%?$@BCD%

@41=%A4BB4<%0C0=%DE.%

@41=%C1DF.%0C0=%DE.%

@41=%A4BB4<%<;E%%DE.%

@41=%C1DF.%<;E%%DE.%

0C=%A4BB4<%0C0=%DE.%

0C=%C1DF.%0C0=%DE.%

0C=%A4BB4<%<;E%%DE.%

0C=%C1DF.%<;E%%DE.%

!"!!#$!!%

&"!!#'!(%

)"!!#'!(%

*"!!#'!(%

+"!!#'!(%

,"!!#'!&%

,"&!#'!&%

-./012345.%,!!!!!!!%,%677345.%,!!!!!!!%,% 677345.%,!!!!!!!%&% 689345.%,!!!!!!!%,% 689345.%,!!!!!!!%&% 6:/;<=>8?345.%
,!!!!!!!%,%

!"
#
$%
&'
$(
)%

*+,$%!-.$/%01+2%3"4$/%5%!61$7,'%

8+99+'%*+,$%:0;%<'%*7=<$%;#.>$#$?@7=+?%
:A.-/%>$?BCDE/%F+7@/%"?@%,7@7%

@41=%A4BB4<%0C0=%DE.%

@41=%C1DF.%0C0=%DE.%

@41=%A4BB4<%<;E%%DE.%

@41=%C1DF.%<;E%%DE.%

0C=%A4BB4<%0C0=%DE.%

0C=%C1DF.%0C0=%DE.%

0C=%A4BB4<%<;E%%DE.%

0C=%C1DF.%<;E%%DE.%

48
What’s the Big Deal about Vector-Vector Operations?

Examples from OOQP (Gertz, Wright)
y y x i ni i i← =/ , ...1y y x z i ni i i i← + =α , ...1

y
y y y y
y y y y

y y y
i ni

i i

i i

i

←
− <
− >

≤ ≤

⎧
⎨
⎪

⎩⎪
=

min min

max max

min max
, ...

if
if
if0

1 { }βααα ≥+← dx:max

Example from TRICE (Dennis, Heinkenschloss, Vicente)

d

b u w b
w b

u a w a
w a

i ni

i i i

i i

i i i

i i

←

− < < +∞
< = +∞

− ≥ > −∞
≥ = −∞

⎧

⎨
⎪⎪

⎩
⎪
⎪

=

() and
 and

() and .
 and .

, ...

/

/

1 2

1 2

0
1 0

0
1 0

1

if
if
if
if

Example from IPOPT (Waechter)

()

()()
()()δη

δη
−−−=
+−+=

=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
<

>⎟⎟⎠

⎞
⎜⎜⎝

⎛ −+

←

U
i

L
i

U
i

L
ii

U

L
i

L
i

U
i

L
ii

L

i
U

ii
U

i
L

ii
L

i
U

i
L

L
i

U
iL

i

i

xxxxx
xxxxxwhere

ni
xxx
xxx

xxxxx

x

,maxˆ
,minˆ

:

...1,
ˆifˆ
ˆifˆ

ˆˆif
2 Currently in MOOCHO :

 > 40 vector operations!

Many different and unusual
vector operations are needed
by interior point methods for
optimization!

Tpetra RTI Components

• Set of stand-alone non-member methods:
–  unary_transform<UOP>(Vector &v, UOP op)
–  binary_transform<BOP>(Vector &v1, const Vector &v2, BOP op)
–  reduce<G>(const Vector &v1, const Vector &v2, G op_glob)
–  binary_pre_transform_reduce<G>(Vector &v1,

 const Vector &v2,
 G op_glob)

•  These are non-member methods of Tpetra::RTI which are
loosely coupled with Tpetra::MultiVector and Tpetra::Vector.

•  Tpetra::RTI also provides Operator-wrappers:
–  class KernelOp<..., Kernel > : Tpetra::Operator<...>
–  class BinaryOp<...,BinaryOp> : Tpetra::Operator<...>

Tpetra RTI Example

// isn’t this nicer than a bunch of typedefs?
auto &platform = Tpetra::DefaultPlatform::getDefaultPlatform();
auto comm = platform.getComm();
auto node = platform.getNode();

// create Map and some Vector objects
Tpetra::global_size_t numGlobalRows = ...;
auto map = createUniformContigMapWithNode<int,int>(numGlobalRows, comm, node);
const size_t numLocalRows = map->getNodeNumElements();
auto x = Tpetra::createVector<float>(map),
 y = Tpetra::createVector<float>(map);
auto z = Tpetra::createVector<double>(map),
 w = Tpetra::createVector<double>(map);

// parallel initialization of x[i] = 1.0 using C++-0x lambda function
Tpetra::RTI::unary_transform(*x, [](float xi){return 1.0f;});
// parallel initialization of y[i] = x[i]
Tpetra::RTI::binary_transform(*y, *x, [](float, float xi) {return xi;});
// parallel y[i] = x[i] + y[i]
Tpetra::RTI::binary_transform(*y, *x, std::plus<float>());
// parallel single precision dot(x,y)
fresult = Tpetra::RTI::reduce(*x, *y, reductionGlob<ZeroOp<float>>(
 std::multiplies<float>(),
 std::plus<float>()));

  Tpetra is a templated version of the Petra distributed
linear algebra model in Trilinos.
  Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int, !
! ! ! global_ordinal=local_ordinal> …  
CrsMatrix<scalar=double, local_ordinal=int, !
! ! ! global_ordinal=local_ordinal> …!

  Examples:
MultiVector<double, int, long int> V;  
CrsMatrix<float> A;!

Multiprecision possibilities

Scalar float double double-
double

quad-
double

Solve time (s) 2.6 5.3 29.9 76.5

Accuracy 10-6 10-12 10-24 10-48

Arbitrary precision solves
using Tpetra and Belos
linear solver package

Speedup of float over double
in Belos linear solver.

float double speedup
18 s 26 s 1.42x

class FloatShadowDouble {

public:
 FloatShadowDouble() {
 f = 0.0f;
 d = 0.0; }
 FloatShadowDouble(const FloatShadowDouble & fd) {
 f = fd.f;
 d = fd.d; }
…
inline FloatShadowDouble operator+= (const FloatShadowDouble & fd) {
 f += fd.f;
 d += fd.d;
 return *this; }
…
inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) {
 os << fd.f << "f " << fd.d << "d”; return os;}

FP Accuracy Analysis:
FloatShadowDouble Datatype

  Templates enable
new analysis
capabilities

  Example: Float with
“shadow” double.

FloatShadowDouble

Initial Residual = 455.194f 455.194d
Iteration = 15 Residual = 5.07328f 5.07618d
Iteration = 30 Residual = 0.00147022f 0.00138466d
Iteration = 45 Residual = 5.14891e-06f 2.09624e-06d
Iteration = 60 Residual = 4.03386e-09f 7.91927e-10d

Sample usage:
#include “FloatShadowDouble.hpp”
Tpetra::Vector<FloatShadowDouble> x, y;
Tpetra::CrsMatrix<FloatShadowDouble> A;
A.apply(x, y); // Single precision, but double results also computed, available

Hybrid CPU/GPU Computing

54

Writing and Launching
Heterogeneous Jobs

• A node is a shared-memory domain.
• Multiple nodes are coupled via a communicator.

–  This requires launching multiple processes.

•  In a heterogeneous cluster, this requires code written
for multiple node types.

•  It may be necessary to template large parts of the code
and run the appropriate instantiation on each rank.

•  For launching, two options are available:
–  Multiple single-node executables, complex dispatch
–  One diverse executable, early branch according to rank

Tpetra::HybridPlatform

• Encapsulate main in a templated class method:

•  HybridPlatform maps the communicator rank to the
Node type, instantiates a node and the run routine:

template <class Node>
class myMainRoutine {
 static void run(ParameterList &runParams,
 const RCP<const Comm<int> > &comm,
 const RCP<Node> &node)
 {
 // do something interesting
 }
};

int main(...) {
 Comm<int> comm = ...
 ParameterList machine_file = ...
 // instantiate appropriate node and myMainRoutine
 Tpetra::HybridPlatform platform(comm , machine_file);
 platform.runUserCode< myMainRoutine >();
 return 0;
}

hostname0

HybridPlatform Machine File

<ParameterList>
 <ParameterList name="%2=0">
 <Parameter name="NodeType" type="string" value="Kokkos::ThrustGPUNode"/>
 <Parameter name="Verbose" type="int" value="1"/>
 <Parameter name="Device Number" type="int" value="0"/>
 <Parameter name="Node Weight" type="int" value="4"/>
 </ParameterList>
 <ParameterList name="%2=1">
 <Parameter name="NodeType" type="string" value="Kokkos::TPINode"/>
 <Parameter name="Verbose" type="int" value="1"/>
 <Parameter name="Num Threads" type="int" value="15"/>
 <Parameter name="Node Weight" type="int" value="15"/>
 </ParameterList>
</ParameterList>

ThrustGPUNode	
 TPINode	

rank	
 0	
 rank	
 1	

hostname1

ThrustGPUNode	
 TPINode	

rank	
 2	
 rank	
 3	
 ...

round-­‐robin	
 assignment	
 interval	
 assignment	
 explicit	
 assignment	
 default	

%M=N [M,N] =N default

HybridPlatformTest Output
[tpetra/example/HybridPlatform] mpirun –np 4 ./Tpetra_HybridPlatformTest.exe
 --machine-file=machines/G+15.xml

Every proc machine parameters from: machines/G+15.xml

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens31 and rank 0!
Running test with Node == Kokkos::ThrustGPUNode on rank 0/4
ThrustGPUNode attached to device #0 "Tesla C1060", of compute capability 1.3

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens31 and rank 1!
Running test with Node == Kokkos::TPINode on rank 1/4

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens10 and rank 2!
Running test with Node == Kokkos::ThrustGPUNode on rank 2/4
TPINode initializing with numThreads == 15
ThrustGPUNode attached to device #0 "Tesla C1060", of compute capability 1.3

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens10 and rank 3!
Running test with Node == Kokkos::TPINode on rank 3/4
TPINode initializing with numThreads == 15

...

See HybridPlatformAnasazi.cpp and HybridPlatformBelos.cpp for more fun!

Programming Today for Tomorrow’s
Machines

59

Programming Today for Tomorrow’s Machines

• Parallel Programming in the small:
– Focus: writing sequential code fragments.
– Programmer skills:

•  10%: Pattern/framework experts (domain-aware).
•  90%: Domain experts (pattern-aware)

• Languages needed are already here.
– Exception: Large-scale data-intensive graph?

FE/FV/FD Parallel Programming Today

for ((i,j,k) in points/elements on subdomain) {!
!compute coefficients for point (i,j,k)!
!inject into global matrix!
 }!

Notes:
•  User in charge of:

–  Writing physics code.
–  Iteration space traversal.
–  Storage association.

•  Pattern/framework/runtime in charge of:
–  SPMD execution.

FE/FV/FD Parallel Programming Tomorrow

pipeline <i,j,k> {!
 filter(addPhysicsLayer1<i,j,k)>);!
! ...!
 filter(addPhysicsLayern<i,j,k>);!
! filter(injectIntoGlobalMatrix<i,j,k>);!
 }!

Notes:
•  User in charge of:

–  Writing physics code (filter).
–  Registering filter with framework.

•  Pattern/framework/runtime in charge of:
–  SPMD execution.
–  Iteration space traversal.

o  Sensitive to temporal locality.
–  Filter execution scheduling.
–  Storage association.

•  Better assignment of responsibility (in general).

Resilient Algorithms

63

My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

64

“At 8 nm process technology, it will be harder
to tell a 1 from a 0.”

 (W. Camp)

Users’ View of the System Now

• “All nodes up and running.”
• Certainly nodes fail, but invisible to user.
• No need for me to be concerned.
• Someone else’s problem.

65

Users’ View of the System
Future

• Nodes in one of four states.
1.  Dead.
2.  Dying (perhaps producing faulty results).
3.  Reviving.
4.  Running properly:

a)  Fully reliable or…
b)  Maybe still producing an occasional bad result.

66

Hard Error Futures

• C/R will continue as dominant approach:
– Global state to global file system OK for small systems.
– Large systems: State control will be localized, use SSD.

• Checkpoint-less restart:
– Requires full vertical HW/SW stack co-operation.
– Very challenging.
– Stratified research efforts not effective.

Soft Error Futures

• Soft error handling: A legitimate algorithms issue.
• Programming model, runtime environment play role.

Consider GMRES as an example of how soft
errors affect correctness

•  Basic Steps
1)  Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies)
2)  Compute orthonormal basis for Krylov subspace (matrix

factorization)
3)  Compute vector yielding minimum residual in subspace

(linear least squares)
4)  Map to next iterate in the full space
5)  Repeat until residual is sufficiently small

•  More examples in Bronevetsky & Supinski, 2008

69

Why GMRES?

• Many apps are implicit.
• Most popular (nonsymmetric) linear solver is
preconditioned GMRES.

• Only small subset of calculations need to be
reliable.
– GMRES is iterative, but also direct.

70

Every calculation matters

•  Small PDE Problem: ILUT/GMRES
•  Correct result:35 Iters, 343M FLOPS
•  2 examples of a single bad op.
•  Solvers:

–  50-90% of total app operations.
–  Soft errors most likely in solver.

•  Need new algorithms for soft errors:
–  Well-conditioned wrt errors.
–  Decay proportional to number of errors.
–  Minimal impact when no errors.

Description Iters FLOPS Recursive
Residual
Error

Solution Error

All Correct
Calcs

35 343M 4.6e-15 1.0e-6

Iter=2, y[1] +=
1.0
SpMV incorrect
Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0
Non-ortho
subspace

N/C N/A 7.7e-02 5.9e+5

71

Soft Error Resilience

•  New Programming Model Elements: SW-
enabled, highly reliable:

•  Data storage, paths.
•  Compute regions.

•  Idea: New algorithms with minimal usage
of high reliability.

•  First new algorithm: Flexible-operator
(FO)-GMRES.

•  Resilient to soft errors.
•  Only orthogonalization vectors and

computations highly reliable.
•  Vast majority of data, ops done with

base reliability:
•  Operator, preconditioner data
•  SpMV, Preconditioner

application

M. Heroux, M. Hoemmen	

Software Development and Delivery

72

Compile-time Polymorphism
Templates and Sanity upon a shifting foundation

73

“Are C++ templates safe? No, but they are good.”	

Software delivery:
•  Essential Activity

How can we:
•  Implement mixed precision algorithms?
•  Implement generic fine-grain parallelism?
•  Support hybrid CPU/GPU computations?
•  Support extended precision?
•  Explore redundant computations?
•  Prepare for both exascale “swim lanes”?

C++ templates only sane way:
•  Moving to completely templated Trilinos

libraries.
•  Other important benefits.
•  A usable stack exists now in Trilinos.

Template Benefits:
–  Compile time polymorphism.
–  True generic programming.
–  No runtime performance hit.
–  Strong typing for mixed precision.
–  Support for extended precision.
–  Many more…

Template Drawbacks:
–  Huge compile-time performance hit:

•  But good use of multicore :)
•  Eliminated for common data types.

-  Complex notation:
-  Esp. for Fortran & C programmers).
-  Can insulate to some extent.

Solver Software Stack

Bifurcation Analysis ! LOCA!

DAEs/ODEs:!
Transient Problems !

Rythmos!

Eigen Problems:!
Linear Equations:!

 Linear Problems !

AztecOO!
Ifpack, ML, etc...!

Anasazi!

Vector Problems:!
Matrix/Graph Equations:!

Distributed Linear Algebra! Epetra!

Teuchos!

Optimization!

MOOCHO!
Unconstrained:!
Constrained:!

Nonlinear Problems! NOX!

Se
ns

iti
vi

tie
s!

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)
!

Phase I packages: SPMD, int/double	

 Phase II packages: Templated	

74

Solver Software Stack

Bifurcation Analysis !

DAEs/ODEs:!
Transient Problems !

Rythmos!

Eigen Problems:!
Linear Equations:!

 Linear Problems !
AztecOO!

Ifpack, !
ML, etc...!

Anasazi!

Vector Problems:!
Matrix/Graph Equations:!

Distributed Linear Algebra! Epetra!

Optimization!

MOOCHO!
Unconstrained:!
Constrained:!

Nonlinear Problems! NOX!

Se
ns

iti
vi

tie
s!

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)
!

LOCA!

Phase I packages	

 Phase II packages	

Teuchos!

T-LOCA!

Belos*!

Tpetra*!
Kokkos*!

T-Ifpack*, !
T-ML*, etc...!

T-NOX!

Phase III packages: Manycore*, templated	

75

Summary

•  Some app targets will change:
–  Advanced modeling and simulation: Gives a better answer.
–  Kernel set changes (including redundant computation).

•  Resilience requires an integrated strategy:
–  Most effort at the system/runtime level.
–  C/R (with localization) will continue at the app level.
–  Resilient algorithms will mitigate soft error impact.
–  Use of validation in solution hierarchy can help.

•  Building the next generation of parallel applications requires enabling
domain scientists:

–  Write sophisticated methods.
–  Do so with serial fragments.
–  Fragments hoisted into scalable, resilient fragment.

•  Success of manycore will require breaking out of global SIMT-only.
•  Migration of Fortran apps to manycore will be painful.

Quiz (True or False)

1.  MPI-only has the best parallel performance.
2.  Future parallel applications will not have MPI_Init().
3.  All future programmers will need to write parallel code.
4.  Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.
5.  DRY is not possible across CPUs and GPUs
6.  Extended precision is too expensive to be useful.
7.  Resilience will be built into algorithms.
8.  GPUs are a harbinger of CPU things to come.
9.  Fortran Developers are in trouble in a manycore world.
10. Global SIMT is sufficient parallelism for scientific computing.

