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Abstract—Network measurement is a discipline that provides
the techniques to collect data that are fundamental to many
branches of computer science. While many capturing tools and
comparison have made available in the literature and elsewhere,
the impact of these packet capturing tools to existing processes
have not been quantitatively studied. While not a concern for
collection methods in which dedicated servers are used, many
usage scenarios of packet capturing now requires the packet
capturing tool to run concurrently with operational machin es.

In this paper we perform experimental evaluations to the
performance impact that packet capturing process have on web-
based services; in particular, we observe the impact on web
servers. We find that running packet capturing process indeed
impacts the performance of web servers, but on a multi-core
system the impact varies depending on whether the two are co-
located. In addition, the architecture and behavior of the web
server and scheduling is coupled with the behavior of the packet
capturing process, which in turn also affect the web server’s
performance.

I. I NTRODUCTION

Network measurement is a discipline that provides the
foundation for many studies in networked systems. From
capacity planning to anomaly detection to network security,
being able to measure and collect data from the network
is crucial for the success in these fields. One such popular
method to collect data from the network is packet capturing.
Because the collected data (the packet) contains application-
invariant and application-specific information, it is a good
candidate to for a one-time data collection that can provide
various types of analysis. In addition, packet capture tools
are widely available (e.g., Wireshark, TCPDump for Linux,
NetMon for Windows), and there are mature libraries for
custom codes to tap into the packet monitoring process.

In the past network measurements are often collected at the
routers, by means of port mirroring and dedicated machine to
collect the packets. Another way to monitor the network is to
do so at the edge of the network (i.e., monitor at the server
machines). This reduces the need to have a dedicated machine
and also amortizes the cost of packet capturing over all the
machines.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energys Na-
tional Nuclear Security Administration under Contract DE-AC04-94AL85000.

The research community is ripe with methods of improving
packet capturing efficiency. However, not many research works
have looked into the performance impact to existing processes
already on the server machine. Although not a concern if ded-
icated machines are used to capture packets, the performance
impact of capturing process becomes important if it is to co-
locate in the same physical machine as running processes.
In fact, in some cases monitoring at the server machines is
preferred, if not essential. For example, there are works that
attempt to discover application-level dependency [1], [2]while
others try to localize the source of faults from information
derived from captured packets [3]. Without capturing the
network information at the server machines, details such as
application-level dependency is either impossible or much
more difficult to capture anywhere else.

Recognizing the deficiency of research work in this area,
we carry out experiments to examine the impact that packet
capturing process has on web-based services. In particular,
we test packet capturing process’ performance impact to web
servers at their saturation point. This gives us some insight to
the maximum performance achievable when packet capturing
process also running, and whether it adversely impacts existing
services.

The contributions of this paper are:
• Experimental evaluation of the performance impact of

capturing process to co-located web-based services.
• Deployment of two web servers of different architecture

to validate the universality of observed results.
• Measurement of both system-level statistics and user-

perceived statics to observe correlation between system-
level statistics and user-perceived statistics.

In Section II we briefly go over the packet capturing process;
Section III presents the evaluation methodology and the results
obtained; Section IV discuss the related works and Section V
discusses future works and concludes the paper.

II. PACKET CAPTURING PROCESS

This section provides a high-level overview of the packet
capturing, as to make the discussion in this paper complete.
The goal of this section is not to provide a complete detail
of the internals involved in packet capturing, but to illuminate
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the many processes involved in delivering the packet from the
network card to the kernel and to the user application. This
will help us understand the behaviors observed in Section III;
details of the packet capturing process described here can be
found in [4], [5].

When packets is transmitted over the wire, the network
interface card (NIC) normally pick up the packet if the packet
is destined for it; under promiscuous mode it will pick up all
packets sensed. Once the packet is recognized for reception,
the NIC’s interrupt routine is invoked, in which the routine
allocates a space in memory and copies the packet into the
allocated memory. The packet is not immediately processed
after moving to the memory, as the interrupt routine is intended
to perform as little operation as possible. When the packet is
picked up later by the software interrupt handler, it passesthe
packet upwards to the appropriate protocol handler based on
the packet’s protocol type.

For packets destined for packet capturing tools, a special
handler is used so that all the packets can be handled and
subsequently forwarded to the capturing process. Correspond-
ing with this special handler is a special socket type called
PF PACKET, and the packet is copied and delivered to a
socket of PFPACKET type. Copying is needed because the
packet might be actually destined for an application at the local
machine, so the data must be copied for separate consumption
by the capturing process and the application.

While this overview is brief, it illuminates the many trans-
actions involved in capturing the packet, and these transactions
will result in the use of CPU resource. The experiments to be
discussed in Section III are aimed at observing how its uptake
of CPU resource affects the performance of web servers.

III. E VALUATION

In this section we present the experimental results obtained
when running the packet capturing tool under various ap-
plication scenarios. We will first discuss the set-up of our
experiment and the metrics we set out to measure; then we will
discuss the results of the experiment and various inferences
drawn from those results.

A. Experimental Set-up

To observe the effects of packet capturing on applications,
we deployed two web servers and collected various perfor-
mance metrics when packet capturing was turned on. The
web servers used are Apache [6] and Nginx [7]. We choose
to use Apache because it is rated the most-used web server
according to the latest survey by NetCraft (February 2011 at
the time of writing) [8]; while Nginx is also used to because
its architecture is fundamentally different from that of Apache.

The Apache architecture offers various Multi-Processing
Modules (MPM) as a way to scale the web server with increas-
ing user demand. These MPMs are either multi-processed,
multi-threaded, or both. However, Apache is based on blocking
method calls according to the comparison made in [9] (also
corroborated in [10]. One implication of such an architecture
means that in order to scale, the number of threads and process

needed to spawn also increases. On the other hand, Nginx
[7] is a highly-scalable web server developed to address the
C10K problem [11]. Nginx operates under the asynchronous
call model, so a single process can scale quite well against
increasing concurrent request volume.

To measure the performance impact of packet capturing,
we monitor the CPU/memory/bandwidth utilization of all
applications, and appliaction-specific metrics if the specific
experimental tools provides additional information. The mon-
itoring tool we used in this experiment is a vanilla TCPDump,
as we would like to observe the impact of a free and widely
available tool without any performance modification to it
(e.g., mmap extension, PFRING extension [13]). For the
web servers, we use HTTPLOAD [12] to measure the web
servers’ performance. In addition, for all the experimentsthe
web server is hosted on a DuoCore system, but we confine
the web server to a single core. This allows us to experiment
with co-locating and separating the packet capturing and web
server process. By doing so, we can observe the effect that
sharing CPU resource has on the performance degradation of
the web servers.

In the following discussions, we only report the
CPU/bandwidth utilization of the three universal metrics col-
lected because memory footprint in all scenarios do not reach
system threshhold.

B. Web Servers

Figure 1 and Figure 2 shows the CPU and bandwidth
utilization for one run of the experiment, when running the
HTTP LOAD to retrieve files from the web servers. For each
plot we show the metric in the absence of TCPDump and
in the presence of TCPDump. In addition, we also vary the
location of TCPDump from co-locating with the web server
process to residing on a different CPU core.

Upon first glance, we first discover that the behavior of
Apache and Nginx are visibly different, with Apache more
prone to CPU and bandwidth fluctuation, while Nginx is more
stable in both aspects. This could be attributed by the fact
that Apache’s method of scaling with demand results in much
more context switches between the various worker threads,
resulting in the performance fluctuation. While Nginx is using
much less number of processes, and is able to serve requests
without getting constantly interrupted.

With the web server and TCPDump pinned to different
CPU core, both processes are shown to take up significant
amount of CPU resource. In both types of web servers, the
web server process takes up nearly one hundred percent of the
process while the TCPDump process also consumes significant
CPU resource. Since the sum of the their CPU utilization is
over one hundred percent, this confirms that both processes do
indeed run on its own core (as each CPU core has one hundred
percent resource, making total available resources two hundred
percent).

When the server and TCPDump process are bound to the
same CPU processes, the Apache server seems to be holding
more share of the CPU resource while Nginx expectedly
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(a) CPU Utilization For Apache and TCPDump When Pinned To Different
CPU Core
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(c) Bandwidth Utilization When Apache and TCPDump Are Pinned To
The Different (left) Or The Same CPU Core (right)

Fig. 1: Apache Results
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Fig. 2: Nginx Results

shares the resource equally with TCPDump. In fact, in our
initial experiment TCPDump has almost no access to the
CPU, using only a few percent of the CPU resource at any
given time. The shown graph is showing TCPDump’s CPU
utilization when Apache’s niceness is increased to fifteen
(out of maximum of nineteen), making it less favorable to
scheduling than TCPDump. Even so, TCPDump is still not
receiving equal share amount of CPU utilization to capture
packets. This phenomenon can be explained by understanding
the method in which Apache scales with increasing user
demand. To maintain scalability, the worker MPM in Apache
has a parent process that monitors and distributes incoming
load. The parent process spawns a number of child process that
actually serve the request, with the maximum number of child
processes constrained by the ServerLimit directive (defaults to

sixteen, which is our setting). The kernel scheduling algorithm
would then try to equally distribute the available CPU resource
to all active process, majority of which belongs to Apache. On
the other hand, Nginx and TCPDump expectedly shares the
CPU resource equally, due to the fact that only one active
Nginx process is actively serving incoming requests. This
result has significant implication to the efficiency of the web
server and packet capturing process. That to ensure capturing
process has access to enough CPU to process the captured
packet, it should be scheduled on a separate core. If the
capturing process is to be co-located with the web server, care
must be taken to understand the structure and behavior of the
web server, to ensure the capturing process also has access to
the CPU resource.

Next we look at the bandwidth utilization result. When



 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

Different Core

Sam
e Core

F
et

ch
es

/S
ec

Apache Performance

No TCPDump
TCPDump Normal

TCPDump Quiet
TCP Write To Disk

(a) Apache Server’s Performance

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

Different Core

Sam
e Core

F
et

ch
es

/S
ec

Nginx Performance

No TCPDump
TCPDump Normal

TCPDump Quiet
TCP Write To Disk
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Fig. 3: Web server performance in fetches/second

TCPDump and the web server are pinned to different CPU
core, the cpu utilization for both Apache and Nginx are fairly
stable. However, when they co-exist on the same CPU core,
one can observe that Apache’s bandwidth fluctuation is visible,
though not unreasonable. Nginx, on the other hand, remains
stable in both scenarios. A common trend in both web servers
is that the achieved bandwidth is lower in the case when
TCPDump is running (regardless of its co-location status with
the server process), with the achieved bandwidth visibly lower
when the two process are co-located. It is interesting to note
that, even though Nginx’s CPU consumption has decreased
by fifty percent, its achieved bandwidth has only dropped by
twenty to thirty percent.

While these metrics shed some light on the resource con-
sumption and possible performance of the system, they do
not explicitly tell us the performance that users can expect.
To gain more insight, we scrape the reports generated by
HTTP LOAD at each client machine at the end of each
experiment. Figure 3 shows the aggregate number of fetches
per second that are observed from all the clients. We note
that the baseline experiment (i.e., TCPDump is not running)
shows the performance of Apache and Nginx is quite good.
With the presence, of TCPDump, the performance of the web
server varies depending on the co-location. When TCPDump
is not co-located with the server process, TCPDump seems
to decrease the average performance of the web server by
only a small percentage. However, when TCPDump co-locates
with the server process on the same core, the result is more
dramatic. Correlating the results in Figure 3 with Figure 1b
and Figure 2b, we can see that the CPU share TCPDump has
obtained is directly proportional to the decrease in the average
fetches per second achievable. The significant performance
degradation for the case where TCPDump and the server pro-
cesses are on same core – but little performance degradation
when on different core – suggests that CPU utilization is the
main source of the web servers’ performance degradation.

In summary, the experiments carried out in this section
implies that CPU utilization alone is a good performance
indicator for web servers. In the case for Apache, even though

it dominates the CPU when co-located with TCPDump, the
fetches per second achievable is considerably lower; while
Nginx consumes much less CPU but has similar performance
degradation as Apache. However it is undeniable that the
presence of TCPDump has negative performance impacts
to the web servers, so care should be taken when running
packet capturing process such as TCPDump, as to ensure
the performance impact to the web servers is minimal. In
addition, when TCPDump has equal opportunity to contend for
the CPU resource it does consume a non-trivial amount, and
this has performance impact for admins looking to consolidate
different types of task onto a single machine. For tasks that
are CPU-bound, consolidating it with machines running packet
capturing processes could elongate the task completion time
as well as diminishing the number of packets captured.

IV. RELATED WORKS

For evaluation of packet capturing tools, the closest works
to this paper are those that either explicitly evaluate packet
capturing performance or attempts to improve the packet
capturing performance. This is because in both types of work,
an evaluation of the various aspects of packet capturing tools
such as CPU utilization and packets captured are usually
presented. Below we briefly describe both types of work.

Deri [13] has suggested that the packet capturing process
is inefficient due to overhead involved in copying the packet.
The work proposes a new socket type, PFRING, in which
the packet can be copied directly from the device driver
buffer to user-accessible memory, drastically reducing memory
allocation and copying operations. A later work improved
upon PFRING by proposing a new architecture in which
multi-core processor can be utilized to increase the monitoring
capability of the system [14]. In both of these works, Deri et
al. discovered that the capturing process do not handle high
traffic volume well due to the memory operations from device
driver to kernel and from kernel to user level, as well as sub-
optimal utilization of resource available at device and kernel
level.

In [15], [16], the authors investigate the performance of



packet capturing tools in various software and hardware plat-
form. The metrics investigated in these works are the packets
captured [15], [16], with [15] having some emphasis on the
CPU utilization and [16] focusing on the percentage of packets
captured. Both works are important because they evaluate
the performance of packet capturing tools using common
platforms, so the valid conclusions can be drawn regarding
the hardware or software stacks involved in packet capturing.

Our paper differs from all these works in that we do not
emphasize on the performance of the packet capturing tool, but
whether the packet capturing tool affects existing applications,
and if so to what degree. Even though the hardware used to
host the capturing process and web server is multi-core, we
only utilize one core for either the web server or the packet
capturing process. This is so we could monitor the effect of
co-locating the two processes, and have shown that co-location
causes dramatic performance degradation to the web servers.

V. CONCLUSION AND FUTURE WORKS

In this paper we examine the performance of web servers
in the presence of packet capturing process. We find that CPU
sharing is directly proportional to the performance degrada-
tion experienced by the web server, and separating the two
processes onto different cores improves the performance of
the web server.

This work is a good start, but more environments can be
considered:

• Serving larger web pages: We need to repeat the
experiments for the case when web servers are serving
larger web pages. This would make the web server more
I/O bound, and having the capturing process write to disk
should create another source of performance degradation.

• Serving dynamic pages: In this paper we have looked
at the case when web servers host static pages, dynamic
page would put more CPU demand on the server, and the
performance impact of such needs to be investigated.

• Caching pages: When serving static pages, the web
page can be cached in memory, thus avoiding the disk
completely. More experiments should be performed to
investigate the effect of such a strategy.

• Monitoring technology: In this work we do not take
advantage of the prototypes made available from prior
research works, future work will investigate the effect of
packet capturing tools using these improvements.

We believe this work is the first step towards thoroughly
understanding the behavior of co-locating capturing process
and web servers. From these experiments, we can understand
how to best capture packets when the capturing process has
to be co-located with the on-line service, and whether new
techniques can be applied to perform network measurement.
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