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this

• This talk surveys various conceptions and definitions of
– models

– model validation

– validated models

• A particular philosophy will be presented as the basis for a "Real Space" 

approach to model validation (and model conditioning/calibration)

• Processes and procedures of the Real-Space approach will be sketched

• The pragmatic approach evolved from working many industrial-scale validation 

problems featuring a broad variety of real-world conditions and constraints

• Among the considerations to be discussed are: 

– the place of model validation within the end-to-end mod./sim. enterprise 

spanning experiments to prediction 

– relationship and connectivity of model validation to
• experimental data and its uncertainty

• basic nature of models

• extrapolative prediction 

• hierarchical modeling

• interpretability and practical usability of model validation results and products

Introduction



MOTIVATION for model validation

As an example, consider a finite-element model of a device or system

• Let all model inputs like material properties and boundary conditions be crisp 

values

• All these crisp inputs will have some amount of error

– even if all model inputs are actually measured, measurement error will exist

– typically, the majority of inputs for material properties and model parameters will 

come from catalogued values determined somewhere else, under different 

conditions

• Model-form error will also exist – all model conceptions are simplified abstractions 

of reality; no conception is exact

• The numerous errors in the model (each hopefully ―small‖) add to an unknown 

discrepancy between model predictions and ―reality‖

Model Validation

– How well do model results match reality for relevant quantities of interest? 

– Is the model ―good enough‖ for defined use purposes of the model? (e.g., 

specific design, analysis, or decision-making purposes)



Two ELEMENTS of model validation

Accuracy assessment – quantify the discrepancy between model 

predictions and reality

– discrepancy is measured via relevant norms or ―validation metrics‖

– these norms or metrics must be meaningful, interpretable, usable

Adequacy assessment – is the discrepancy small enough for stated 

uses of the model?

– various approaches and criteria for determining adequacy are proposed in 

the literature

• an area of present difficulty and debate…to be elaborated later

• not all validation frameworks address model adequacy

– adequacy can only be determined at validation points in the modeling space, 

not at other points where the model is to be used

– thus, the stated objective of model adequacy determination for intended 

uses of the model (beyond the validation conditions) is impossible to 

achieve fully, but the Real Space approach enables partial achievement 
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Definition used by the recognizing bodies below:

―Model Validation is the process of determining the degree to which a 

computer model is an accurate representation of the real world from the 

perspective of an intended use of the model.‖

• originated by U.S. Dept. of Defense (DoD) – 1996

• adopted essentially without change by:

– American Institute of Astronautics and Aeronautics (AIAA) – 1998
• Guide on V&V in Computational Fluid Dynamics

– U.S. Dept. of Energy (DoE) – 2000
• various program documents

– American Society of Mechanical Engineers (ASME)
• V&V 10 Guide for V&V in Computational Solid Mechanics – 2006

• V&V 20 Standard for V&V in Computational Fluids & Heat Transfer – 2009

– NASA
• Standard for Models and Simulations – 2008

• NOTE – standard definition does not mention model adequacy

The Contemporary "Standard" Definition 

of Model Validation



this

Ambiguities regarding model-adequacy element of validation
– DoD (originators)

• Accuracy

• Adequacy for Extrapolative Predictions (compile evidence & arguments for or against)

– AIAA V&V Guide; Oberkampf & Roy – V&V in Scientific Computing (2010)

• Accuracy

– ASME V&V20 Standard; Roache – Fundamentals of V&V (2010)

• Accuracy

• Adequacy at Validation Conditions in asymptotic cases (order of magnitude determin.)

– Adequacy in Extrapolation considered to be a different part of the M&S process, e.g. Accreditation

– DoE; NASA; ASME V&V10 Guide

• Accuracy

• Adequacy, but unclear how to determine adequacy requirements at Validation Conditions, 

much less how to address adequacy in Extrapolation 

– Real-Space Framework

• Accuracy

• Adequacy at Validation Conditions and Zeroth-order adequacy for Extrapolative prediction

Different Interpretations of the Standard 

Definition by its Adopters
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• The following respected definitions specifically include adequacy determination

– Technical Committee on Model Credibility of the Society for Modeling and Simulation Intrnt’l. (1979) 

DoD, U.S. Dept. of Agriculture; Europe, Canada, Engrg., Natural & Social Sciences

―Model Validation is the substantiation that a computerized model within its domain of 
applicability possesses a satisfactory range of accuracy consistent with the intended 
application of the model.‖

– Miser & Quade – 1988, Validation chapter in Handbook of Systems Analysis

―Validation is the process by which the analyst assures himself and others that a model 
is a representation of the phenomena being modeled that is adequate for the purposes 
of the study of which it is a part.‖

• The 3 defns. have various differences and shortcomings, but one major difficulty in common

– determine accuracy and/or adequacy of model for intended uses beyond the validation 

conditions (extrapolation performance) 

– A laudable objective, but how to do? Full determination is impossible in principle.

• Therefore, all three defns. are seen as Objective Statements for model validation:

– THE OBJECTIVE OF model validation is.....this is what to shoot for as an idealized objective

• An Operational Definition is needed….what validation is from an operational perspective —

pragmatically executable and achievable

Earlier Consensus Definitions of

model validation, 

and the Need for an Operational Defn.
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Model Validation is the compilation of useful indicators of the 

accuracy and adequacy of a model’s predictive capability for 

particular output quantities (possibly filtered and transformed) that 

are important to predict for some purpose, where meaningful 

comparison of experiment and simulation results is conducted at 

points in the modeling space that present significant prediction 

tests for the model use purpose. 

– It is important to make a distinction between objective statements and 

operational definitions of model validation.

– Nonetheless, I agree with Patrick Roache (Fundamentals of V&V, 2010)

that definition of specific procedures and processes for model validation 

is vastly more important and meaningful than definitions in the abstract 

(like the one above).

A Proposed Operational Definition of 

model validation (for computational phys. engr. models)
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• Fully ―strongly‖ defined models have crisp, determined values for 

parameters, boundary conditions, etc.

– e.g. a FE model of a device, with crisp parameter values

• Fully ―weakly‖ defined models’ parameters are free variables

– e.g. partial differential equation sets (PDEs) like Fourier’s Law and 

the Navier-Stokes Equations

• Models exist over the spectrum from fully weak to fully strong

De Marsily et al. Concept of

"Strongly" and "Weakly" Defined Models

(from the groundwater flow literature)



• Fully strong "deterministic" models generally do not match reality

(non-zero error) and are non-robust in extrapolation
• Calibrated strong models, even if they match experimental data, are fragile in 

extrapolation beyond the calibration conditions

– no margin for model accuracy degradation

• Weaker models having uncertainty can provide margin against accuracy

degradation  more robust in extrapolation

Intersection of Validation and 

Strong and Weak Models

• Therefore, not necessarily true that the model with less uncertainty is better

• Downside of weaker models is that they predict with greater uncertainty 

• This tradeoff is a subject for further research re. optimized modeling approaches

 Some weakness in model parameters and/or model-form representation is

required for model predictions to bound or capture reality

• Analogy – more productive to pursue weak solutions of PDEs than strong solns. 

Calibration point

Model Extrapolation

Real behavior
Model with 

Uncertainty

Deterministic model



• Fully weak models like PDEs are exceedingly difficult to validate 
because they require an essentially infinite number of validation tests 
over diverse instantiations of the equations

– How do I validate Fourier’s Law?

 Test it in a huge number of circumstances and see if it holds up.

– Each individual validation test can hide model bias (Type II and Type X error)

– e.g., this model result not rejected

Intersection of Validation and 

Strong and Weak Models (cont‘d)

– The greater the uncertainty in a validation activity,

the more bias a model can have before being rejected.

– If a model is not rejected over a large number of diverse validation tests then 

the assembly of evidence could statistically average-out individual validation 

bias-error parallaxes and thereby support the model as true or unbiased

– Ultimately, though, trueness of a law or theory is not provable, just ―not 

disproved so far‖ (Karl Popper and others)

• Always subject to being overturned by new evidence that may come along

• Continual testing in new circumstances is part of this ―anti-invalidation‖ paradigm

measurement 

uncertainty

True value

Prediction bias error



Some validation conceptions apply this line of thinking to strong or semi-strong 

application models:

―We can't validate models, we can only show that they are not invalid.‖

• Paradigm does not legitimately transfer to application models

– Validation of application models is almost always limited to one or a few validation tests

• non-rejection in one or a small number of validation tests is not enough to statistically 

dismiss Type II or Type X validation error and thereby support the model as un-biased

– Modelers usually don't propose their application models to be unflawed anyway;

just strive for "good enough" (acceptable error) for the modeling job at hand

• Foregone conclusion is that model results are different from the data

– Hypothesis tests for whether the model is different from the data are improperly posed

• skewed toward not rejecting the null HO that model is different from the data, even though 

that HO is known beforehand to be less reasonable than alternative HO that a diff. exists

– ―Interval Null‖ HO tests for whether the model is different from the data by > some 

specified amount ∆ are properly posed, but

• so far in the literature these only consider error ∆ between means of data and model 

results—not adequate, as next slide shows

Anti-Invalidation approach to validation does not

apply for most Engineering Application Models
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A Model that is ―Consistent‖ with the Data 

is Not Necessarily Accurate or Adequate

Example:

measured material 

property data as a 

function of temperature

Total uncertainty 

associated with set

of measurements

(our best perception 

of where reality lies)

• The solid black line is a Least-Squares best-fit regression line through the data

• Regression line not an accurate model for material prop. value vs. temperature

– Some validation paradigms would categorize the model as ―consistent‖ with the data 

and therefore would accept it ( poses ―Model User’s Risk‖)

– model too precise, not representative of real property variability

• Under-predicted uncertainty could lead to trouble in downstream uses of model

– model better characterized as: ―not fully consistent‖ or ―not inconsistent‖ with data

• Also demonstrates why popular validation criterion of ―means matching‖ (does 

mean of sim. = mean of data?) is not an effective test for model accuracy 



exper. sim. exper. sim. exper.

sim.

• Real Space – involves no subtractive difference of results from simulation and 

experiment, or other ―validation metric‖ discrepancy measures

• Simple criterion for model adequacy, scaled to experimental uncertainty

A Simple ―Real Space‖

Accuracy/Discrepancy measure

and Criterion for Model Adequacy

This case meets ―Zeroth-order‖ 

conditions for model adequacy 

• model prediction bounds experimental 

uncertainty bar (as the best available 

evidence of where ―reality‖ lies)

• If the data/model relationship remains 

consistent in extrapolation (the hope in

all modeling), the predictions will bound 

reality in the extrapolation conditions

Reality lying w/in the predictions is what 

a designer or decision maker wants*

*assuming non-excessive sim. uncer. bar 

extents beyond experim. uncer. bar

Greater prediction risk

– much of reality lies outside the 

model predictions

– If data/model relationship remains 

consistent in extrapolation then the 

predictions will not contain reality

Adequacy criterion can be relaxed if 

auxiliary information is available, e.g.

– OK if reality lies outside predictions by 

X% above and/or Y% below

– However, very difficult to rigorously 

quantify such allowables (next slide)



• In hierarchical modeling projects a 
non-uniqueness problem exists 
with Top-Down parsing of 
acceptable error tolerances down to 
the various submodeling activities

• In ―isolated‖ phenominological 
model development & validation 
work, e.g.  turbulence or 
constitutive model development at 
a university, there is no ‗project‘-
level accuracy requirement in the 
first place

• Potential constraint violation of a-
priori accuracy requirement:

 Experimental uncer. is lower limit on 
validation accuracy requirement that 
can be placed on a model.

—not known until after the experims. 
performed and processed

Bottom Line: not a viable approach

Difficulty of Pre-Specified Accuracy 

Requirements for Model Adequacy

System-Level risk analysis —

Weapon in a Fire

Multiple underlying submodels:

Fire model for heat load BCs

+
Heat Transfer models (mult. modes)

+ 

Mtl. behavior & transformation models
+

Component response & failure models

+…+…+…



Distribution 

of possible 

bias

this

• E.g., subtractive difference is a popular way of comparing data against model 

predictions for model validation assessments

• The subtractive difference transform yields a less definitive validation result 

vs. staying in real space – see example below

• Subtr. Diff. has non-unique mapping from real space to transform space,

as do other (perhaps all?) validation metric discrepancy transforms

• Some transform discrepancy metrics (perhaps all?) are geared toward 

one type of uncertainty, e.g. random or systematic

Real Space vs. Transform Space  

Representation of Model Discrepancy

sim.

Case 1 Case 2

{Sim.} – {Exper.} =

Real Space Difference Space

Both Cases 1 & 2

exper. sim.exper.

Example:
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• Most Validation Frameworks in the literature are built 

exclusively on a probabilistic representation of 

uncertainty.

• Most uncertainties in validation projects do not have 

well-defined probability distributions

 other representations of uncertainty are necessary, 

as accommodated by the Real-Space framework.

• The Framework ultimately represents combined 

uncertainties of disparate type as an uncertainty 

interval.

Real-Space Framework handles Random and 

Systematic Uncertainties represented in Interval, 

Distributional, and Discrete (non-parametric) forms 



(I don‘t expect you

to read these! )

─Experimental uncertainty bar (net)

─Simulation uncertainty bar (net)

exper. sim.

Equations for Constructing Net Experimental & Simulation 

Uncertainty Bars for Real-Space Comparisons



— Vertical Uncertainty Bars

— Horizontal Uncertainty Bars



mock

component

foam
this

Concept of ―Traveling‖ and ―Non-Traveling‖ 

portions of the Experiment Model

(E Model)


connectivity to Downstream predictions

(extrapolation, incl. hierarchical modeling)

• E.g., E model (at right) is the 
model that participates in the 
val. or calibration activity

• Foam behavioral model 
(vaporization & altered heat 
transfer) is object of val. or cal.:

– is the only traveling portion 
of E model

• Everything else in E model does 
not travel to downstream use:

– canister, vents, and slug

– BC models of heating loads 
and radiative and convective 
cooling

Uncertainties are treated in the 

Framework according to whether 

they are affiliated with traveling or 

non-traveling aspects of E model 

Applied

heating



— Traveling Uncertainty

— Non-Traveling Uncertainty



Deal with systematic

uncertainty (epistemic: 

interval & probabilistic) 

over one or multiple 

experiments

Deal with random uncertainty 

(aleatory, variability) over 

multiple repeat experiments 



 Radiation-damaged electronics 

response & recovery/annealing

 model conditioning & validation

 Electro-mechanical component 

internal temperature response 

 Validation refuted the model

 mapped bias & uncertainty to

traveling parameters of the 

model (―model conditioning‖)

neutrons

x-rays

-rays

Device effects

(transistor, diode,

etc.) and 

circuit effects

radiation

damage

The Framework has evolved from 

working many varied applications



 Validation of Propellant Fire Models

 Response/Failure of Steel Pressure Vessels at high temperatures

─ Conditioning of high-temperature material constitutive model for

elastic-plastic response and failure of steel

─ Validation of mechanical failure of steel pressure vessel (ultimately 

foam-filled sealed compartments in weapons)

The Framework has evolved from 

working many and varied applications
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Validation/Conditioning of Foam Thermal Property 

Model at Elevated Temperatures
(thermal conductivity with radiation enhancement term)

Experiments

FE Thermal Model:

• Conduction,

• Convection

• Radiation 

insulation board

decomposed foam 

char matrix

24 thermocouples

on and inside canister

quartz heating lamps

pointed

low-thermal-contact

holding posts

Simulations

Applied

heating

foam

mock

component



Calorimeter 

Response 

at location 10

Validation of Fire CFD sims.

• Validate fire CFD simulations of radiative and convective heating 

of a weapon-like calorimeter in wind-driven fire. 

Air

Inlet

Enclosure

Fuel

Exhaust

Cross-Wind Test Facility (XTF)
CFD mesh

interior of

cone calorimeter

movie

Sandia Thermal Test Complex

Thermocouple TC 5
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• Various parties are still working out the details of model validation —

many different conceptions, approaches, and frameworks exist in the 

literature.

• Therefore, beware the ambiguity involved when one expresses that they 

have ―validated‖ their model, or have a ―validated‖ model.

• The rationale behind the Real Space approach to model validation has 

been sketched here, much more development in the paper.

• The Real Space methodology has been successfully implemented on a 

variety of industrial-scale validation problems.

• Prediction Science requires development of effective and robust 

methodologies for data and model conditioning, verification, validation, 

and risk-mitigated extrapolation for ―best estimate‖ predictions. Progress 

in prediction will depend on advancing these methodologies as well as 

physics models and math/computing.

Closing


