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Introduction @Sandia

This talk surveys various conceptions and definitions of
— models
— model validation
— validated models

A particular philosophy will be presented as the basis for a "Real Space"
approach to model validation (and model conditioning/calibration)

Processes and procedures of the Real-Space approach will be sketched

The pragmatic approach evolved from working many industrial-scale validation
problems featuring a broad variety of real-world conditions and constraints

Among the considerations to be discussed are:

— the place of model validation within the end-to-end mod./sim. enterprise
spanning experiments to prediction
— relationship and connectivity of model validation to
* experimental data and its uncertainty
* basic nature of models
« extrapolative prediction
* hierarchical modeling
 interpretability and practical usability of model validation results and products
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MOTIVATION for model validation @Sandia

As an example, consider a finite-element model of a device or system

» Let all model inputs like material properties and boundary conditions be crisp
values

« All these crisp inputs will have some amount of error
— even if all model inputs are actually measured, measurement error will exist

— typically, the majority of inputs for material properties and model parameters will
come from catalogued values determined somewhere else, under different
conditions

» Model-form error will also exist — all model conceptions are simplified abstractions
of reality; no conception is exact

* The numerous errors in the model (each hopefully “small”’) add to an unknown
discrepancy between model predictions and “reality”

Model Validation
— How well do model results match reality for relevant quantities of interest?

— Is the model “good enough” for defined use purposes of the model? (e.g.,
specific design, analysis, or decision-making purposes)
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Two ELEMENTS of model validation @Sandia

+Accuracy assessment — quantify the discrepancy between model
predictions and reality
— discrepancy is measured via relevant norms or “validation metrics”
— these norms or metrics must be meaningful, interpretable, usable

+Adeguacy assessment —is the discrepancy small enough for stated
uses of the model?

— various approaches and criteria for determining adequacy are proposed in
the literature

« an area of present difficulty and debate...to be elaborated later
» not all validation frameworks address model adequacy

— adequacy can only be determined at validation points in the modeling space,
not at other points where the model is to be used

— thus, the stated objective of model adequacy determination for intended
uses of the model (beyond the validation conditions) is impossible to
achieve fully, but the Real Space approach enables partial achievement



The Contemporary "Standard" Definition @ﬁ:ﬁﬂﬁm
of Model Validation
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Definition used by the recognizing bodies below:

“Model Validation is the process of determining the degree to which a
computer model is an accurate representation of the real world from the
perspective of an intended use of the model.”

« originated by U.S. Dept. of Defense (DoD) — 1996
« adopted essentially without change by:

— American Institute of Astronautics and Aeronautics (AIAA) — 1998
* Guide on V&V in Computational Fluid Dynamics
— U.S. Dept. of Energy (DoE) — 2000
 various program documents
— American Society of Mechanical Engineers (ASME)
« V&V 10 Guide for V&V in Computational Solid Mechanics — 2006
« V&V 20 Standard for V&V in Computational Fluids & Heat Transfer — 2009
— NASA
« Standard for Models and Simulations — 2008

« NOTE — standard definition does not mention model adequacy




Different Interpretations of the Standard @ﬁ:ﬁﬂﬁm
Definition by its Adopters
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Ambiguities regarding model-adequacy element of validation
— DoD (ariginators)
* Accuracy
» Adequacy for Extrapolative Predictions (compile evidence & arguments for or against)

— AIAA V&V Guide; Oberkampf & Roy — V&V in Scientific Computing (2010)
* Accuracy

— ASME V&V20 Standard; Roache — Fundamentals of V&V (2010)
» Accuracy

* Adequacy at Validation Conditions in asymptotic cases (order of magnitude determin.)
— Adequacy in Extrapolation considered to be a different part of the M&S process, e.g. Accreditation

— DoE; NASA; ASME V&V10 Guide
« Accuracy

* Adequacy, but unclear how to determine adequacy requirements at Validation Conditions,
much less how to address adequacy in Extrapolation

— Real-Space Framework
» Accuracy
+ Adequacy at Validation Conditions and Zeroth-order adequacy for Extrapolative prediction




Earlier Consensus Definitions of
model validation, @ggggﬁa,_
and the Need for an Operational Defn. o

* The following respected definitions specifically include adeguacy determination

— Technical Committee on Model Credibility of the Society for Modeling and Simulation Intrnt’l. (1979)
DoD, U.S. Dept. of Agriculture; Europe, Canada, Engrg., Natural & Social Sciences

“Model Validation is the substantiation that a computerized model within its domain of
applicability possesses a satisfactory range of accuracy consistent with the intended
application of the model.”

— Miser & Quade — 1988, Validation chapter in Handbook of Systems Analysis

“Validation is the process by which the analyst assures himself and others that a model
is a representation of the phenomena being modeled that is adequate for the purposes
of the study of which it is a part.”

 The 3 defns. have various differences and shortcomings, but one major difficulty in common
— determine accuracy and/or adequacy of model for intended uses beyond the validation
conditions (extrapolation performance)
— A laudable objective, but how to do? Full determination is impossible in principle.

 Therefore, all three defns. are seen as Objective Statements for model validation:
— THE OBJECTIVE OF model validation is.....this is what to shoot for as an idealized objective

 An Operational Definition is needed....what validation is from an operational perspective —
pragmatically executable and achievable




A Proposed Operational Definition of @ﬁ%ﬁﬂﬁm
model validation (for computational phys. engr. models)
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Model Validation is the compilation of useful indicators of the
accuracy and adequacy of a model’s predictive capability for
particular output quantities (possibly filtered and transformed) that
are important to predict for some purpose, where meaningful
comparison of experiment and simulation results is conducted at
points in the modeling space that present significant prediction
tests for the model use purpose.

— Itis important to make a distinction between objective statements and
operational definitions of model validation.

— Nonetheless, | agree with Patrick Roache (Fundamentals of V&V, 2010)
that definition of specific procedures and processes for model validation
IS vastly more important and meaningful than definitions in the abstract
(like the one above).



De Marsily et al. Concept of
"Strongly" and "Weakly" Defined Models @ﬁg‘t}g‘,‘;‘a,_
(from the groundwater flow literature) rahoratons

* Fully “strongly” defined models have crisp, determined values for
parameters, boundary conditions, etc.

— e.g. a FE model of a device, with crisp parameter values

 Fully “weakly” defined models’ parameters are free variables

— e.g. partial differential equation sets (PDESs) like Fourier's Law and
the Navier-Stokes Equations

» Models exist over the spectrum from fully weak to fully strong



Intersection of Validation and Sandia
Strong and Weak Models @

National _
Laboratories

* Fully strong "deterministic" models generally do not match reality
(non-zero error) and are non-robust in extrapolation

Calibrated strong models, even if they match experimental data, are fragile in
extrapolation beyond the calibration conditions

— no margin for model accuracy degradation

Weaker models having uncertainty can provide margin against accuracy

degradation ® more robust in extrapolation
—~vModel Extrapolation

/
L. o
Deterministic model/\/ N /
Real behavior

Calibration point

Therefore, not necessarily true that the model with less uncertainty is better
Downside of weaker models is that they predict with greater uncertainty
This tradeoff is a subject for further research re. optimized modeling approaches

@& Some weakness in model parameters and/or model-form representation is
required for model predictions to bound or capture reality

* Analogy — more productive to pursue weak solutions of PDEs than strong solns.



Intersection of Validation and o
Strong and Weak Models (cont’d) @l":ﬁf,‘:';?énes

* Fully weak models like PDEs are exceedingly difficult to validate
because they require an essentially infinite number of validation tests
over diverse instantiations of the equations

— How do I validate Fourier’s Law?
& Test it in a huge number of circumstances and see if it holds up.

— Each individual validation test can hide model bias (Type Il and Type X error)
— e.g., this model result not rejected J":\ measurement

Prediction bias errori —__ uncertainty
True value
— The greater the uncertainty in a validation activity,

the more bias a model can have before being rejected.

— If amodel is not rejected over a large number of diverse validation tests then
the assembly of evidence could statistically average-out individual validation
bias-error parallaxes and thereby support the model as true or unbiased

— Ultimately, though, trueness of a law or theory is not provable, just “not
disproved so far” (Karl Popper and others)
+ Always subject to being overturned by new evidence that may come along

» Continual testing in new circumstances is part of this “anti-invalidation” paradigm



Anti-Invalidation approach to validation does not Soncia
apply for most Engineering Application Models @gagg;g?gﬂes

Some validation conceptions apply this line of thinking to strong or semi-strong
application models:

“We can't validate models, we can only show that they are not invalid.”

« Paradigm does not legitimately transfer to application models
— Validation of application models is almost always limited to one or a few validation tests

* non-rejection in one or a small number of validation tests is not enough to statistically
dismiss Type Il or Type X validation error and thereby support the model as un-biased

— Modelers usually don't propose their application models to be unflawed anyway;
just strive for "good enough" (acceptable error) for the modeling job at hand

» Foregone conclusion is that model results are different from the data

— Hypothesis tests for whether the model is different from the data are improperly posed

» skewed toward not rejecting the null HO that model is different from the data, even though
that HO is known beforehand to be less reasonable than alternative HO that a diff. exists

“Interval Null” HO tests for whether the model is different from the data by > some
specified amount A are properly posed, but

 so far in the literature these only consider error A between means of data and model
results—not adequate, as next slide shows




A Model that is “Consistent” with the Data |
is Not Necessarily Accurate or Adequate () i
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Total uncertainty
associated with set
of measurements
(our best perception
of where reality lies)

Example:

measured material
property data as a
function of temperature

200 400 600 800
temperature, K

* The solid black line is a Least-Squares best-fit regression line through the data

* Regression line not an accurate model for material prop. value vs. temperature

— Some validation paradigms would categorize the model as “consistent” with the data
and therefore would accept it (# poses “Model User’s Risk”)

— model too precise, not representative of real property variability
« Under-predicted uncertainty could lead to trouble in downstream uses of model

— model better characterized as: “not fully consistent” or “not inconsistent” with data

» Also demonstrates why popular validation criterion of “means matching” (does
mean of sim. = mean of data?) is not an effective test for model accuracy




A Simple “Real Space”

Accuracy/Discrepancy measure @ggggﬁa,
and Criterion for Model Adequacy
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« Real Space —involves no subtractive difference of results from simulation and
experiment, or other “validation metric” discrepancy measures

« Simple criterion for model adequacy, scaled to experimental uncertainty

_ T 7oL sim
exper. —, '™ sim. exper. —} 1 sim. exper. —}
— — _/ SN— -
This case meets “Zero'"-order” Greater prediction risk
conditions for model adequacy — much of reality lies outside the
« model prediction bounds experimental model predictions
uncertainty bar (as the best available — If data/model relationship remains
evidence of where “reality” lies) consistent in extrapolation then the
« If the data/model relationship remains predictions will not contain reality
consistent in extrapolation (the hope in o _
all modeling), the predictions will bound Adequacy criterion can be relaxed if
reality in the extrapolation conditions auxiliary information is available, e.g.
MReality lying w/in the predictions is what B %; i t;eallty “37 0$$d§ ||3redlct|ons by
a designer or decision maker wants* 0 above andjor Yo below
*assuming non-excessive sim. uncer. bar — However, very difficult to rigorously

extents beyond experim. uncer. bar quantify such allowables (next slide)



Difficulty of Pre-Specified Accuracy

Requirements for Model Adequacy
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* In hierarchical modeling projects a
non-uniqueness problem exists
with Top-Down parsing of
acceptable error tolerances down to
the various submodeling activities

In “isolated” phenominological
model development & validation
work, e.g. turbulence or
constitutive model development at
a university, there is no ‘project’-
level accuracy requirement in the
first place

Potential constraint violation of a-
priori accuracy requirement:

=» Experimental uncer. is lower limit on
validation accuracy requirement that
can be placed on a model.

—not known until after the experims.
performed and processed

Bottom Line: not a viable approach

System-Level risk analysis —
Weapon in a Fire

Multiple underlying submodels:
Fire model for heat load BCs

+
Heat Transfer models (mult. modes)
+
Mtl. behavior & transformation models
+
Component response & failure models
+..



Real Space vs. Transform Space -
Representation of Model Discrepancy @l"aagf,‘:';?éries

* E.g., subtractive difference is a popular way of comparing data against model
predictions for model validation assessments

» The subtractive difference transform yields a less definitive validation result
vS. staying in real space — see example below

« Subtr. Diff. has non-unique mapping from real space to transform space,
as do other (perhaps all?) validation metric discrepancy transforms

« Some transform discrepancy metrics (perhaps all?) are geared toward
one type of uncertainty, e.g. random or systematic

Distribution
f ibl
Example: giapsoss'b €
exper. —1 I— sim. exper. —I I—sim. 1{Sim.} -{Exper.} :{ I
Case 1 Case 2 Both Cases 1 & 2
N— I — _/

Real Space Difference Space



Real-Space Framework handles Random and
Systematic Uncertainties represented in Interval, @ﬁgﬂﬂﬁm
Distributional, and Discrete (non-parametric) forms
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* Most Validation Frameworks in the literature are built
exclusively on a probabilistic representation of
uncertainty.

* Most uncertainties in validation projects do not have
well-defined probability distributions
» other representations of uncertainty are necessary,
as accommodated by the Real-Space framework.

 The Framework ultimately represents combined
uncertainties of disparate type as an uncertainty
Interval.



Equations for Constructing Net Experimental & Simulation
Uncertainty Bars for Real-Space Comparisons

Model Experiment
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Concept of “Traveling” and “Non-Traveling”

portions of the Experiment Model @ﬁ:ﬂﬂﬁm

(E Model)
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@& connectivity to Downstream predictions
(extrapolation, incl. hierarchical modeling)

* E.g., E model (at right) is the
model that participates in the
val. or calibration activity

« Foam behavioral model
(vaporization & altered heat
transfer) is object of val. or cal.:

— Is the only traveling portion
of E model

» Everything else in E model does
not travel to downstream use;

— canister, vents, and slug

— BC models of heating loads
and radiative and convective
cooling

Applied
heating

v

foam

Temperature (K)

Uncertainties are treatec
Framework according to whether

they are affiliated with traveling or
non-traveling aspects of E model
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Deal with random uncertainty
(aleatory, variability) over
multiple repeat experiments
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interval & probabilistic)
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The Framework has evolved from
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working many varied applications @laar}gg?mes
» Radiation-damaged electronics AN _Experiment |
response & recovery/annealing - Simulation  |——
= model conditioning & validation VARG
. - E /\V/\/:b\ﬂ“ﬁ«x =IN
eutrons T Device effects ——
V\ ™ (transistor, diode, T R
X-rays  radiation s etc)and
Yo-rays damage [ circuit effects T )
» Electro-mechanical component w00 | P s —

Internal temperature response
= Validation refuted the model

* mapped bias & uncertainty to
traveling parameters of the
model (“model conditioning™)

Temperature [*C)

///‘A:_,.--_.‘ Ml Bl ™
Ve

Data

Model (nominal)

- - - - Data + 2sigma

- - - -Data - 2sigma

500 1000 1500

Time (s)
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The Framework has evolved from o
working many and varied applications @P’:ﬁﬁ:‘;ﬁ'ﬁm

» Validation of Propellant Fire Models ﬂ

» Response/Failure of Steel Pressure Vessels at high temperatures

— Conditioning of high-temperature material constitutive model for
elastic-plastic response and failure of steel

—Validation of mechanical failure of steel pressure vessel (ultimately
foam-filled sealed compartments in weapons)

TEMP (K)

1000
824
649
473
297

m temperature vs. Time

Maximum temperature vs. Time ->> 0002
1000




on/Conditioning of Foam Thermal Property
Model at Elevated Temperatures @sma
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(thermal conductivity with radiation enhancement term)

Experiments Simulations

quartz heating lamps

‘.

insulation board

24 thermocouples

insi : ¢ FE Thermal Model:
on and inside canister =

foam « Conduction,
 Convection
 Radiation

pointed
low-thermal-contact
holding posts

350

300 |

550

decomposed foam 2 7
. @ 400
char matrix 4
350 *
300 o ;-4—;:1?"5::" Experiments

e Prediction mean
Prediction uncertainty band —------

0 500 1000 1500 2000 2500

25 Time (s)




Sandia Thermal Test Complex

Validation of Fire CFD sims. | E¥asci® ()
DR - ~ S Laboratories

 Validate fire CFD simulations of radiative and convective heating
of a weapon-like calorimeter in wind-driven fire.

Cross-Wind Test Facility (XTF)
CFD mesh

\

interior of
cone calorimeter

Calorimeter :
Response 200 e -

. o} 50 100 150 200 250 300
at |Ocat|0n 10 time, [experiments - minutes] [simulations - secor




Closing () i
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« Various parties are still working out the details of model validation —
many different conceptions, approaches, and frameworks exist in the
literature.

* Therefore, beware the ambiquity involved when one expresses that they
have “validated” their model, or have a “validated” model.

* The rationale behind the Real Space approach to model validation has
been sketched here, much more development in the paper.

« The Real Space methodology has been successfully implemented on a
variety of industrial-scale validation problems.

« Prediction Science requires development of effective and robust
methodologies for data and model conditioning, verification, validation,
and risk-mitigated extrapolation for “best estimate” predictions. Progress
in prediction will depend on advancing these methodologies as well as
physics models and math/computing.



