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#‘ Sampling: Why & What’s Good?

Problem: generate a M dimensional sample design with N
points at which to evaluate a simulator

Why sample simulator input?

* To calculate statistics of outputs with uncertain inputs

 To optimize e.g., guess several times and pick best guess

* To construct meta-models (fast surrogates for slow simulators)

What qualities do we want in a sample design?
* Design should be space-filling
 Low-dimensional projections of points should be well spaced
« Sample point locations should be uncorrelated with each other
* Regularity is bad, leads to biased results
* Nesting: want a SEQUENCE of designs that inherit all points
from earlier members in the sequence
@lﬁa;&lﬁf%ﬂes
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# Sample Design Quality Metrics

* Lots of metrics; fortunately one of them is almost always
the most important

* “Discrepancy” (some norm of difference between points
per sub-volume and uniform density): lower is better

— “Koksma-Hlawka-like inequality” bounds error in a computed
mean in terms of discrepancy

— Centered L2 Discrepancy (usually most important metric)
— Wrap-Around L2 Discrepancy (important for periodic variables)

« Unfortunately, discrepancy is expensive (O(M N2) ops) to
calculate for designs with large numbers of points, N, so...

«Can’t guess a large number of designs & pick the best

« WARNING: Regularity is easy way to get low discrepancy
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}‘ Sample Design Quality Metrics

Other “partial” metrics

« “Coverage” (fraction of hypercube's volume filled by
convex hull of points, VERY expensive for even moderately
high dimensions): higher coverage is better

« Condition number of sample design's correlation matrix
(can be evaluated in O(M?N) ops): lower is better

« “t” quality metric when design Is considered to be a
tms-net (quasi-Monte Carlo; metric moderately expensive
O((m-t+1+5)Cs S ™) ops where s=M, b™=N): lower “t” is
better

* NEW! degree of Binning Non-Optimality (can be
evaluated in O(N log(N)) time): lower is better
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“Binning Optimality”

A
| a New Space-filling Metric

A sample design is “Binning Optimal” (in base 2) if

Short answer:
Every sub-bin that should contain a point does

this is Binning Optimal
Long answer: 1 ; ; —
*When you recursively subdivide |
M-dimensional hypercube into 2M ™.
disjoint congruent sub-cube bins, | -«
all bins of same generation |
contain same number of points
 The above must hold true until ) )
bins are so small that they each 0, -
contain either 0 or 1 points X
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“Binning Optimality”

‘ Can Be Evaluated in O(N log(N)) Ops

« Generate bin ids as
indices into a Morton
space-filling curve, also
known as a “Z-curve’
O(N log(N))+O(N M) work

* Quicksort bin ids
O(N log(N)) work

« Tally bins ids: O(N) work

AN

NN
\

AN\

=

* A FFT of difference of sequential sorted Z-curve
bin Ids reveals regularity (cyclic patterns)
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} Latin Hypercube Sampling (LHS)

 Form of stratified random sampling
that converges with fewer points
than Monte Carlo Sampling

« Each column contains 1 point
« Each row contains 1 point

* Quality of design depends on
pairing of dimensions used to
form points (tough problem)

* Cell-centered LHS with randomly
paired dimensions
— gets 1D projections “perfect”
—Is NOT space-filling

1

Latin Hypercube Sampling

0 0.25 0.5 0.75 1

X
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} Jittered Sampling

e Jittered Sampling = Tensor product sampling + random offset
* Better 1D projections than Tensor Product sampling
- Worse 1D projections than LHS

« Each cell contains a point = space-filling as cell size > 0
Tensor Product Sampling

Jittered Sampling
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% Binning Optimal Symmetric Latin

Hypercube Sampling (BOSLHS)

* Gets 1D projections right 1 BOSLHS

* Is space-filling S : |
‘ComblneS mOSt Of beSt features 075: .................................................. ................... . .................... "
of LHS and Jittered sampling o 5 |
.Design quality is better than ~“ - _____________ - __________________ _
regular LHS or Jittered sampling || |,

.|s very fast: generated Nested |- . -
BOSLHS M=8 dim, N=2'6=65536 |.| | ° o

points design in 8.21 seconds NP PP i S

* Currently limited to M=2P < 16 : X 1

dimensions (low degree of binning
non-optimality for non integer p,
working on extending to M > 16) @ﬁ:{‘iﬂ‘,‘;‘m
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4" Nested BOSLHS Algorithm

Start with (lower Z half of)
small BOSLHS design

. Choose new set of bins that

are maximally spaced from
old bins

. Generate a new BOSLHS

N

by randomly filling new bins
1 dimension at a time

. Combine old & new designs,

split each row/column/etc. in
half, & randomly send each
half 1 of duplicate coordinates

. Repeat steps 2 through 4 as

many times as desired.

1

Nested BOSLHS
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#—Iigher Dimensions Are More Complex

*Need log2(N)/1 bits to uniquely identify each 1D bin

*Binning Optimality in M-D sets first log2(N)/M bits per
dimension (BPD)

«BOSLHS matches first log2(N)/M bits of 1D designs
to M-D design; “random” matching of remaining bits
(step 3 of previous slide)

*But can use Binning Optimality in subsets of
dimensions to match bits log2(N)/M+1—log2(N)/2

*First cut: randomly match first log2(N))M BPD of M/2
2D BOSLHS designs to M-D design
@ﬁg’ggiréllal_
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#—Iigher Dimensions Are More Complex

*Bit # ceil(log2(N)/M) “tricky” when log2(N)/M not
integer

*Bins/Octants for that bit must be max spaced in
M-D; solution is endpoints of max spaced rotated
orthogonal axes (see next slide), but getting max
spaced subsets of dimensions is “trickier”

*Nesting makes bit # ceil(log2(N)/M) “trickier”

*Ensuring symmetry makes things “trickier”
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igher Dimensions Need a Maximally
Spaced List of Octants

;’.

* Generating list is simple for up to M=8 dimensions.
It's difficult beyond that BUT...

* It's similar to digital communication problems

« Collaborator, Professor George N. Karystinos of
Technical University of Crete (Department of Electronic
& Computer Engineering), found a group theory solution
for arbitrarily large dimensions

« But... memory requirements prevent even listing the
octants for M > 32

 Working on generating maximally spaced partial list
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Results: Eyeball Metric M=4D

N=128 N=1024 N=4096

2D-Subset Nested BOSLHS M=4 N=128/4096 CDQ(X)=0.025565 2D-Subset Nested BOSLHS M=4 N=1024/4096 CDQ(X)=0.006744 2D-Subset Nested BOSLHS M=4 N=4096/4096 CDZ(X)=0.00318505
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* Plotted all 6 combinations of 2 out of M=4 dimensions
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"%esults Centered L2 Discrepancy

(Lower is Better)

-Centered L2 Discrepancy M=4 Centered L2 Discrepancy M=4
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= 'Results: Sobol Sequence Has
Lower Discrepancy But Is Regular

Sobol Sequence M=4 N=256 CD2(X)=0.00997676
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Regularity in sample designs results in biased statistics @ﬁ:{‘iﬂ‘,‘;‘m
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Results: What Complete Irregularity
(Monte Carlo Sampling) Looks Like

Monte Carlo Sampling M=4 N=256 CD2(X)=0.0447803
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esults: Nested BOSLHS Is Not Regular

2D-Subset Nested BOSLHS M=4 N=256/4096 CD2(X)=0.0159709
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#‘ Results

« BOSLHS has low discrepancy without being regular

« BOSLHS also scores well in other metrics: it has high

“‘coverage,” low correlations between dimensions, and a
low (t,m,s)-net rating

« VERY fast: MATLAB generated a N=2'° point M=8
dimensional space-filling nested BOSLHS design in
~8.21 seconds on an Intel 2.53 GHz processor
(algorithms reported in literature take “minutes” for
non-nested space-filling N =100 point designs)

« By comparison, it took ~298.2 seconds (O(N?M) ops)
to evaluate discrepancy for same design

Sandia
National
Laboratories



# Conclusions

Defined new space-filling metric “Binning
Optimality” that evaluates in O(N log(N)) time

Found related way to detect regularity In
sample designs

*Developed fast algorithm for Nested Binning
Optimal Symmetric Latin Hypercube
Sampling (BOSLHS) that

— Is also Binning Optimal in some 2D subsets

—combines best features of LHS & Jittered
Sampling @ﬁ:t"iﬂ‘:a.
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# Ongoing Work

* Current BOSLHS algorithm is space-filling in full M
dimensional space and 1 dimensional projections
and some 2D subsets. Want to be space-filling in
more 2D and other larger subsets of dimensions.

« Extension to larger (> 16) and arbitrary (non power
of 2) numbers of dimensions.

« How well does BOSLHS do in other design quality
metrics?

« Better numerical quantification of “regularity”

 ?Induce correlations between dimensions?
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4-D Example

e Difference in 4 dimensions is in
choosing maximally spaced bins

« In 2D, only 22=4 sub-bins per level,
the 2*2=4 end points of 1
“orientation” (rotated set of
orthogonal axes)

—If 1 point in bin, new sub-bin is
opposite old one

—If 2 points (1 axis), 2 new sub-bins
are other axis

—Then go 1 bin deeper

In 4D, 24=16 sub-bins per level, 2

orientations with 2*4=8 bins each

— After first axis, randomly select order
of other axes in same orientation

— Then choose other orientation

—Then go 1 bin deeper

~
>
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"%esults Centered L2 Discrepancy

(Lower is Better)

.Centered L2 Discrepancy M=4 _Centered L2 Discrepancy M=8
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el

Results: Wrap Around L2
Discrepancy (Lower is Better)

- Wrap Around L2 Discrepancy, M=4D
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Results: Eyeball Metric M=4D

=128

Nested BOSLHS N=128/4096 CDZ(X)=0.028994

N =1024

1

1

Nested BOSLHS N=1024/4096 CDQ(X)=0.00732929
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Results: Nested BOSLHS Is Not Regular

-~

Nested BOSLHS M=4 N=256/4096 CD2(X)=0.0190745
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ompared To Original, Nested BOSLHS

Less Regular But Higher Discrepancy
BOSLHS M=4 N=256 CD2(X)=0.0153393
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Nested BOSLHS N=64/4096 M=4 CD,(X)=0.0411594

o

4-D Example ) CP PP U S BN NS SO
- Difference in 4 dimensions is in - RN PR R R R RN T
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*In 2D, only 22=4 sub-bins per level, * W w0 0wl w
the 2*2=4 end points of 1 O S — O S—
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orthogonal axes) T AP N o
—If 1 point in bin, new sub-bin is < AR RN B
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—If 2 points (1 axis), 2 new sub-bins [ - . . " o ¥
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. In 4D, 24=16 sub-bins per level, 2 i S I R
orientations with 2*4=8 bins each == . ¢ w0
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—Then choose other orientation R
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Results: Coverage

(higher is better)

“Coverage” for M = 4 Dimensions: Average of 40 runs

N | Binning Optimal | Cell Centered | Monte Carlo | Jittered Tensor Product
Symmetric LHS | Random LHS | Sampling Sampling | Sampling
8 | 0.0717773 0.027062 0.0178996
16 | 0.135135 0.104126 0.0916156 0.128427 | 0.0625
32 | 0.285717 0.233105 0.219465
64 | 0.417035 0.372359 0.361626
128 | 0.56022 0.522201 0.511982
256 | 0.678416 0.647304 0.645049 0.667668 | 0.316406
512 | 0.773748 0.754804 0.749725
1024 | 0.843177 0.832896 0.831007
2048 | 0.896093 0.890245 0.886593
4096 | 0.932229 0.928693 0.927748 0.929509 | 0.586182
8192 | 0.956723 0.954248 0.953466
16384 | 0.97319 0.97129 0.971217
32768 | 0.983415 0.982499 0.982312
65536 | 0.989815 0.989387 0.98926 0.98965 0.772476
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Condition Number of the Correlation Matrix for M = 4 Dimensions: Average of 40 runs

esults: Condition # of Correlation

Matrix (lower is better)

N | Binning Optimal | Cell Centered | Monte Carlo | Jittered Tensor Product
Symmetric LHS | Random LHS | Sampling Sampling | Sampling
811 14.6273 8.23719
16 | 3.2505 4.14988 3.75258 2.39394 1
32 | 1.49974 2.27709 2.15406
64 | 1.37672 1.76306 1.82367
128 | 1.2064 1.4508 1.49656
256 | 1.11022 1.32572 1.33407 1.10916 1
512 | 1.05589 1.21341 1.2108
1024 | 1.0368 1.1546 1.14725
2048 | 1.02121 1.09974 1.09939
4096 | 1.01246 1.07576 1.07075 1.01254 1
8192 | 1.00717 1.04643 1.04922
16384 | 1.00403 1.03608 1.03365
32768 | 1.0027 1.02297 1.02461
65536 | 1.00166 1.01872 1.01742 1.00145 1
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B _ Results: (t,m,s)-net, “t” quality
metric (lower is better)

(t, m, s)-net Rating for M = 4 Dimensions: Average of 40 runs

N | Binning Optimal | Cell Centered | Monte Carlo | Jittered Tensor Product
Symmetric LHS | Random LHS | Sampling Sampling Sampling
8| (1,3,4) (2,3,4) (3,3,4)
16 | (2,4,4) (3,4,4) (4,4,4) (3,4,4) (3.4,4)
32 1(2,5,4) (4,5,4) (5,5,4)
64 | (3,6,4) (5,6,4) (6,6,4)
128 | (4,7,4) (6,7,4) (7,7,4)
256 | (5,8,4) (7,8,4) (8,8,4) (6,8,4) (6,8,4)
512 | (5,9,4) (8,9,4) (9,9,4)
1024 | (6,10,4) (9,10,4) (10,10, 4)
2048 | (7,11 ,4) (10,11 ,4) | (11,11 ,4)
4096 | (8,12 ,4) (11,12,4) | (12,12,4) | (9,12,4) | (9,12,4)
8192 | (8,13 ,4) (12,13 ,4) | (13,13 ,4)
16384 | (9,14 ,4) (13,14 ,4) | (14,14 ,4)
32768 | (10,15,4) (14,15,4) | (15,15, 4)
65536 | (11,16 ,4 ) (15,16 ,4) | (16,16,4) | (12,16,4) | (12,16, 4) @ﬁg{‘iﬁ‘,‘;’a.
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*" O(N log(N)) BOSLHS Algorithm

. Start with n = 2M points that are well distributed in (0, 1)V.

. Select n/2 of the coordinates in each dimension other than

the first to negate in such a way as to obtain n points that
are well distributed in (0, 1) ® (=1, 1M1,

. Reflect the current n points through the origin to create n
additional mirror points; this ensures that the design is
symmetric.

. Translate the 2n points from (-1, 1)M to (0, 2)M, scale
them to (0, 1)M, and then set n = 2n.

. Repeat steps 2 through 4 until the desired number of
points has been obtained, i.e. until n = N.
@ ﬁg’ltligiréllal
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*" O(N log(N)) BOSLHS Algorithm

The tough part is step 2

Select n/2 of the coordinates in each dimension other
than the first to negate in such a way as to obtain n
points that are well distributed in (0, 1) ® (=1, 1)M-1.

The easy (fast) answer is to recast the problem...
* Don't try change signs of dimensions individually
* Send nearby points to octants that are far apart

The Z-order quicksort will put nearby points in
sequential order in O(N log(N)) ops

We just need a listing of octants in maximally
spaced order
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