
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

A Hybrid Parallel Sparse Solver 
(Preconditioner)

Siva Rajamanickam

Erik Boman

Michael Heroux

Scalable Algorithms Department

Sandia National Laboratories

SIAM CS&E, Feb. 2011

#2009-5250C

SAND2011-1225C



Slide 2

Outline

• Motivation for HyperLU

• Partitioning and block bordered form

• Schur complement and Probing

• Algorithm summary

• Numerical results

• Future work



Slide 3

HyperLU: Parallel Hybrid Sparse Solver

• Goal: Solve large-scale sparse linear systems 

on modern architectures

• Leverage existing parallel iterative solvers 

across nodes (MPI-based)

– Multigrid, domain decomposition, etc.

• Need better sparse solver on the node

– Core counts increase rapidly

– Use threaded or hybrid programming model

• HyperLU is a new hybrid solver. It can be used

– As a stand-alone iterative solver 

– As a preconditioner for subdomains



Slide 4

Decomposition by Partitioning

• Bordered block diagonal form exposes parallelism.

• We use hypergraph partitioner (Zoltan) to permute system to 

singly (unsym.) or doubly (sym.) bordered block form.

• Diagonal blocks can be solved independently, but couplings 

along borders remain.

• P1 … P4 can correspond to either cores or UMA regions.

P1

P2

P3

P4

P1

P2

P3

P4



Slide 5

Decomposition by Partitioning

• Why limit the subdomains to UMA regions ?

– Threaded solvers can take over in UMA regions 
without NUMA concerns. 

– Limits the size of the border

– Less work for partitioning

• Solver framework

– Symmetric – Factor the square diagonal blocks

– Unsymmetric – Factor the “square” part of the 
rectangular diagonal blocks (partial pivoting across 
all rows/maximum matching)



Slide 6

Schur Complement Strategy

• Let

– where D is block diagonal

• Schur complement:

• Exact S is almost dense, so must be 

approximated by sparse S’

– Common approach: Sparsify by dropping entries

– We choose probing method instead

A 
D C

R G











SGRD1C



Slide 7

Probing

• Probing is a method to cheaply build S’≈S

– Chan & Mathew (1992)

• First select sparsity pattern of S’ 

– For example, tridiagonal, pattern(G)+ few diagonals

• Then compute values of S’ by applying the 

operator RD-1C to a set of probing vectors.

– The probing vectors can be found by coloring the 
pattern of S’.



Slide 8

Algorithm Summary

Setup:

– Partition matrix into block bordered form

– Factor diagonal blocks 

– Form S’ by probing

Apply:

– Xs=S’\b

• Solve for S’ using a few inner iterations

– Xi = Di\(bi-C * Xs)

• Matvec and forward/back substitution

All steps can be done in parallel!



Slide 9

HyperLU Implementation Details

• Implementation based on the Trilinos

Framework

• Epetra based implementation for symmetric 

permutations with Ifpack wrappers.

• Amesos/AztecOO for the solvers

• All the Matvecs are distibuted and the solves 

are local

• Currently iterations on the whole matrix even 

though the iteration over S is sufficient.

– New interface will almost look like a direct solver 
(which will use an iterative solve underneath)



Slide 10

HyperLU: Preliminary results

• 180 matrices from UF sparse matrix collection, size 1k-10K

• Each local blocks are of the order of 2500x2500 – Need to exploit 

the parallelism in the UMA cores.

• The pessimistic elimination tree can provide only limited 

parallelism.



Slide 11

HyperLU preliminary results

Dimension nproc = 2 nproc = 4 nproc = 8

7500x7500 30 32 35

15000x15000 29 32 34

30000x30000 32 32 35

• Finite Element matrix from MATLAB 

gallery.

• Compute partitions with Hypergraph

partitioning with symmetric permutation.

• Use AztecOO solver with Ifpack wrapper 

of HyperLU



Slide 12

HyperLU preliminary results

• Matrices of size 10K to 20K from UF sparse matrix collection, 

Tramanto, MATLAB (synthetic FEM)

• Number of iterations == 0 => No convergence

• HyperLU as good as other incomplete factorization preconditioners

Matrix Name HyperLU ML ILU ILUT

Cage11 13 14 12 12

Crystm02 16 15 16 52

cbuckle 101 0 0 0

Lourakis 28 20 42 38

FIDAPex35 16 0 0 0

Oberwolfach 0 27 0 0

fem_3d_ther
mal 25 23 26 25

Dubkova1 56 55 189 154

Tramanto 112 0 0 0

wathenLarge 35 14 36 37



Slide 13

Work in Progress

• Two-level parallelism

– Coarse-grain: Block structure from partitioning

– Fine-grain: Multithreaded sparse direct solver

• Can use Pardiso, SuperLU-MT, KLU2, …

• Incomplete factorization of blocks

– With an outer iteration over the entire matrix, no 
need to solve subproblems exactly

• Open Question: How do we load balance the inner 

iteration?



Slide 14

Summary

• HyperLU with two-level parallelism under 

development.

– We intend to use this within a single node, so it may be used in 
a three-level scheme.

– Hypergraph partitioning can partition for the UMA regions 
keeping the Schur complement small.

– Multithreaded direct solvers need to scale for only a modest 
number of cores within the socket.

– Flexible software framework allows any direct or incomplete 
solver on the subdomains.

– Preliminary results are very promising.

– Planning release in Trilinos.



Slide 15

Backup


