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Sampling:  Why  &  What’s  Good?

Problem:  generate  a  M  dimensional  sample  design  with  N
points  at  which  to  evaluate  a  simulator

Why  sample  simulator  input?
• To  calculate  statistics  of  outputs  with  uncertain  inputs

• To  optimize  e.g.,  guess  several  times  and  pick  best  guess
• To  construct  meta-models  (fast  surrogates  for  slow  simulators)

What  qualities  do  we  want  in  a  sample  design?
• Design  should  be  space-filling
• Low-dimensional  projections of  points  should  be  well  spaced
• Sample  point  locations  should  be  uncorrelated  with  each  other
• Regularity  is  bad,  leads  to  biased  results

• Nesting: want  a  SEQUENCE  of  designs  that  inherit  all  points  
from  earlier  members  in  the  sequence



Sample Design  Quality  Metrics

• Lots  of  metrics;  fortunately  one  of  them  is  almost  always  
the  most  important 

• “Discrepancy” (some  norm  of  difference  between  points  
per  sub-volume  and  uniform  density): lower is  better
– “Koksma-Hlawka-like  inequality”  bounds  error  in  a  computed  

mean  in  terms  of  discrepancy

– Centered L2  Discrepancy (usually  most  important  metric) 

– Wrap-Around  L2  Discrepancy (important  for  periodic  variables) 

• Unfortunately,  discrepancy  is  expensive  (O(M N2) ops)  to 
calculate  for  designs  with  large  numbers  of  points, N, so...

• Can’t  guess  a  large  number  of  designs  &  pick  the  best

• WARNING: Regularity is easy way to get low discrepancy



Sample Design  Quality  Metrics
Other  “partial”  metrics

• “Coverage” (fraction of  hypercube's volume  filled  by   
convex  hull  of points,  VERY  expensive  for  even  moderately 
high  dimensions): higher coverage  is  better

• Condition number  of  sample  design's  correlation  matrix 
(can  be  evaluated  in  O(M2N)  ops):  lower  is  better

• “t” quality  metric  when design  is  considered to  be  a  
tms-net (quasi-Monte  Carlo;  metric  moderately  expensive 
O((m-t+1+s)Cs s bm)  ops  where  s=M,  bm=N): lower  “t”  is  
better

• NEW!  degree of Binning  Non-Optimality (can  be  
evaluated  in  O(N log(N))  time):  lower is  better



“Binning Optimality”
a New  Space-filling  Metric

A  sample  design  is  “Binning  Optimal” (in  base 2) if

Short  answer: 
Every  sub-bin  that  should  contain  a  point  does

Long answer:

• When you  recursively subdivide   
M-dimensional  hypercube into  2M

disjoint  congruent  sub-cube  bins,   
all  bins  of  same  generation    
contain  same  number  of  points

• The  above  must  hold  true  until  
bins  are so  small  that they  each 
contain  either  0 or  1  points



• Generate  bin  ids  as 
indices  into  a  Morton 
space-filling  curve,  also 
known  as  a  “Z-curve” 
O(N log(N))+O(N M)  work

• Quicksort bin  ids 
O(N log(N))  work 

• Tally  bins  ids: O(N) work

“Binning Optimality”
Can  Be  Evaluated  in  O(N log(N))  Ops

• A  FFT  of  difference  of  sequential  sorted  Z-curve 
bin  Ids  reveals  regularity  (cyclic  patterns) 



• Form  of  stratified  random  sampling  
that  converges  with  fewer  points  
than  Monte  Carlo  Sampling

• Each  column  contains  1  point

• Each  row  contains  1  point

• Quality of  design  depends  on 
pairing  of  dimensions  used  to  
form  points  (tough  problem) 

• Cell-centered  LHS  with  randomly 
paired  dimensions

– gets  1D  projections  “perfect”

– Is  NOT space-filling

Latin Hypercube  Sampling  (LHS)

This  is  not
Binning  Optimal



Jittered  Sampling

• Jittered Sampling = Tensor  product  sampling + random  offset

• Better 1D  projections  than Tensor  Product  sampling

• Worse  1D  projections  than  LHS

• Each cell  contains a  point  space-filling as  cell  size  0

These 
are 

Binning

Optimal



Binning  Optimal  Symmetric  Latin
Hypercube  Sampling  (BOSLHS)

• Gets  1D  projections  right

• Is  space-filling

• Combines  most  of  best  features  
of  LHS  and  Jittered  sampling

• Design  quality  is  better  than 
regular  LHS  or  Jittered  sampling 

• Is  very fast:  generated  Nested
BOSLHS  M=8  dim,  N=216=65536  
points  design  in  8.21  seconds 

• Currently  limited  to  M=2p < 16 
dimensions  (low  degree  of  binning 
non-optimality  for  non  integer  p, 
working  on  extending  to  M > 16)



Nested  BOSLHS  Algorithm 

1. Start  with  (lower  Z  half  of) 
small  BOSLHS  design

2. Choose  new  set  of  bins  that 
are  maximally  spaced  from  
old  bins

3. Generate  a  new  BOSLHS     
by  randomly  filling  new  bins   
1  dimension  at  a  time

4. Combine  old  &  new  designs,  
split  each  row/column/etc.  in 
half,  &  randomly  send  each  
half  1  of  duplicate  coordinates

5. Repeat  steps  2  through  4  as 
many  times  as  desired.



Higher  Dimensions  Are  More  Complex

• Need  log2(N)/1  bits  to  uniquely  identify  each  1D  bin

• Binning  Optimality  in  M-D  sets  first  log2(N)/M  bits  per 
dimension (BPD)

• BOSLHS  matches  first  log2(N)/M  bits  of  1D  designs  
to    M-D  design;  “random”  matching  of  remaining  bits  
(step  3  of  previous  slide)

• But  can  use  Binning  Optimality  in  subsets  of  
dimensions  to  match  bits  log2(N)/M+1log2(N)/2   

• First  cut:  randomly  match  first  log2(N)/M  BPD  of  M/2  
2D  BOSLHS  designs  to  M-D  design



Higher  Dimensions  Are  More  Complex

•Bit   #  ceil(log2(N)/M)  “tricky”  when  log2(N)/M  not  
integer

•Bins/Octants  for  that  bit  must  be  max  spaced  in  
M-D;   solution  is  endpoints  of   max  spaced  rotated  
orthogonal  axes  (see next slide),  but  getting max  
spaced  subsets  of  dimensions  is  “trickier”

•Nesting  makes  bit  #  ceil(log2(N)/M) “trickier”

•Ensuring  symmetry  makes  things “trickier”



• Generating  list  is  simple  for  up  to  M=8  dimensions.
It’s  difficult  beyond  that  BUT…

• It’s  similar  to  digital  communication  problems

• Collaborator,  Professor  George  N.  Karystinos  of   
Technical  University  of  Crete  (Department  of  Electronic  
&  Computer  Engineering),  found  a  group  theory  solution  
for  arbitrarily  large  dimensions

• But… memory  requirements  prevent  even  listing  the 
octants  for  M > 32

• Working  on  generating  maximally  spaced  partial  list

Higher  Dimensions  Need  a  Maximally  
Spaced  List  of  Octants



Results:  Eyeball  Metric  M=4D

• Plotted all 6 combinations of 2 out of M=4 dimensions
• BOSLHS is visibly space-filling!

N=128 N=4096N=1024



Results:  Centered L2  Discrepancy
(Lower  is  Better) 

10.2
6

Plots are for average of 40 random designs



Results:  Sobol Sequence  Has 
Lower  Discrepancy  But  Is  Regular

10.2
6

Regularity  in  sample  designs  results  in  biased  statistics



10.2
6

Results:  What  Complete  Irregularity 
(Monte  Carlo  Sampling)  Looks  Like



10.2
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Results:  Nested BOSLHS  Is  Not  Regular



Results

• BOSLHS  has  low  discrepancy  without  being  regular

• BOSLHS  also  scores  well  in  other  metrics:  it  has  high 
“coverage,”  low  correlations  between  dimensions,  and  a  
low  (t,m,s)-net  rating  

• VERY fast: MATLAB  generated  a  N=216 point  M=8 
dimensional space-filling  nested BOSLHS  design  in  
~8.21  seconds  on an  Intel  2.53  GHz  processor 
(algorithms  reported  in  literature  take  “minutes”  for      
non-nested space-filling  N = 100  point  designs) 

• By comparison,  it  took  ~298.2  seconds  (O(N2M)  ops)    
to  evaluate  discrepancy  for  same  design



Conclusions

•Defined  new  space-filling  metric  “Binning  
Optimality” that  evaluates  in  O(N log(N))  time

•Found  related  way  to  detect  regularity  in  
sample  designs

•Developed  fast  algorithm  for  Nested Binning  
Optimal  Symmetric  Latin  Hypercube  
Sampling  (BOSLHS)  that

– is also Binning Optimal in some 2D subsets 

–combines  best  features  of  LHS  &  Jittered  
Sampling



• Current  BOSLHS  algorithm  is  space-filling  in  full  M 
dimensional  space  and  1  dimensional  projections 
and some 2D subsets.  Want  to  be  space-filling  in 
more  2D  and  other  larger  subsets of  dimensions.

• Extension  to  larger ( > 16)  and  arbitrary  (non power  
of  2)  numbers  of  dimensions.

• How  well  does  BOSLHS  do  in  other  design  quality  
metrics?

• Better  numerical  quantification  of  “regularity”

• ?Induce correlations between dimensions?

Ongoing  Work
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4-D  Example

• Difference  in  4  dimensions  is  in 
choosing  maximally  spaced  bins

• In  2D,  only  22=4  sub-bins  per  level,  
the  2*2=4  end  points  of  1 
“orientation”  (rotated  set  of  
orthogonal  axes)
– If  1 point  in  bin,  new  sub-bin  is 

opposite  old  one

– If  2  points  (1 axis),  2  new  sub-bins 
are  other  axis

– Then  go 1  bin  deeper

• In 4D, 24=16  sub-bins  per  level,  2 
orientations  with  2*4=8  bins  each
– After  first  axis,  randomly  select  order  

of  other  axes  in  same  orientation

– Then  choose  other  orientation

– Then  go  1  bin  deeper



Results:  Centered L2  Discrepancy
(Lower  is  Better) 

10.2
6

Plots  are  for  average  of  40  random  designs



Results:  Wrap  Around  L2  
Discrepancy  (Lower  is  Better) 

10.2
6

Plots  are  for  average  of  40  random  designs



Results:  Eyeball  Metric  M=4D

• Plotted  all  6  combinations  of  2  out  of  M=4  dimensions 
• BOSLHS  is  visibly  space-filling!

N = 128 N = 4096N = 1024
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Results:  Nested  BOSLHS  Is  Not  Regular



Compared  To  Original,  Nested  BOSLHS 
Less  Regular  But  Higher  Discrepancy

10.2
6



4-D  Example

• Difference  in  4  dimensions  is  in 
choosing  maximally  spaced  bins

• In  2D,  only  22=4  sub-bins  per  level,  
the  2*2=4  end  points  of  1 
“orientation”  (rotated  set  of  
orthogonal  axes)
– If  1 point  in  bin,  new  sub-bin  is 

opposite  old  one

– If  2  points  (1 axis),  2  new  sub-bins 
are  other  axis

– Then  go 1  bin  deeper

• In 4D, 24=16  sub-bins  per  level,  2 
orientations  with  2*4=8  bins  each
– After  first  axis,  randomly  select  order  

of  other  axes  in  same  orientation

– Then  choose  other  orientation

– Then  go  1  bin  deeper



Results: Coverage 
(higher is better) 



Results: Condition # of Correlation
Matrix (lower is better) 



Results: (t,m,s)-net, “t” quality 
metric (lower is better) 



O(N log(N))  BOSLHS Algorithm

1. Start with n = 2M points that are well distributed in (0, 1)M.

2. Select n/2 of the coordinates in each dimension other than 
the rst to negate in such a way as to obtain n points that 
are well distributed in (0, 1) ⊗ (−1, 1)M −1.

3. Reflect the current n points through the origin to create n 
additional mirror points; this ensures that the design is 
symmetric.

4. Translate the 2n points from (−1, 1)M to (0, 2)M , scale 
them to (0, 1)M , and then set n = 2n.

5. Repeat steps 2 through 4 until the desired number of 
points has been obtained, i.e. until n = N.



O(N log(N))  BOSLHS Algorithm
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O(N log(N))  BOSLHS Algorithm

The tough part is step 2

Select n/2 of the coordinates in each dimension other 
than the rst to negate in such a way as to obtain n 
points that are well distributed in (0, 1) ⊗ (−1, 1)M −1 .

The easy (fast) answer is to recast the problem...
• Don't try change signs of dimensions individually
• Send nearby points to octants that are far apart

The Z-order quicksort will put nearby points in 
sequential order in O(N log(N)) ops

We just need a listing of octants in maximally 
spaced order


