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Overview

One Usage Scenario

• Data scattered on the web
• Interoperability is essential
• Performance not vital

Our Usage Scenario

• Put data all on one system
• Data is graph-like, doesn’t fit relational 
model
• Complex Queries
• Performance is imperative



Approaches

• Common Thread to Previous Approaches

– Commodity Hardware

– Distributed Memory 

– MapReduce

• Our Claim

– For performance on Semantic Web applications, more specialized 
hardware/software is needed

• Shared memory

– 1-32 TB range sufficient for many data sets

• Latency-tolerant processor or algorithm design



Multithreading 

Many threads per processor core; 
small thread state

Thread-level context switch at every 
instruction cycle
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Keeping the Bottlenecks Saturated

• Conventional processor • Multithreaded processor
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XMT’s Ideal Application Characteristics

Huge data structures
Too large for one node of conventional system

No locality of reference
No way to partition data structure so that most 
references are local

But lots of parallelism

i.e., great big ugly graphs
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Summary of Results 

• Dictionary Encoding

– 2.4-3.3 times faster

• RDFS Closure

– 6.0-9.0 times faster

• Query

– 2.1- 28 times faster



Dictionary Encoding

<http://www.Department12.University0.edu/GraduateStudent9> 
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor> 
<http://www.Department12.University0.edu/FullProfessor6> .

<http://www.Department12.University0.edu/GraduateStudent9> 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#ResearchAssistant> .
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Dictionary Encoding on the XMT

…
<http://www.Departmen
t12.University0.edu/Gra
duateStudent9> 
<http://www.lehigh.edu/
~zhp2/2004/0401/univ-
bench.owl#advisor> 
<http://www.Departmen
t12.University0.edu/Full
Professor6> .

<http://www.Department
12.University0.edu/Grad
uateStudent9> 
<http://www.w3.org/199
9/02/22-rdf-syntax-
ns#type> 
<http://www.lehigh.edu/
~zhp2/2004/0401/univ-
bench.owl#Researh>

<http://www.Departmen
t12.University0.edu/Gra
duateStudent9> 
<http://www.lehigh.edu/
~zhp2/2004/0401/univ-
bench.owl#advisor> 
<http://www.Departmen
t12.University0.edu/Full
Professor6> .

…
34 89 120

12993 994 01233

949494 192 1999103

49687603 89 2240583

385722 82928 58347

39402958  8 3828

3945079 888 2834

92835 83615 1123

9 8472 8272

492 493 383

838127 7 6

38 218 18

125 836 937

372 848 99992822

38 484 28

4949 29 1935

418 494 958

3810 28 1993
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Dictionary Encoding: Algorithm

1. Tokenize ntriple/nquad formatted files

2. Create list of new elements by referencing against existing hash table

3. Insert list of new elements into temporary hash table with a key of 1

4. Assign contiguous set of integer ids to new keys in range 

[current_max + 1, current_max + num_new_keys]

5. Add new keys to end of consolidated character array

6. Resize forward and reverse maps if necessary based on current 

capacity and num_new_keys + num_current_keys

7. Go through tokenized file, and assign integer ids and add new 

integer ids to forward and reverse maps



Dictionary Encoding: Total Time



Dictionary Encoding: Rates



Dictionary Encoding: Comparison

Data Set Raw Size(GB) Compression 
Ratio

Size 
Dictionary on 
Disk (GB)

Size 
Dictionary in
Memory (GB)

BTC2009 247 4.34 31.1 44.8

DBPedia 36.5 3.2 5.65 9.15

LUBM 185 4.37 17.7 31.7

Uniprot 250 3.94 19.6 33.2

Data Set MapReduce
Rate (MB/s)

XMT Rate 
(MB/s)

Improvement

DBPedia 36.4 120 3.29

LUBM 67.1 162 2.41

Uniprot 48.8 161 3.3

Comparison to Urbani et al. “Massive Semantic Web data compression with MapReduce.” 2010



RDF Schema (RDFS) Closure

• RDFS allows definition of basic 

ontological elements

• Inference is the application of 

ontological rules to data

• Inference can be done at query 

execution time, or as a 

preprocessing step

– We materialize the inferred 
triples in memory 

• We implement closure on only 

the “interesting subset,” i.e. rules 

requiring two antecedents:

– Subclass inheritance and 
transitivity

– Subproperty inheritance and 
transitivity

– Domain

– Range



Example: Subproperty Inheritance

Doctoral 
Degree 
From

Degree From

Professor 1

Doctoral 
Degree 
From

Degree 
From

Subproperty
Of



Example: Subclass Transitivity and Inheritance

Mammal Vertebrate
SubclassOf SubclassOf

Animal

SubclassOf

TypeOf Mammal

Cow

VertebrateTypeOf

TypeOf Animal



The RDFS Closure Algorithm

• Read arbitrary triple store in integer format from disk

• Create and populate ontology data structures

– Create and populate multimaps

– Apply transitivity rules rdfs5 (subproperty) and rdfs11 (subclass)

– Replicate multimap data structures

• Insert original triples into hash table

• Add matching triples to queues

• rdfs7 Subproperty Inheritance

– Add matching triples to domain and range queues

• rdfs2 Domain

– Add matching triples to subclass queue

• rdfs3 Range

– Add matching triples to subclass queue

• rdfs9 Subclass Inheritance



RDFS Closure Results on LUBM

Approach With I/O Without I/O

MPI1 6.0 6.8

WebPIE2 9.0 10.6

1Weaver and Hendler.  “Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of 
Triples.” ISWC 2009
2Urbani et al. “OWL Reasoning with WebPIE Calculating the Closure of 100 Billion Triples.” ESWC 2010

Improvement 
Factor



Sprinkle SPARQL

• Sprinkle SPARQL presented in ESWC paper

• Paucity of scalability results in literature

– 10 nodes running MapReduce

– 1 node running BigOWLIM

Note: MapReduce method did not 
operate on inferred set.  They 
hand-encoded expanded queries 
to catch the possibilities.



LUBM Query 1

SELECT ?X

WHERE

{?X rdf:type ub:GraduateStudent}

{?X ub:takesCourse

http:www.Department0.University0.edu/GraduateCourse0}

All the Graduate 
Students

All the Students 
that took a 
particular course

20,157,119 matches 4 matches



Sprinkle phase

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• Create an array the same size as the order of the graph for each 

variable in each BGP

• Process each BGP

– If node fulfills constraint of BGP, increment counter in associated 
array for the variable

• The point: Constrain the problem before we start joining



Sprinkle phase

0

All the Students 
that took a 
particular course

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0



Sprinkle phase

1

All the Students 
that took a 
particular course

2 0 1 0 1 1 0 0 1 0 1 1 0 2 0 1 0 1 1

All the Graduate 
Students



Future Work / Conclusions

• XMT shows promise for performance driven Semantic Web 

applications

• Need better benchmarks, especially for querying

• Investigate other shared-memory architectures

– See if we can obtain software-level latency tolerance

• Sprinkle SPARQL

– Extensions to handle variable in predicate position

– Perform simple queries more efficiently

– Formal analysis

• Expand inference work to OWL Horst


