
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

ESWC 2011: High-performance Computing Applied
to Semantic Databases

Eric Goodman (Sandia National Laboratories)

Edward Jimenez (Sandia National Laboratories)

David Mizell (Cray Inc.)

Sinan al-Saffar (Pacific Northwest National Laboratories)

Bob Adolf (Pacific Northwest National Laboratories)

David Haglin (Pacific Northwest National Laboratories)

SAND2011-3429C

Overview

One Usage Scenario

• Data scattered on the web
• Interoperability is essential
• Performance not vital

Our Usage Scenario

• Put data all on one system
• Data is graph-like, doesn’t fit relational
model
• Complex Queries
• Performance is imperative

Approaches

• Common Thread to Previous Approaches

– Commodity Hardware

– Distributed Memory

– MapReduce

• Our Claim

– For performance on Semantic Web applications, more specialized
hardware/software is needed

• Shared memory

– 1-32 TB range sufficient for many data sets

• Latency-tolerant processor or algorithm design

Multithreading

Many threads per processor core;
small thread state

Thread-level context switch at every
instruction cycle

Slide 4

registers

program
counter

ALU

conventional
processor

multithreaded processor

“stream”

Keeping the Bottlenecks Saturated

• Conventional processor • Multithreaded processor

Slide 5

When one or a few
threads stall,

memory/network
bandwidth become idle

Although some
threads stall, others

keep issuing
local/remote memory

requests, keeping
most precious
resources busy

network

memory
memory

network

XMT’s Ideal Application Characteristics

Huge data structures
Too large for one node of conventional system

No locality of reference
No way to partition data structure so that most
references are local

But lots of parallelism

i.e., great big ugly graphs

Slide 6

Summary of Results

• Dictionary Encoding

– 2.4-3.3 times faster

• RDFS Closure

– 6.0-9.0 times faster

• Query

– 2.1- 28 times faster

Dictionary Encoding

<http://www.Department12.University0.edu/GraduateStudent9>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#advisor>
<http://www.Department12.University0.edu/FullProfessor6> .

<http://www.Department12.University0.edu/GraduateStudent9>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#ResearchAssistant> .

1 2 3

1 4 5

8

Dictionary Encoding on the XMT

…
<http://www.Departmen
t12.University0.edu/Gra
duateStudent9>
<http://www.lehigh.edu/
~zhp2/2004/0401/univ-
bench.owl#advisor>
<http://www.Departmen
t12.University0.edu/Full
Professor6> .

<http://www.Department
12.University0.edu/Grad
uateStudent9>
<http://www.w3.org/199
9/02/22-rdf-syntax-
ns#type>
<http://www.lehigh.edu/
~zhp2/2004/0401/univ-
bench.owl#Researh>

<http://www.Departmen
t12.University0.edu/Gra
duateStudent9>
<http://www.lehigh.edu/
~zhp2/2004/0401/univ-
bench.owl#advisor>
<http://www.Departmen
t12.University0.edu/Full
Professor6> .

…
34 89 120

12993 994 01233

949494 192 1999103

49687603 89 2240583

385722 82928 58347

39402958 8 3828

3945079 888 2834

92835 83615 1123

9 8472 8272

492 493 383

838127 7 6

38 218 18

125 836 937

372 848 99992822

38 484 28

4949 29 1935

418 494 958

3810 28 1993

9

Dictionary Encoding: Algorithm

1. Tokenize ntriple/nquad formatted files

2. Create list of new elements by referencing against existing hash table

3. Insert list of new elements into temporary hash table with a key of 1

4. Assign contiguous set of integer ids to new keys in range

[current_max + 1, current_max + num_new_keys]

5. Add new keys to end of consolidated character array

6. Resize forward and reverse maps if necessary based on current

capacity and num_new_keys + num_current_keys

7. Go through tokenized file, and assign integer ids and add new

integer ids to forward and reverse maps

Dictionary Encoding: Total Time

Dictionary Encoding: Rates

Dictionary Encoding: Comparison

Data Set Raw Size(GB) Compression
Ratio

Size
Dictionary on
Disk (GB)

Size
Dictionary in
Memory (GB)

BTC2009 247 4.34 31.1 44.8

DBPedia 36.5 3.2 5.65 9.15

LUBM 185 4.37 17.7 31.7

Uniprot 250 3.94 19.6 33.2

Data Set MapReduce
Rate (MB/s)

XMT Rate
(MB/s)

Improvement

DBPedia 36.4 120 3.29

LUBM 67.1 162 2.41

Uniprot 48.8 161 3.3

Comparison to Urbani et al. “Massive Semantic Web data compression with MapReduce.” 2010

RDF Schema (RDFS) Closure

• RDFS allows definition of basic

ontological elements

• Inference is the application of

ontological rules to data

• Inference can be done at query

execution time, or as a

preprocessing step

– We materialize the inferred
triples in memory

• We implement closure on only

the “interesting subset,” i.e. rules

requiring two antecedents:

– Subclass inheritance and
transitivity

– Subproperty inheritance and
transitivity

– Domain

– Range

Example: Subproperty Inheritance

Doctoral
Degree
From

Degree From

Professor 1

Doctoral
Degree
From

Degree
From

Subproperty
Of

Example: Subclass Transitivity and Inheritance

Mammal Vertebrate
SubclassOf SubclassOf

Animal

SubclassOf

TypeOf Mammal

Cow

VertebrateTypeOf

TypeOf Animal

The RDFS Closure Algorithm

• Read arbitrary triple store in integer format from disk

• Create and populate ontology data structures

– Create and populate multimaps

– Apply transitivity rules rdfs5 (subproperty) and rdfs11 (subclass)

– Replicate multimap data structures

• Insert original triples into hash table

• Add matching triples to queues

• rdfs7 Subproperty Inheritance

– Add matching triples to domain and range queues

• rdfs2 Domain

– Add matching triples to subclass queue

• rdfs3 Range

– Add matching triples to subclass queue

• rdfs9 Subclass Inheritance

RDFS Closure Results on LUBM

Approach With I/O Without I/O

MPI1 6.0 6.8

WebPIE2 9.0 10.6

1Weaver and Hendler. “Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of
Triples.” ISWC 2009
2Urbani et al. “OWL Reasoning with WebPIE Calculating the Closure of 100 Billion Triples.” ESWC 2010

Improvement
Factor

Sprinkle SPARQL

• Sprinkle SPARQL presented in ESWC paper

• Paucity of scalability results in literature

– 10 nodes running MapReduce

– 1 node running BigOWLIM

Note: MapReduce method did not
operate on inferred set. They
hand-encoded expanded queries
to catch the possibilities.

LUBM Query 1

SELECT ?X

WHERE

{?X rdf:type ub:GraduateStudent}

{?X ub:takesCourse

http:www.Department0.University0.edu/GraduateCourse0}

All the Graduate
Students

All the Students
that took a
particular course

20,157,119 matches 4 matches

Sprinkle phase

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• Create an array the same size as the order of the graph for each

variable in each BGP

• Process each BGP

– If node fulfills constraint of BGP, increment counter in associated
array for the variable

• The point: Constrain the problem before we start joining

Sprinkle phase

0

All the Students
that took a
particular course

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Sprinkle phase

1

All the Students
that took a
particular course

2 0 1 0 1 1 0 0 1 0 1 1 0 2 0 1 0 1 1

All the Graduate
Students

Future Work / Conclusions

• XMT shows promise for performance driven Semantic Web

applications

• Need better benchmarks, especially for querying

• Investigate other shared-memory architectures

– See if we can obtain software-level latency tolerance

• Sprinkle SPARQL

– Extensions to handle variable in predicate position

– Perform simple queries more efficiently

– Formal analysis

• Expand inference work to OWL Horst

