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* Modeling Needs and Challenges

We're interested in low temperature collisional plasma phenomena. Our
applications generally share the following requirements:

— Kinetic description.

— Collisions/chemistry, including ionization (arcs). Neutrals are important.
—Very large variations in number densities over time and space.

— Sheaths.

— Real applications with complex geometry.

Examples:
— Vacuum arc discharge
— Plasma processing
— Spark gap devices
— Gas switches

) W Crucible
— Ion and neutral beams I
~  Vacuum coating

We are especially interested in the transient start-up of arc-based devices.
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Description of Aleph

« 2D or 3D Cartesian
» Hybrid PIC + DSMC
» Electrostatics
« Fixed B field
« Solid conduction
« Ambipolar approximation
« Dual mesh (Particle and Electrostatics/Output)
« Advanced surface (electrode) physics models
» Collisions, charge exchange, chemistry,
excited states, ionization
« Advanced particle weighting methods
« Unstructured FEM (compatible with CAD)
« Massively parallel
« Dynamic load balancing (tricky)
» Restart (with all particles)
» Agile software infrastructure for easily extending BCs, post-processed quantities, etc.
» Currently utilizing ~1000’s of processors (>30M elements, >1B patrticles)
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Description of Aleph

Basic algorithm for one time step of length A¢:

. . : At
Given known electrostatic field E" move each particle for - Via:
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Compute intersections (non-trivial in parallel).
Transfer charges from particle mesh to static mesh.
Solve for E* !

V- (eVVPT) = —p(x™)

En+1 — _vv*n#»l

Transfer fields from static mesh to dynamic mesh.

Update each particle for another % via:

S e Ve At 4 gpntl

T T 2 m;
Perform DSMC collisions: sample pairs in element, determine cross section and probability of
collision. Roll a digital die, and if they collide, re-distribute energy.

Perform chemistry: for each reaction, determine expected number of reactions. Sample particles
of those types, perform reaction (particle creation/deletion).

Reweight particles. Sometimes.
Compute post-processing and other quantities and write output.
Rebalance particle mesh if appropriate (variety of determination methods).
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* Dynamic Particle Reweighting

» Maintain velocity distribution function (vdf) to the extent possible (don’t
assume Maxwellian). Don'’t use grid-based methods — don’t “resample”
particle velocities.

« All other PIC/DSMC internals adapted to include variably weighted
particles — every particle can have a different weight.

» Minimize energy discrepancy when it cannot be avoided.

Basic idea:
for each cell,
for each particle type S,

let N = # of particles of type S

If NS < N/OW
clone more S particles

if Ng > Niigh,
merge some S particles
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*" Cloning

1. Choose a high weight parent particle.
2. Generate a pair of random positions in the element, symmetric about the
parent position.

3. Compute modified velocities at the new positions by accounting for
displacement in the potential field.

4. If nonphysical velocities result, repeat 2-3.
5. Adjust weights for parent and new particles.
Repeat 1-5 until target number or limiter is met.
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*" Merging

5.
6.

. Choose a random pair of S particles.

Compute center of mass position.
Compute modified velocities at the center of mass by accounting for

If velocities are “too different,” reject pair and repeat 1-3.
Calculate average velocity, conserving momentum.
Adjust weight and record difference in kinetic energy.

Repeat 1-6 until target number or limiter is met.

R

displacement in the potential field.
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Merging

What makes particles “too different” to merge?

Only approve merge pairs that are close in both position and velocity — close
in phase space.

The spatial bin is the element, approves any pair.

The velocity bin has many options. Can use MC sampling to select pairs
randomly. (let |v,| <|v,|)

Velocity Sphere Velocity Proportion Velocity Interval

‘Vz —Vl‘ < ‘Vl‘sin(G) vV, vV, > ‘levz‘cos(G) vV, vV, > ‘levz‘cos(G)

‘V2‘<R‘V1‘ ‘Vz‘—‘vl‘<v0=a1/kBT/m
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} Example: Xe Sheaths

Injection
V=5V
Nyer = Ny, = 107%/cm3
v = 3 cm/us Side walls
T,=1eV dV/dn=0 Wall
Tyer = 300K specular V=0V
Ax{
10A, = 300Ax
Bulk plasma parameters Left side of mesh

-A—J »._4 '%J e

Ap=7.4x103cm
Ax=25x10%cm

At =20 ps Two solutions:
Ay /Ax = 30 * Fixed particle weight
w, At =0.11  Dynamic particle weight (Merge + Clone)
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density (fixed weights)
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* Example: Growing Xe Sheaths

Injection

V=235V

Nyer = Ny = 10'%cm3 to 10'2/cm3 over 20 transit times

v = 3 cm/us Side walls

T.=1eV dV/dn =0 Wall

T+ = 300K specular V=0V
Ax{

Y

(10 to 100)A, = 300Ax

Bulk plasma parameters

Vgonm = 0.086 cm/ps Two solutions:

Ap=7.4x103cmto 7.4 x 104 cm  Fixed particle weight

Ax=25x10%cm « Dynamic particle weight (Merge + Clone)
At = 20 ps

A /Ax =30 to 3 Small weight vs. large weight vs.

w, At =10.11 to 1.1 requirements...
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density (fixed weights)
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log-scale density (fixed weights)
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total # particles

log{total # particles)
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94% reduction in runtime!
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Example: 1D Cu Arcs

Injection “cathode”

fe, = 10%2/cm?/s
f, = 10%*/cm?/s
Vou = Ve = 0m/s

T, =2.9x 103K Side walls
To, =2.9x 10K dV/dn=0 Wall “anode”
V=0V specular V = 10kV
Ax {
20 um
Both “electrode” surfaces sputter One bulk reaction
e- > Cu (2.9 x 10%K) at 1% vyield e-+ Cu > e-+ Cu+ + e-

Cu = Cu+ (2.9 x 10°K) at 100% yield
Cu is also reflected specularly

Simulation parameters

Ax=25x10%cm

At=1fs
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Two solutions:

 Fixed particle weight

* Dynamic particle weight
(Merge + Clone)
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Example: 1D Cu Arcs

80000~ Largest-Time Routines

No reweighting oo

= =Cm merge: linear solve

75000 = =Ccm merge: move
30138s total

700004

650004

Reweighting all species

882s move
+ 148s reweighting
= 1030s total

£

guuuuf
97% reduction in runtime! ...

100004

50004

time step
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* Conclusions

» Dynamic particle reweighting can provide very significant savings in
runtime.
» As with every other model/algorithm, one size does *not* fit all!

» Good target: transient growing simulations where accuracy is required at
all timescales.

« Bad target: simulations with essentially fixed densities.

Future Work

* Allow [Ny, Ny,,p] to vary by species, location, time, collisionality, other
state parameters, ...

« Better ways to correct for energy discrepancies. Have considered creating
the upper triangular Ng x Ng matrix of energy discrepancies to merge the
optimum pairs. “Full pivot merge”

« |dentify a good problem where cloning does more than just provide smooth
output. E.g., reaction system based on trace species. Cloning will provide
more particles of the trace species for less noise in the reaction rate.
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Thank Youl!



