
Fast Generation of Nested Space-filling
Latin Hypercube Sample Designs

Feb. 28 – Mar. 4, 2011

Keith Dalbey, Ph.D.
Sandia National Labs, Dept 1411, Optimization and Uncertainty Quantification

George N. Karystinos, Ph.D.

Technical University of Crete, Depart. of Electronic and Computer Engineering

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear

Security Administration under Contract DE-AC04-94AL85000.

SAND2011-1109C

Outline

• Sampling: Why & What’s Good?

• Sample Design Quality Metrics

• “Binning Optimality,” a New Space-filling Metric

• Latin Hypercube Sampling (LHS)

• Jittered Sampling

• Binning Optimal Symmetric Latin Hypercube Sampling
(BOSLHS)

• Conclusions

• Current Work

Sampling: Why & What’s Good?

Problem: generate a M dimensional sample design with N
points at which to evaluate a simulator

Why sample simulator input?
• To calculate statistics of outputs with uncertain inputs

• To optimize e.g., guess several times and pick best guess
• To construct meta-models (fast surrogates for slow simulators)

What qualities do we want in a sample design?
• Design should be space-filling
• Low-dimensional projections of points should be well spaced
• Sample point locations should be uncorrelated with each other
• Regularity is bad, leads to biased results

• Nesting: want a SEQUENCE of designs that inherit all points
from earlier members in the sequence

Sample Design Quality Metrics

• Lots of metrics; fortunately one of them is almost always
the most important

• “Discrepancy” (some norm of difference between points
per sub-volume and uniform density): lower is better
– “Koksma-Hlawka-like inequality” bounds error in a computed

mean in terms of discrepancy

– Centered L2 Discrepancy (usually most important metric)

– Wrap-Around L2 Discrepancy (important for periodic variables)

• Unfortunately, discrepancy is expensive (O(M N2) ops) to
calculate for designs with large numbers of points, N, so...

• Can’t guess a large number of designs & pick the best

• WARNING: Regularity is easy way to get low discrepancy

Sample Design Quality Metrics
Other “partial” metrics

• “Coverage” (fraction of hypercube's volume filled by
convex hull of points, VERY expensive for even moderately
high dimensions): higher coverage is better

• Condition number of sample design's correlation matrix
(can be evaluated in O(M2N) ops): lower is better

• “t” quality metric when design is considered to be a
tms-net (quasi-Monte Carlo; metric moderately expensive
O((m-t+1+s)Cs s bm) ops where s=M, bm=N): lower “t” is
better

• NEW! degree of Binning Non-Optimality (can be
evaluated in O(N log(N)) time): lower is better

“Binning Optimality”
a New Space-filling Metric

A sample design is “Binning Optimal” (in base 2) if

Short answer:
Every sub-bin that should contain a point does

Long answer:

• When you recursively subdivide
M-dimensional hypercube into 2M

disjoint congruent sub-cube bins,
all bins of same generation
contain same number of points

• The above must hold true until
bins are so small that they each
contain either 0 or 1 points

• Generate bin ids as
indices into a Morton
space-filling curve, also
known as a “Z-curve”
O(N log(N))+O(N M) work

• Quicksort bin ids
O(N log(N)) work

• Tally bins ids: O(N) work

“Binning Optimality”
Can Be Evaluated in O(N log(N)) Ops

• A FFT of difference of sequential sorted Z-curve
bin Ids reveals regularity (cyclic patterns)

• Form of stratified random sampling
that converges with fewer points
than Monte Carlo Sampling

• Each column contains 1 point

• Each row contains 1 point

• Quality of design depends on
pairing of dimensions used to
form points (tough problem)

• Cell-centered LHS with randomly
paired dimensions

– gets 1D projections “perfect”

– Is NOT space-filling

Latin Hypercube Sampling (LHS)

This is not
Binning Optimal

Jittered Sampling

• Jittered Sampling = Tensor product sampling + random offset

• Better 1D projections than Tensor Product sampling

• Worse 1D projections than LHS

• Each cell contains a point  space-filling as cell size  0

These
are

Binning

Optimal

Binning Optimal Symmetric Latin
Hypercube Sampling (BOSLHS)

• Gets 1D projections right

• Is space-filling

• Combines most of best features
of LHS and Jittered sampling

• Design quality is better than
regular LHS or Jittered sampling

• Is very fast: generated Nested
BOSLHS M=8 dim, N=216=65536
points design in 8.21 seconds

• Currently limited to M=2p < 16
dimensions (low degree of binning
non-optimality for non integer p,
working on extending to M > 16)

Nested BOSLHS Algorithm

1. Start with (lower Z half of)
small BOSLHS design

2. Choose new set of bins that
are maximally spaced from
old bins

3. Generate a new BOSLHS
by randomly filling new bins
1 dimension at a time

4. Combine old & new designs,
split each row/column/etc. in
half, & randomly send each
half 1 of duplicate coordinates

5. Repeat steps 2 through 4 as
many times as desired.

Higher Dimensions Are More Complex

• Need log2(N)/1 bits to uniquely identify each 1D bin

• Binning Optimality in M-D sets first log2(N)/M bits per
dimension (BPD)

• BOSLHS matches first log2(N)/M bits of 1D designs
to M-D design; “random” matching of remaining bits
(step 3 of previous slide)

• But can use Binning Optimality in subsets of
dimensions to match bits log2(N)/M+1log2(N)/2

• First cut: randomly match first log2(N)/M BPD of M/2
2D BOSLHS designs to M-D design

Higher Dimensions Are More Complex

•Bit # ceil(log2(N)/M) “tricky” when log2(N)/M not
integer

•Bins/Octants for that bit must be max spaced in
M-D; solution is endpoints of max spaced rotated
orthogonal axes (see next slide), but getting max
spaced subsets of dimensions is “trickier”

•Nesting makes bit # ceil(log2(N)/M) “trickier”

•Ensuring symmetry makes things “trickier”

• Generating list is simple for up to M=8 dimensions.
It’s difficult beyond that BUT…

• It’s similar to digital communication problems

• Collaborator, Professor George N. Karystinos of
Technical University of Crete (Department of Electronic
& Computer Engineering), found a group theory solution
for arbitrarily large dimensions

• But… memory requirements prevent even listing the
octants for M > 32

• Working on generating maximally spaced partial list

Higher Dimensions Need a Maximally
Spaced List of Octants

Results: Eyeball Metric M=4D

• Plotted all 6 combinations of 2 out of M=4 dimensions
• BOSLHS is visibly space-filling!

N=128 N=4096N=1024

Results: Centered L2 Discrepancy
(Lower is Better)

10.2
6

Plots are for average of 40 random designs

Results: Sobol Sequence Has
Lower Discrepancy But Is Regular

10.2
6

Regularity in sample designs results in biased statistics

10.2
6

Results: What Complete Irregularity
(Monte Carlo Sampling) Looks Like

10.2
6

Results: Nested BOSLHS Is Not Regular

Results

• BOSLHS has low discrepancy without being regular

• BOSLHS also scores well in other metrics: it has high
“coverage,” low correlations between dimensions, and a
low (t,m,s)-net rating

• VERY fast: MATLAB generated a N=216 point M=8
dimensional space-filling nested BOSLHS design in
~8.21 seconds on an Intel 2.53 GHz processor
(algorithms reported in literature take “minutes” for
non-nested space-filling N = 100 point designs)

• By comparison, it took ~298.2 seconds (O(N2M) ops)
to evaluate discrepancy for same design

Conclusions

•Defined new space-filling metric “Binning
Optimality” that evaluates in O(N log(N)) time

•Found related way to detect regularity in
sample designs

•Developed fast algorithm for Nested Binning
Optimal Symmetric Latin Hypercube
Sampling (BOSLHS) that

– is also Binning Optimal in some 2D subsets

–combines best features of LHS & Jittered
Sampling

• Current BOSLHS algorithm is space-filling in full M
dimensional space and 1 dimensional projections
and some 2D subsets. Want to be space-filling in
more 2D and other larger subsets of dimensions.

• Extension to larger (> 16) and arbitrary (non power
of 2) numbers of dimensions.

• How well does BOSLHS do in other design quality
metrics?

• Better numerical quantification of “regularity”

• ?Induce correlations between dimensions?

Ongoing Work

References

1. K. R. Dalbey and G. N. Karystinos, “Fast Generation
of Space-lling Latin Hypercube Sample Designs,”
Proceedings of the 13th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, 2010.

2. K. R. Dalbey and G. N. Karystinos, “Generating a
Maximally Spaced Set of Bins to Fill for High
Dimensional Space-lling Latin Hypercube Sampling,”
International Journal for Uncertainty Quantication,
(to appear), 2011.

Bonus Slides Start Here

4-D Example

• Difference in 4 dimensions is in
choosing maximally spaced bins

• In 2D, only 22=4 sub-bins per level,
the 2*2=4 end points of 1
“orientation” (rotated set of
orthogonal axes)
– If 1 point in bin, new sub-bin is

opposite old one

– If 2 points (1 axis), 2 new sub-bins
are other axis

– Then go 1 bin deeper

• In 4D, 24=16 sub-bins per level, 2
orientations with 2*4=8 bins each
– After first axis, randomly select order

of other axes in same orientation

– Then choose other orientation

– Then go 1 bin deeper

Results: Centered L2 Discrepancy
(Lower is Better)

10.2
6

Plots are for average of 40 random designs

Results: Wrap Around L2
Discrepancy (Lower is Better)

10.2
6

Plots are for average of 40 random designs

Results: Eyeball Metric M=4D

• Plotted all 6 combinations of 2 out of M=4 dimensions
• BOSLHS is visibly space-filling!

N = 128 N = 4096N = 1024

10.2
6

Results: Nested BOSLHS Is Not Regular

Compared To Original, Nested BOSLHS
Less Regular But Higher Discrepancy

10.2
6

4-D Example

• Difference in 4 dimensions is in
choosing maximally spaced bins

• In 2D, only 22=4 sub-bins per level,
the 2*2=4 end points of 1
“orientation” (rotated set of
orthogonal axes)
– If 1 point in bin, new sub-bin is

opposite old one

– If 2 points (1 axis), 2 new sub-bins
are other axis

– Then go 1 bin deeper

• In 4D, 24=16 sub-bins per level, 2
orientations with 2*4=8 bins each
– After first axis, randomly select order

of other axes in same orientation

– Then choose other orientation

– Then go 1 bin deeper

Results: Coverage
(higher is better)

Results: Condition # of Correlation
Matrix (lower is better)

Results: (t,m,s)-net, “t” quality
metric (lower is better)

O(N log(N)) BOSLHS Algorithm

1. Start with n = 2M points that are well distributed in (0, 1)M.

2. Select n/2 of the coordinates in each dimension other than
the rst to negate in such a way as to obtain n points that
are well distributed in (0, 1) ⊗ (−1, 1)M −1.

3. Reflect the current n points through the origin to create n
additional mirror points; this ensures that the design is
symmetric.

4. Translate the 2n points from (−1, 1)M to (0, 2)M , scale
them to (0, 1)M , and then set n = 2n.

5. Repeat steps 2 through 4 until the desired number of
points has been obtained, i.e. until n = N.

O(N log(N)) BOSLHS Algorithm

1 2

2

3

3

32

4

4

O(N log(N)) BOSLHS Algorithm

The tough part is step 2

Select n/2 of the coordinates in each dimension other
than the rst to negate in such a way as to obtain n
points that are well distributed in (0, 1) ⊗ (−1, 1)M −1 .

The easy (fast) answer is to recast the problem...
• Don't try change signs of dimensions individually
• Send nearby points to octants that are far apart

The Z-order quicksort will put nearby points in
sequential order in O(N log(N)) ops

We just need a listing of octants in maximally
spaced order

