SAND2011- 3600C

libhashckpt: Hash-based Incremental
Checkpointing Using GPU’s

Kurt B. Ferreira!, Rolf Riesen?, Ron Brighwell', Patrick Bridges®, and
Dorian Arnold3

! Scalable System Software, Sandia National Laboratories*
{kbferre | rbbrigh}@sandia.gov
2 IBM Research, Ireland
rolf.riesen@ie.ibm.com
3 Department of Computer Science, University of New Mexico
{kurt | bridges | darnold}@cs.unm.edu

Abstract. Concern is growing in the high-performance computing (HPC)
community regarding the reliability guarantees of future large-scale sys-
tems. Disk-based coordinated checkpoint/restart has been the domi-
nant fault tolerance mechanism in HPC systems for the last 30 years.
Checkpoint performance is so fundamental to scalability that nearly
all capability applications have custom checkpoint strategies to mini-
mize state and reduce checkpoint time. One well-known optimization to
traditional checkpoint/restart is incremental checkpointing, which has a
number of known limitations. To address these limitations, we introduce
libhashckpt; a hybrid incremental checkpointing solution that uses both
page protection and hashing on GPUs to determine changes in applica-
tion data with very low overhead. Using real capability workloads, we
show the merit of this technique for a certain class of HPC applications.

1 Introduction

Disk-based coordinated checkpoint /restart has been the dominant fault tolerance
mechanism in high performance computing (HPC) systems for at least the last 30
years. In current large distributed-memory HPC systems, this approach generally
works as follows: periodically all nodes quiesce activity, write all application and
system state to stable storage, and then continue with the computation. In the
event of a failure, the stored checkpoints are read from stable storage to return
the application to a known-good state.

Checkpoint performance impacts scalability of large-scale applications to
such a degree that many capability applications have their own custom app-
lication-specific checkpoint mechanism to minimize the saved checkpoint state

* Sandia National Laboratories is a multi-program laboratory operated by Sandia Cor-
poration, a wholly owned subsidiary of Lockheed Martin Corperation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94A185000.

and therefore the time to checkpoint. While this approach minimizes the ap-
plication state that must be written to disk, it requires intimate knowledge of
the application’s computation and data structures, and is typically difficult to
generalize to other applications.

One well-known and generalized optimization of traditional checkpoint/re-
start is incremental checkpointing. Incremental checkpointing [6, 7, 14] attempts
to reduce the size of a checkpoint, and therefore the time to write a checkpoint,
by saving only differences in state from the last checkpoint.

Current incremental methods have failed to achieve dramatic decreases in
checkpoint size because of a reliance on page protection mechanisms to determine
which address ranges been written, or dirtied, during the checkpoint interval [7].
Relying solely on page-based mechanisms forces such an approach to work at a
granularity of the operating systems page size. Even if only one byte in a page
is written, the entire page is marked as dirty and must be saved. Furthermore,
if identical values are written to a location, that page is still marked as dirty.
These problems are also compounded by the increasing maximum page sizes of
modern processors and the increased performance for HPC applications on these
larger page sizes.

To address these limitations, we introduce 1ibhashckpt: a hybrid incremen-
tal checkpointing approach that uses page protection mechanisms, a hashing
mechanism, and MPI hooks to determine the locations within a page that have
changed. To reduce the overhead of the hash calculation, 1ibhashckpt also uses
graphics processing units (GPU) to offload the hash calculation. Using real
HPC workloads, we compare the performance of this technique against page
protection-based incremental systems and highly optimized, application-specific
checkpoint techniques. Our results show that our approach is able to dramat-
ically reduce system checkpoint sizes compared to previous incremental check-
pointing systems, in some cases approaching the checkpoint sizes of hand-tuned
application-specific checkpointing systems.

2 Approach

2.1 Overview

The hash-based incremental checkpointing mechanism in 1ibhashckpt works are
follows. While the application is running, the library uses the page-protection
mechanism to mark those virtual memory pages that have been written in the
checkpoint interval as potentially dirty. To support MPI applications, the library
also intercepts receive calls and marks message buffers as dirty, identifying them
as candidates to be checked by the hashing mechanism. These message buffers
require marking because changes in memory from user-level network hardware
is not subject to the processor’s page protection mechanisms.

When an checkpoint is requested, the library hashes all blocks corresponding
to potentially dirty pages, comparing the key with previously stored values, if
they exist. If no key exists, or if the key has changed, the block is marked to be

included in the checkpoint and excluded otherwise. If the node contains a GPU,
potentially dirty blocks are copied down to the GPU and the computed keys are
copied up to host memory. Finally, once the hash calculation has completed, all
blocks that have been marked as changed by the library are then saved to stable
storage for later retrieval, if needed.

2.2 Library Implementation Details

libhashckpt is based on the libckpt library [14], now referred to as clubs [2].
Clubs is a transparent, user-level, checkpoint library for Unix based systems. It
contains a number of optimizations including;:

— Virtual memory page-protection based incremental checkpointing;

— Forked checkpointing; and,

— User-directed checkpointing which allows the user to include or exclude por-
tions of the processes address space in the checkpoint.

We added the following functionality to this library. Firstly, we added a
framework for calculating and storing hash keys of arbitrary block size. The block
size can be adjusted to be larger or smaller than the native page size. We also
modified the library to intercepts MPI receive calls using the MPI profiling layer
found in most modern MPI libraries. Finally, we added an engine for offloading
this hash calculation to graphics processing units, if any are present.

2.3 Applications and Platform

To evaluate the merit of our hash-based checkpointing library, we present re-
sults from two key HPC applications; CTH [8] and LAMMPS [15,16]. These ap-
plications represent important HPC modeling and simulation workloads. They
represent different computational techniques, are frequently run at very large
scale for weeks at a time, and are key simulation applications for the US De-
partment of Energy. Also, each of these applications contain highly-optimized
application-specific checkpoint mechanisms that will be used for comparison with
the methods outlined in this paper.

These application tests were conducted on the Cray Red Storm system at
Sandia National Laboratories. For these application runs, the hashing was per-
formed by a spare on-node CPU core as Red Storm system does not contain
GPUs. For the GPU results in this paper, we compare the performance of the
Opteron processor on Red Storm [5] against that of a NVIDIA Tesla C1060
GPU.

3 Results

In this section, we outline the performance of libhashckpt. First, we examine
the results of hashing versus page-based protection mechanisms for determin-
ing the percentage of application memory that has actually changed. Following

this, we examine the performance of this library with the two aforementioned
simulation workloads, comparing this hash-based approach with both standard
page protection-based incremental checkpointing and each application’s specific
checkpoint mechanism. Finally, we examine the performance advantage of com-
puting the MD5 [11] hash used by libhashckpt using a GPU versus a CPU.

3.1 Hash-based Dirty Data Detection

The key feature that 1ibhashckpt hopes to exploit is finer-grained detection of
dirtied blocks than is currently possible using mechanisms based solely on page
protection mechanisms. To examine the overall potential of such a hash-based
approach, we first used 1ibhashckpt to examine what portion of an application’s
memory actually changed (using fine-grained hashing) versus the percentage that
a pure page protection-based mechanism would indicate was changed.

Figure 1 shows the percentage of memory that our hash-based mechanism
indicates actually changed at each 15 minute checkpoint interval versus the per-
centage that a page protection mechanism indicates may have changed. In Fig-
ure 1(a), we see that, while nearly all the allocated memory is written in a
checkpoint interval, a very small percentage of that memory actually changes.
This small percentage of change is an artifact of the simulation problem. The
application uses thresholding such that, in a small simulation-time interval, sec-
tions of the simulation do not change. In contrast, for LAMMPS in Figure 1(b),
the amount of data changed is nearly identical to the data written. This is be-
cause the largest data structure in LAMMPS is the neighbor structure, which
continuously changes as atoms move around.

Percent Application Memory Changed in Cycle
Percent Application Memory Changed in Cycle

o B v B g % % < % % %
Checkpoint Cycle Checkpoint Cycle
AllRanks 8- AllRanks &

(a) CTH (b) LAMMPS

Fig. 1. Average percent of allocated memory changed detected using a hash-based
incremental checkpointing mechanism for the CTH and LAMMPS. The shaded region
represents the average percent of memory written to using a page-protection based
mechanisms. Errorbars are shown for CTH but omitted for LAMMPS as the per-
process variation is +0.5%

These results demonstrate the potential accuracy advantage a hash-based
incremental checkpointing approach can provide over a purely page protection-

based mechanism. On the other hand, these results also show that the potential
benefits are also highly application-dependent.

3.2 Checkpoint File Size Comparison

Based on the results in the previous section, we then examined the resulting
difference in checkpoint sizes between the two incremental checkpointing ap-
proaches (pure page protection vs. 1ibhashckpt’s hybrid page protection/hash-
ing scheme). We also compared the size of these checkpoints with those generated
by the application-specific mechanisms. These application specific methods are
highly optimized, and, for the purpose of this work, we view these checkpoint
sizes as a file size optimum.

Application VM CKPT Hash CKPT App CKPT
(MB) (MB) (MB)

CTH 513 35 (93%) 26 (95%)
LAMMPS 2735 2670 (2.3%) 608 (78%)

Table 1. Per-process checkpoint size for CTH and LAMMPS. This table contains the
size of the checkpoint using standard page protection-based system-level incremen-
tal checkpointing (VM CKPT), libhashckpt’s hybrid approach, and an application-
specific checkpointing approach (App CKPT). For the latter two columns the number
in parenthesis is the percent reduction in size when compared to a system-based incre-
mental checkpoint. The VM CKPT and Hash CKPT checkpoints contains data from
both the application as well as other libraries linked with the application, for example
MPI library data and its associated buffers.

Table 1 shows a comparison in per-process checkpoint sizes for our two ap-
plications. We see that for CTH, libhashckpt’s hash-based method dramati-
cally reduces the size of system-based incremental checkpoints based solely on a
page protection mechanism. Custom application-specific checkpointing mecha-
nism does better still, but our hybrid scheme results in checkpoints that are only
35% larger than this highly-optimized approach. One reason our hash-based li-
brary is larger than the application-specific method has to do with the fact that
the application checkpoint contains only application data, while the other meth-
ods shown save state from the application as well as the libraries linked with the
application, most notably the MPI library and its associated data and buffers.

In contrast to CTH, the hash- and page-based schemes are nearly identi-
cal in size for LAMMPS, with application-specific checkpointing routines of-
fering a 75% reduction in checkpoint sizes. This is because the application-
specific checkpointing mechanism in LAMMPS can completely avoid writing
neighbor structures to checkpoints because they can be reconstructed at appli-
cation restart, while system-based methods do not have the application-specific
knowledge needed to do this.

3.3 GPU Performance

Figure 2 compares GPU vs CPU performance of an MD5 calculation for varying
block sizes. The GPU numbers presented in this plot represent the best measured
for a block size varying the number of threads and the size of the overlap of the
concurrent copy down to the card and computation. Also, these GPU numbers
include the time to copy data down to the GPU as well as the time to copy
computed keys to host memory. The CPU numbers use the Libgcrypt MD5
implementation. From this figure, we see that the GPU greatly outperforms the
CPU implementation.

1600

- GPU
—-4- CPU

1400

1200

1000

Rate (MB/sec)
©
o
o

0 A A A A A 4;_—&/"//A

® % ® % % % % % % %
Size (bytes)

Fig. 2. A comparison of MD5 hashing rates for CPU and GPU. Note, the GPU rate
includes both the copying of data to be checksummed down to the cards local memory
as well as the copying of the computed keys from the card to host memory. The GPU
data is the best recorded for a block size varying the number of threads and the amount
of overlap in copy and computation. The CPU numbers are using the Libgerypt [1] MD5
hashing algorithm.

In addition, with a per-process rate between 800 and 1400 MB /sec, the GPU-
based data rates greatly exceed the per-process rate to stable storage for large
scale systems. This shows that a hash-based checkpointing scheme that leverages
GPUs will not be the bottleneck for checkpointing times in large-scale systems.

4 Related Works

Checkpoint /restart is a well-known method for application fault-tolerance for
large-scale distributed and parallel systems that has been studied extensively for

over thirty years [7]. A number of optimizations has been suggested including;
forked or copy-on-write checkpointing [9], checkpointing to remote nodes [17],
communication-induced checkpointing [13], compiler-assisted checkpointing [4],
incremental checkpointing [6, 10], and probabilistic or hash-based checkpoint-
ing [12,3]. However, none of these methods have yet matched the performance
of application-specific methods and are therefore not widely accepted for capa-
bility workloads.

Most closely related to this work, Agarwal et al. [3] investigated the per-
formance characteristics of a hash-based adaptive incremental checkpointing li-
brary. Similar to this work, the authors use an MDb5 hash to determine the por-
tions of an application address space that have changed in a checkpoint interval.
In contrast to this work, we evaluate the merit of this hash-based technique on
actual HPC capability workloads. In addition, we show how GPUs can be used
to significantly reduce the overhead of the hash computations. This overhead
is important as the computation overhead must be kept lower then the rate to
save to stable storage. Also, we compare the merit of this technique with an op-
timal application-specific checkpoint mechanism. Finally, our work varies from
this previous work as we show that, while this technique may be appropriate for
some applications, there are classes of HPC applications for which this method
is clearly not appropriate.

5 Conclusions and Future Work

In this paper, we introduced 1ibhashckpt, an incremental checkpointing library
that uses hashing to save only the changed state of an application in a check-
point interval. To significantly decrease the overhead of the hash calculation,
libhashckpt can utilize GPUs. Using this library, we compare the checkpoint
file sizes of this hash-based method with that of a standard page-protection
mechanism and a highly optimized application-specific mechanism. Using real
capability HPC workloads we show that, for a certain class of applications, this
hash-based method can reduce the checkpoint file size to be around 15% of that
of a page-based approach. In addition, this method can create checkpoint files
which are only 35% larger than that of a manually-coded, application-specific
method.

There are several avenues of future work related to this research. First, we
would like to analyze more applications in order to evaluate the merit of this
technique to a broader set of large-scale applications. In addition, we would like
to investigate other hash and checksum algorithms. For this study we used a
cryptographically secure hash (MD5), but this algorithm may be overkill for
determining block changes. Lastly, we need to compare this method with other
checkpoint optimization techniques, such as compiler-assisted incremental check-
point methods.

References

1. libgerypt web page (Jul 2010), http://directory.fsf.org/project/libgcrypt/

10.

11.

12.

13.

14.

15.

16.

17.

Libckpt web page (2011), http://web.eecs.utk.edu/~plank/plank/www/
libckpt.html

Agarwal, S.; Garg, R., Gupta, M.S., Moreira, J.E.: Adaptive incremental check-
pointing for massively parallel systems. In: Proceedings of the 2004 International
Conference on Supercomputing. St. Malo, France (2004)

Bronevetsky, G., Marques, D., Pingali, K., McKee, S.A., Rugina, R.: Compiler-
enhanced incremental checkpointing for openmp applications. In: IPDPS. pp. 1-12.
IEEE (2009)

Camp, W.J., Tomkins, J.L.: Thor’s hammer: The first version of the Red Storm
MPP architecture. In: In Proceedings of the SC 2002 Conference on High Perfor-
mance Networking and Computing. Baltimore, MD (November 2002)

Chen, Y., Plank, J.S., Li, K.: CLIP: a checkpointing tool for message-passing paral-
lel programs. In: Proceedings of the 1997 ACM/IEEE conference on Supercomput-
ing (CDROM). pp. 1-11. Supercomputing 97, ACM, New York, NY, USA (1997),
http://doi.acm.org/10.1145/509593.509626

Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34(3),
375-408 (2002)

E.S. Hertel, J., Bell, R., Elrick, M., Farnsworth, A., Kerley, G., McGlaun, J.,
Petney, S., Silling, S., Taylor, P., Yarrington, L.: CTH: A Software Family for Multi-
Dimensional Shock Physics Analysis. In: Proceedings of the 19th International
Symposium on Shock Waves, held at Marseille, France. pp. 377-382 (July 1993)
Feldman, S.I., Brown, C.B.: Igor: a system for program debugging via reversible
execution. In: Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on
Parallel and distributed debugging. pp. 112-123. PADD ’88, ACM, New York, NY,
USA (1988), http://doi.acm.org/10.1145/68210.69226

Gioiosa, R., Sancho, J.C., Jiang, S., Petrini, F.: Transparent, incremental check-
pointing at kernel level: a foundation for fault tolerance for parallel computers. In:
Proceedings of the 2005 ACM/IEEE Conference on High-Performance Computing
and Networking. Seattle, WA, USA (2005)

Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (1996)

Nam, H.C., Kim, J., Hong, S., Lee, S.: Probabilistic checkpointing. In: Fault-
Tolerant Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual
International Symposium on. pp. 48 —57 (jun 1997)

Netzer, R.H.B., Xu, J.: Necessary and sufficient conditions for consistent global
snapshots. IEEE Trans. Parallel Distrib. Syst. 6, 165-169 (February 1995), http:
//dx.doi.org/10.1109/71.342127

Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: transparent checkpointing
under unix. In: Proceedings of the USENIX 1995 Technical Conference Proceed-
ings. pp. 18-18. TCON’95, USENIX Association, Berkeley, CA, USA (1995),
http://portal.acm.org/citation.cfm?id=1267411.1267429

Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. Jour-
nal Computation Physics 117, 1-19 (1995)

Sandia National Laboratory: LAMMPS molecular dynamics simulator. http://
lammps.sandia.gov (Apr 10 2010)

Zandy, V.C., Miller, B.P., Livny, M.: Process hijacking. In: Proceedings of the 8th
IEEE International Symposium on High Performance Distributed Computing. pp.
32—. HPDC ’99, IEEE Computer Society, Washington, DC, USA (1999), http:
//portal.acm.org/citation.cfm?id=822084.823234

