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Fission Surface Power System
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• UO2 Fuel

• Liquid-Metal Cooled Rx

• Modular 40 kWe System

• Stirling Power Conversion

• 8-Year Design Life

• Regolith Shielded
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RPCSIM Concept

• Reactor, Power, and Control SIMulation

– Modern set of components to solve time 
dependant state flow systems
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Advantages of RPCSIM

Quickly simulate reactor and power system 
transient behavior

Object-oriented structure for rapid iteration of 
system components and layout

Low barrier-to-entry coding environment

Uses a commercially-supported simulation 
program and code base

Ability to run on massively parallel machines

SPEED

FLEXIBILITY

EASE OF USE

SUPPORTED

EXPANDABLE
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Primary Test Circuit - Reality
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Primary Test Circuit – Test Data

Run ID # Run Date Run Description

1 7/13/2009 75% Flow, 500C

2 7/8/2009 75% Flow, 375 C

3 6/24/2009 100% Flow, 200C

4 6/25/2009 100% Flow, 375C

5 7/6/2009 100% Flow, 500C

6 6/24/2009 Stirling Engine Stall

7 7/13/2009 Loss of ALIP

8 6/24/2009 Loss of Heat

9 7/7/2009 Simulated Reactivity Feedback, - 1 mm Stirling Stroke

10 7/7/2009 Simulated Reactivity Feedback, + 1 mm Stirling Stroke

11 7/14/2009 Simulated Reactivity Feedback, - 2 mm Stirling Stroke

12 7/14/2009 Simulated Reactivity Feedback, + 2 mm Stirling Stroke

13 7/7/2009 Simulated Reactivity Insertion, Steady Stirling Stroke

14 7/8/2009 Simulated Reactivity Feedback, Decreasing Mass Flow

15 7/8/2009 Simulated Reactivity Feedback, Increasing Mass Flow

16 7/8/2009 Simulated Reactivity Feedback, Stirling Engine Stall
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Comparison Strategy

Assemble and / or develop generic 
components.

Modify the geometric and other parameters of 
the generic components to estimate real-
world system characteristics.

Simulate components in isolation and use 
correlation coefficients to match output 
measurements based on input signals.

Use the correlated RPCSIM model to simulate 
additional runs and characterize error to 
identify areas for improvement in both 
modeling and testing procedures.

COMPONENTS

MODIFY

CORRELATE

SIMULATE
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ASSEMBLING COMPONENTS
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Primary Test Circuit - Diagram
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Primary Test Circuit - Diagram
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Primary Test Circuit - Diagram
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COMPONENT CORRELATION
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General Heat Exchanger Model

• Counter Flow

• Liquid Metal (Mixed, Shell-side)

• Gas (Un-Mixed, Tube Side)

• Divided axially into “n” nodes

• Assumptions

– End effects neglected

– Accounts for convection 
between fluids and structure as 
well as radiative loss

– Conductive thermal resistance 
perpendicular to flow direction is 
negligible

– All Structure and Fluid
elements have thermal mass
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Matlab™ Implementation

• Structured for quick 
comprehension

• Modular and scalable

• Simulated “Test Points” 
routed to clarify program 
flow

• Calls C functions fitting 
fluid equations of state

• Calls C functions of 
various heat transfer 
correlations
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Correlation In Isolation

TNaK,IN

TNaK,OUT

PNaK,OUT

TGN2,IN

PGN2,IN

mfGN2

TGN2,OUT

PGN2,OUT

Existing PTC Test Points Isolated Model
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Correlation Results
Variable Value Description

LMGasHX_ff_adj_1 1 Correction multiplier for local NaK friction factors

LMGasHX_Nu_adj_1 1 Correction multiplier for local NaK heat transfer coefficients

LMGasHX_ff_adj_2 95 Correction multiplier for local GN2 friction factors

LMGasHX_Nu_adj_2 0.85 Correction multiplier for local GN2 heat transfer coefficients
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Correlation Results
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SIMULATION RESULTS
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Primary Test Circuit - Diagram
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CONCLUSIONS
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Conclusions - Modeling

A numerical analysis should be carried out on 
the current RPCSIM methods to understand 
the accuracy and stability of the code.

The correlation functions used need to be 
expanded to include more specific 
correlations such as ones intended for fuel-
pin geometries, and to handle varying flow 
regimes.

Current property-fitting equations should be 
replaced with equations of state suitable to 
the fluid regimes modeled.

Individual components should be validated 
using more detailed numerical analysis.

NUMERICS

CORRELATIONS

EQUATIONS OF 
STATE

VALIDATION
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ADDITIONAL SLIDES

Improvements to RPCSIM Model Components
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ALIP

Correlation of RPC-SIM Models Using MSFC Primary Test 
Circuit Data
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- Data correlated to 
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cooling flow along 
ALIP (unmeasured by 
experiment)



RX 

Simulator

Correlation of RPC-SIM Models Using MSFC Primary Test 
Circuit Data
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Free Piston 

Stirling Engines

Correlation of RPC-SIM Models Using MSFC Primary Test 
Circuit Data
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Accumulator

Correlation of RPC-SIM Models Using MSFC Primary Test 
Circuit Data
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- Inadequate instrumentation 
for detailed analysis of 
accumulator, though data 
indicates that system was not 
filled enough for liquid to reach 
beyond the riser, into the 
accumulator volume.



Piping System

- Inadequate 
instrumentation for 
detailed analysis of 
losses through system 
piping.

Correlation of RPC-SIM Models Using MSFC Primary Test 
Circuit Data
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