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ALEGRA magnetohydrodynamic (MHD) modeling provides for

predictive design of flyer plate experiments (Ray Lemke)

Two-sided Strip-line Flyer
Plate Experiment

Resistive MHD

Accurate electrical conductivities
(Desjarlais QMD/LMD).

Sesame EOS for materials.

Circuit model for self-consistent
coupling.

Dakota optimization loops
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Balance laws for Resistive MHD
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In addition, closure relations for the stress, electrical conductivity and heat flux
are required.
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ALEGRA-MHD Algorithm

The strategy used in ALEGRA for MHD is a time operator-split algorithm
for ideal and resistive MHD with 3 distinguishing phases:

1.Ideal MHD step: integration of equations of motion in moving
(Lagrangian) frame.
« Compatible node/edge/face centering of magnetic quantities
« Central difference time integrator (time-staggered)
« Artificial viscosity for shocks
« Maxwell stress tensor for magnetic forces y

. i i = [ B.da=| B-da=0
Magnetic flux conservation. G )y Brda= [ Bda

2.0ptional remesh/remap operation which respects the div B constraint
for magnetic flux. (Constrained transport)

3.Magnetic diffusion at the new coordinates: transient magnetics
solution for resistive component of field evolution.
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ldeal MHD wave propagation

The equations of ideal MHD are hyperbolic and have seven real
eigenvalues, corresponding to seven characteristics or modes:
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Magnetosonic waves:
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« 2 “fast” magnetosonic modes

« 2 modes

2 “slow” magnetosonic modes

1 contact or “entropy” mode

* [In pure gas dynamics: only 3 real

eigenvalues — only 3 modes.]

Alfvén waves:
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Features of ideal MHD

The wave speeds are dependent on the wave front normal relative to
the magnetic field (example with Alfven speed=.9 * sound speed)

Phase speeds Wave fronts

Largest fast speed

vf

slow

Alfvén=Transverse=intermediate=rotational
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The fastest “fast” wave speed controls time step

For MHD, the CFL-based time step control used in solid dynamics and
hydrodynamics is modified to account for magnetoacoustic wave propagation

Atc - _ I B
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Alfvén speed

Sound speed

The explicit hydro step drops the time step as the fast wave speed increases.
What if the density goes to zero where the field is large? We will be spending
resources tracking waves in regions which can have little mechanical effect.

For practical reasons explicit
MHD codes need some
approach to deal with the fast
wave speed problem.
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Boris’'s Semi-relativistic Correction

Boris, J. P., “A physically Motivated Solution of the Alfven
Problem,” NRL Memorandum Report 2167, 1970.

Boris proposed keeping the displacement current terms in the
momentum equation to allow a user to manage the effect of the
Alfven speed increasing beyond bounds.

This is termed a “semi-relativistic correction” and effectively
results in a modified mass term in the momentum equation.

The user then has the option of artificially reducing the speed-of-
light value in the modified mass term.
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Lagrangian Step MHD Momentum Equation
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Full semirelativistic
momentum equation
(Kovetz, p 223)

Boris suggested
dropping RHS
displacement current
terms of O(v2/c?)

The advection terms
associated with the

Lagrangian form are
of the same order

Remove O(v?/c?)
terms but keep LHS
tensor mass term

Boris also suggesting
dropping the outer
product term
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Final Modifications to Lagrangian MHD Equations

2
%/(1+t—f)pvdvzfv-(—pl)+v' (LBQXJB—LBZI) dv
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Ho 210
/

Mass multiplier (12 + ?J2
’U2 — A The maximum fast speed is
f ) reduced by the square root of
1 + (’UA/C) the inverse mass multiplier.

Generally speaking using the true light speed in the mass multiplier will have no
effect or benefit. In order to reduce the overall impact on the physics, the
correction should be applied only where the fast speed is undesirably too large.

,U?na-.r
v =min | 1, ! vVa?+ v = ay/a? + 05
va? +v4

Also, reduce the accelerations by a factor proportional to o? .

The algorithm is equivalent to a spatially varying “light speed.”
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AL 1D Eulerian flyer for 3 different levels of
maximum fast wave speed ( 3.e8, 80.e3, 40e3)
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2D Flyer Calculation

25,000 sec = 3.e5km/s
6.94 hours B

_ Baseline method
Wall clock time ..

Obviously, there is significant incentive and a practical requirement
to control the very fast waves speeds.

The key is to carefully understand what are the consequences
relative to critical design metrics. This is work currently in progress
but the approach appears very promising.
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Summary

The “physically motivated” approach suggested by Boris is a
convenient way to view a method for adjustment to the
MHD equations to deal with very fast MHD wave speeds.

In the Lagrangian MHD framework an additional advection
term is neglected which is of the same order as the
neglected displacement current terms.

Effective use relies on adjusting the equations only in
regions of very high fast wave speeds. This is equivalent to
a spatially varying “c” in the factor multiplying the mass.

Critical performance improvements can be gained for
practical flyer plate configurations if used judiciously.
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