SAND2011-1336C

Experimental Evaluation of Packet Capturing For
Web Services

Chao-Chih Cheh Yung Ryn Choe*, Chen-Nee Chuadhand Prasant Mohapatra
fDepartment of Computer Science. University of Califorribayis, CA 95616
Email {cchchen,pmohapatf@ucdavis.edu
*Sandia National Laboratories
Email {yrchog @sandia.gov
iDepartment of Electrical Engineering. University of Catifia, Davis, CA 95616
Email: chuah@ucdavis.edu

Abstract—Network measurement is a discipline that provides ~ The research community is ripe with methods of improving
the techniques to collect data that are fundamental to many packet capturing efficiency. However, not many researchsvor
branches of computer science. While many capturing tools ah 46 |goked into the performance impact to existing praesss
comparison have made available in the literature and elsewdre, . .
the impact of these packet capturing tools to existing proceses glready on the server machine. Although not a concern if ded-
have not been quantitatively studied. While not a concern fo icated machines are used to capture packets, the perfoemanc
collection methods in which dedicated servers are used, mgn impact of capturing process becomes important if it is to co-
usage scenarios of packet capturing now requires the packet |ocate in the same physical machine as running processes.
capturing tool to run concurrently with operational machin es. In fact, in some cases monitoring at the server machines is

In this paper we perform experimental evaluations to the f d. if not tial. F le th kS th
performance impact that packet capturing process have on we preferred, It not essential. For example, there are wor

based services; in particular, we observe the impact on web attemptto discover application-level dependency [1]vfB]le
servers. We find that running packet capturing process indeg¢ others try to localize the source of faults from information

impacts the performance of web servers, but on a multi-core derived from captured packets [3]. Without capturing the
system the impact varies depending on whether the two are €o- hatwork information at the server machines, details such as

located. In addition, the architecture and behavior of the web
server and scheduling is coupled with the behavior of the paet application-level dependency is either impossible or much

capturing process, which in tum also affect the web serves Mmore difficult to capture anywhere else. o
performance. Recognizing the deficiency of research work in this area,

we carry out experiments to examine the impact that packet

capturing process has on web-based services. In particular
Network measurement is a discipline that provides thee test packet capturing process’ performance impact to web

foundation for many studies in networked systems. Froservers at their saturation point. This gives us some ins@gh

capacity planning to anomaly detection to network securitthe maximum performance achievable when packet capturing

being able to measure and collect data from the netwopkocess also running, and whether it adversely impactsimyis

is crucial for the success in these fields. One such popugarvices.

method to collect data from the network is packet capturing. The contributions of this paper are:

Because the collected data (the packet) contains appiicati « Experimental evaluation of the performance impact of

invariant and application-specific information, it is a doo capturing process to co-located web-based services.

candidate to for a one-time data collection that can provide, Deployment of two web servers of different architecture

various types of analysis. In addition, packet capturestool to validate the universality of observed results.

are widely available (e.g., Wireshark, TCPDump for Linux, . Measurement of both system-level statistics and user-

NetMon for Windows), and there are mature libraries for perceived statics to observe correlation between system-

custom codes to tap into the packet monitoring process. level statistics and user-perceived statistics.

In the past network measurements are often collected at {Résection Il we briefly go over the packet capturing process;
routers, by means of port mirroring and dedicated machine d@.tion 111 presents the evaluation methodology and theltses
collect the packets. Another way to monitor the network is {gptained; Section IV discuss the related works and Section V

machines). This reduces the need to have a dedicated machine

and also amortizes the cost of packet capturing over all the Il. PACKET CAPTURING PROCESS
machines. This section provides a high-level overview of the packet

o _ , _ capturing, as to make the discussion in this paper complete.
*Sandia is a multiprogram laboratory operated by Sandiap@ution, a

Lockheed Martin Company, for the United States Departméinergys Na- The gQal of th'? SeCt'On_ IS not to prov@e a comp!ete detail
tional Nuclear Security Administration under Contract BE04-94AL85000. Of the internals involved in packet capturing, but to illunaie

I. INTRODUCTION

the many processes involved in delivering the packet froen theeded to spawn also increases. On the other hand, Nginx
network card to the kernel and to the user application. THig] is a highly-scalable web server developed to address the
will help us understand the behaviors observed in Sectipn IC10K problem [11]. Nginx operates under the asynchronous
details of the packet capturing process described here eanchll model, so a single process can scale quite well against
found in [4], [5]. increasing concurrent request volume.

When packets is transmitted over the wire, the network To measure the performance impact of packet capturing,
interface card (NIC) normally pick up the packet if the packave monitor the CPU/memory/bandwidth utilization of all
is destined for it; under promiscuous mode it will pick up aldpplications, and appliaction-specific metrics if the gec
packets sensed. Once the packet is recognized for receptexperimental tools provides additional information. Thermmn
the NIC’s interrupt routine is invoked, in which the routinetoring tool we used in this experiment is a vanilla TCPDump,
allocates a space in memory and copies the packet into tewe would like to observe the impact of a free and widely
allocated memory. The packet is not immediately processadhilable tool without any performance modification to it
after moving to the memory, as the interrupt routine is idegh (e.g., mmap extension, PRING extension [13]). For the
to perform as little operation as possible. When the packetweb servers, we use HTTPOAD [12] to measure the web
picked up later by the software interrupt handler, it passes servers’ performance. In addition, for all the experimahts
packet upwards to the appropriate protocol handler basedwab server is hosted on a DuoCore system, but we confine
the packet’s protocol type. the web server to a single core. This allows us to experiment

For packets destined for packet capturing tools, a specwth co-locating and separating the packet capturing anl we
handler is used so that all the packets can be handled @edver process. By doing so, we can observe the effect that
subsequently forwarded to the capturing process. Cornesposharing CPU resource has on the performance degradation of
ing with this special handler is a special socket type calléde web servers.

PF_PACKET, and the packet is copied and delivered to aln the following discussions, we only report the
socket of PEPACKET type. Copying is needed because th€PU/bandwidth utilization of the three universal metricd-c
packet might be actually destined for an application atdleall lected because memory footprint in all scenarios do notreac
machine, so the data must be copied for separate consumpsigstem threshhold.

by the capturing process and the application.

While this overview is brief, it illuminates the many transB: VWb Servers
actions involved in capturing the packet, and these traiogsc ~ Figure 1 and Figure 2 shows the CPU and bandwidth
will result in the use of CPU resource. The experiments to iilization for one run of the experiment, when running the
discussed in Section Il are aimed at observing how its igtak TTP_LOAD to retrieve files from the web servers. For each
of CPU resource affects the performance of web servers. plot we show the metric in the absence of TCPDump and

in the presence of TCPDump. In addition, we also vary the
I1l. EVALUATION location of TCPDump from co-locating with the web server

In this section we present the experimental results olhdaingrocess to residing on a different CPU core.
when running the packet capturing tool under various ap-Upon first glance, we first discover that the behavior of
plication scenarios. We will first discuss the set-up of oukpache and Nginx are visibly different, with Apache more
experiment and the metrics we set out to measure; then we wilbne to CPU and bandwidth fluctuation, while Nginx is more
discuss the results of the experiment and various infeeensgable in both aspects. This could be attributed by the fact
drawn from those results. that Apache’s method of scaling with demand results in much
more context switches between the various worker threads,
resulting in the performance fluctuation. While Nginx isngsi

To observe the effects of packet capturing on applicatiomauch less number of processes, and is able to serve requests
we deployed two web servers and collected various perfavithout getting constantly interrupted.
mance metrics when packet capturing was turned on. TheWwith the web server and TCPDump pinned to different
web servers used are Apache [6] and Nginx [7]. We choo€#U core, both processes are shown to take up significant
to use Apache because it is rated the most-used web seamount of CPU resource. In both types of web servers, the
according to the latest survey by NetCraft (February 2011 wtb server process takes up nearly one hundred percent of the
the time of writing) [8]; while Nginx is also used to becaus@rocess while the TCPDump process also consumes significant
its architecture is fundamentally different from that ofaghe. CPU resource. Since the sum of the their CPU utilization is

The Apache architecture offers various Multi-Processimgver one hundred percent, this confirms that both processes d
Modules (MPM) as a way to scale the web server with increasdeed run on its own core (as each CPU core has one hundred
ing user demand. These MPMs are either multi-process@ercent resource, making total available resources twdrean
multi-threaded, or both. However, Apache is based on biagkipercent).
method calls according to the comparison made in [9] (alsoWhen the server and TCPDump process are bound to the
corroborated in [10]. One implication of such an architeetu same CPU processes, the Apache server seems to be holding
means that in order to scale, the number of threads and groaesre share of the CPU resource while Nginx expectedly

A. Experimental Set-up

Apache's CPU Utilization TCPDump's CPU Utilization Apache's CPU Utilization TCPDump'’s CPU Utilization

,,,,,,

-] [o1o) o2

= o xix = =
g H o g g
g XA g g g
k] L] 0% © 9 00 k] B
8 i Q?b%"%ooo%%ibm Jolw 00 %%& 9 0000 %) 8 N
5 o 06° © 0 o oy 3 5
=] =] =]
2 2 2
o o o

o E) £ o a 10 E) E) E) £ 20

] u
Time

w_ « E) «©
Time Time

E) «©
Time

(a) CPU Utilization For Apache and TCPDump When Pinned Téelbght (b) CPU Utilization For Apache and TCPDump When Pinned To &am
CPU Core CPU Core

Apache Time Series Apache Time Series

rA
Q
S

Bandwidth (Mbps)
5
8
Bandwidth (Mbps)

0 10 20

30 40 50 0 o 10 0
Time Time
(c) Bandwidth Utilization When Apache and TCPDump Are Puhri®
The Different (left) Or The Same CPU Core (right)

Fig. 1: Apache Results

Nginx's CPU Utilization TCPDump's CPU Utilization Nginx's CPU Utilization TCPDump’s CPU Utilization

Vank -

g

29 a0 o 9099 o okl dn
D0a ®
wlo% & S0P W%, o0 9.0
6% 6Py 6 SP8 063
°© [} ol
°

CPU Utilization (%)
CPU Utilization (%)
CPU Utilization (%)
CPU Utilization (%)

E) E) K 0 10) £ w w o 0 2 E) E) K o 0 2 E) E) K

E) W
Time

E)) E) W
Time Time

E) W
Time

(a) CPU Utilization For Nginx and TCPDump When Pinned To &xiént (b) CPU Utilization For Nginx and TCPDump When Pinned To Same
CPU Core CPU Core

Nginx Bandwidth Time Series Nginx Bandwidth Time Series

Bandwidth (Mbps)

0 E)

)
Time

(c) Bandwidth Utilization When Nginx and TCPDump Are Pinn&d
Different (left) Or The Same CPU Core (right)

Fig. 2: Nginx Results

shares the resource equally with TCPDump. In fact, in osixteen, which is our setting). The kernel scheduling atgor
initial experiment TCPDump has almost no access to theuld then try to equally distribute the available CPU raseu
CPU, using only a few percent of the CPU resource at afryall active process, majority of which belongs to Apache. O
given time. The shown graph is showing TCPDump’s CPthe other hand, Nginx and TCPDump expectedly shares the
utilization when Apache’s niceness is increased to fifte€®PU resource equally, due to the fact that only one active
(out of maximum of nineteen), making it less favorable tblginx process is actively serving incoming requests. This
scheduling than TCPDump. Even so, TCPDump is still noésult has significant implication to the efficiency of thebwe
receiving equal share amount of CPU utilization to captuserver and packet capturing process. That to ensure cagturi
packets. This phenomenon can be explained by understandingcess has access to enough CPU to process the captured
the method in which Apache scales with increasing uspacket, it should be scheduled on a separate core. If the
demand. To maintain scalability, the worker MPM in Apacheapturing process is to be co-located with the web serveg, ca
has a parent process that monitors and distributes incomimgst be taken to understand the structure and behavior of the
load. The parent process spawns a number of child process thaeb server, to ensure the capturing process also has access t
actually serve the request, with the maximum number of chitHe CPU resource.

processes constrained by the ServerLimit directive (dtsfaoi . o
Next we look at the bandwidth utilization result. When

Apache Performance Nginx Performance

4600 7500
No TCPDump === No TCPDump ===
. . TCPDump Normal == TCPDump Normal =—=1

2400 | TCPDump Quiet mmmm | 7000 | {’ —I“ TCPDump Quiet mmmm |
TCP Write To Disk === T TCP Write To Disk ===

4200 q 6500 f q

4000 q 6000 q

3800 q 5500 q

Fetches/Sec
Fetches/Sec

3600 — 5000 —

3400 | 4 4500 |- i

3200 . — 4000 5 I —
3000 7 Y H 3500 7 !
KX K 7%, K
() © (>
2y Q 2y Q
Q;f@ %o < %o

0,
o

(a) Apache Server's Performance (b) Nginx Web Server’s Performance

Fig. 3: Web server performance in fetches/second

TCPDump and the web server are pinned to different CHUdominates the CPU when co-located with TCPDump, the
core, the cpu utilization for both Apache and Nginx are Yairlfetches per second achievable is considerably lower; while
stable. However, when they co-exist on the same CPU colginx consumes much less CPU but has similar performance
one can observe that Apache’s bandwidth fluctuation is leisibdegradation as Apache. However it is undeniable that the
though not unreasonable. Nginx, on the other hand, remapresence of TCPDump has negative performance impacts
stable in both scenarios. A common trend in both web serveosthe web servers, so care should be taken when running
is that the achieved bandwidth is lower in the case whegracket capturing process such as TCPDump, as to ensure
TCPDump is running (regardless of its co-location statut withe performance impact to the web servers is minimal. In
the server process), with the achieved bandwidth visiblielo addition, when TCPDump has equal opportunity to contend for
when the two process are co-located. It is interesting te ndahe CPU resource it does consume a non-trivial amount, and
that, even though Nginx's CPU consumption has decreagbis has performance impact for admins looking to constdida
by fifty percent, its achieved bandwidth has only dropped ifferent types of task onto a single machine. For tasks that
twenty to thirty percent. are CPU-bound, consolidating it with machines running pack
While these metrics shed some light on the resource cdi@pturing processes could elongate the task completiog tim
sumption and possible performance of the system, they @® well as diminishing the number of packets captured.
not explicitly tell us the performance that users can expect
To gain more insight, we scrape the reports generated by
HTTP_LOAD at each client machine at the end of each For evaluation of packet capturing tools, the closest works
experiment. Figure 3 shows the aggregate number of fetchesthis paper are those that either explicitly evaluate pack
per second that are observed from all the clients. We nagpturing performance or attempts to improve the packet
that the baseline experiment (i.e.,, TCPDump is not runningipturing performance. This is because in both types of work
shows the performance of Apache and Nginx is quite gooah evaluation of the various aspects of packet capturinig too
With the presence, of TCPDump, the performance of the wglich as CPU utilization and packets captured are usually
server varies depending on the co-location. When TCPDurpresented. Below we briefly describe both types of work.
is not co-located with the server process, TCPDump seem®eri [13] has suggested that the packet capturing process
to decrease the average performance of the web serveridinefficient due to overhead involved in copying the packet
only a small percentage. However, when TCPDump co-locatese work proposes a new socket type, RING, in which
with the server process on the same core, the result is mgie packet can be copied directly from the device driver
dramatic. Correlating the results in Figure 3 with Figure lbuffer to user-accessible memory, drastically reducingory
and Figure 2b, we can see that the CPU share TCPDump h#i§cation and copying operations. A later work improved
obtained is directly proportional to the decrease in theay® upon PERING by proposing a new architecture in which
fetches per second achievable. The significant performangaglti-core processor can be utilized to increase the mdnio
degradation for the case where TCPDump and the server pgapability of the system [14]. In both of these works, Deri et
cesses are on same core — but little performance degradatibindiscovered that the capturing process do not handle high
when on different core — suggests that CPU utilization is theaffic volume well due to the memory operations from device
main source of the web servers’ performance degradation.driver to kernel and from kernel to user level, as well as sub-
In summary, the experiments carried out in this sectigptimal utilization of resource available at device andnletr
implies that CPU utilization alone is a good performandevel.
indicator for web servers. In the case for Apache, even thoug In [15], [16], the authors investigate the performance of

IV. RELATED WORKS

packet capturing tools in various software and hardware plaj2] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating netk

form. The metrics investigated in these works are the packet application dependency discovery: experiences, limitsi and new
solutions,” inProceedings of the 8th USENIX conference on Operating

captured [15], [16], with [15] having some emphasis on the g garns design and implementation, ser. OSDI'08. Berkeley, CA,
CPU utilization and [16] focusing on the percentage of pt&ke USA: USENIX Association, 2008, pp. 117-130. [Online]. Asaie:

captured. Both works are important because they evaluate http:/portal.acm.org/citation.cfm?id=1855741.18567
3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Malind

the performance of .packet capturmg tools using COMMON™ \1 Zhang, “Towards highly reliable enterprise network sees
platforms, so the valid conclusions can be drawn regarding via inference of multi-level dependencies,” irProceedings of
the hardware or software stacks involved in packet capgurin the 2007 conference on Applications, technologies, architectures, and
Our paper differs from all these works in that we do not protocols for computer communications, ser. SIGCOMM '07. New
pap \ York, NY, USA: ACM, 2007, pp. 13-24. [Online].
emphasize on the performance of the packet capturing tabl, b http://doi.acm.org/10.1145/1282380.1282383
whether the packet Capturing tool affects existing appm [4] G. Insolvibile, “Inside the Linux Packet Filter.” [Omig]. Available:
d if t hat d E th h the hard ' d http://www.linuxjournal.com/article/4852
and Ir so to w a egree. even thoug € _ar Wal_’e use fﬁ ——, “Inside the Linux Packet Filter, Part Il.” [Online]Available:
host the capturing process and web server is multi-core, we http:/Aww.linuxjournal.com/article/5617
only utilize one core for either the web server or the packef! ﬁgac//he' “Apa%he ISOﬁwafe Foundation.” [Online]. Awtle:
. L . p://lwww.apache.org.
Captu”n_g process. This is so we could monitor the e.ﬁeCt 1 Nginx, “Nginx.” [Online]. Available: http://wiki.nghx.org/Main
co-locating the two processes, and have shown that coidocat [8] NetCraft, “February 2011 Web Server Survey” 2011. [@e].

causes dramatic performance degradation to the web servers Available: http://news.netcraft.com/archives/20111G2february-2011-
web-server-survey.html

V. CONCLUSIONAND FUTURE WORKS [9] Nginx, “Nginx.” [Online]. Available: http://wiki.nghx.org/Main
. . élO] Apache, “Apache Performance Tuning.” [Online]. Awdile:
In this paper we examine the performance of web Servers' nhyyp:/httpd.apache.org/docs/2.0/misc/perf-tunitiglh

in the presence of packet capturing process. We find that CRU D. Kegel, “The CI10K problem” 2006. [Online]. Availahl

; ; ; ; http://www.kegel.com/c10k.html
sharing is directly proportional to the performance degrad 12] A. Laboratories, “httpload - Multiprocessing HTTP Test Client.”

tion experienced by the web server, and separating the tWo [online]. Available: http:/www.acme.com/softwarefnttoad/

processes onto different cores improves the performance[® L. Deri, N. S. P. A, V. D. B. Km, and L. L. Figuretta, “Impving
the web server passive packet capture: Beyond device polling,”linProceedings of

. : . SANE 2004, 2004.
This work is a good start, but more environments can bgy F Fusco and L. Deri, “High speed network traffic anaysi

considered: with commodity multi-core systems,” inProceedings of the 10th

+ Senving larger web pages We need (o repeat the STUel coiemve o jmert nesrniey, ser, MC 10, e
experiments for the case when web servers are Serving hitp://doi.acm.org/10.1145/1879141.1879169
larger web pages. This would make the web server mdi@] F. Schneider and J. Wallerich, “Performance evaluatiof packet
/O bound, and having the capturing process write to disk capining sysiems E;gg&;ﬂﬁopfggéﬁmm'{‘egcir?gﬁ.gey’zgﬁ
should create another source of performance degradation. coNexT '05. New York, NY, USA: ACM, 2005, pp. 284—285.
« Serving dynamic pagesIn this paper we have looked [Online]. Available: http://doi.acm.org/10.1145/102891095982
at the case when web servers host static pages, dynafhf L. Braun. A. Didebulidze, N. Kammenhuber, and G. Cafeomparing
and improving current packet capturing solutions basedamncodity
page would put more CPU demand on the server, and the hardware,” in Proceedings of the 10th annual conference on Internet
performance impact of such needs to be investigated. measurement, ser. IMC '10. New York, NY, USA: ACM, 2010, pp. 206—
. Caching pages When serving static pages, the web 217. [Online]. Available: http://doi.acm.org/10.11487D141.1879168
page can be cached in memory, thus avoiding the disk
completely. More experiments should be performed to
investigate the effect of such a strategy.
« Monitoring technology: In this work we do not take
advantage of the prototypes made available from prior
research works, future work will investigate the effect of
packet capturing tools using these improvements.
We believe this work is the first step towards thoroughly
understanding the behavior of co-locating capturing pssce
and web servers. From these experiments, we can understand
how to best capture packets when the capturing process has
to be co-located with the on-line service, and whether new

techniques can be applied to perform network measurement.

Available:

REFERENCES

[1] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and HKit, T
“Macroscope: end-point approach to networked applicatiependency
discovery,” in Proceedings of the 5th international conference on
Emerging networking experiments and technologies, ser. CONEXT '09.
New York, NY, USA: ACM, 2009, pp. 229-240. [Online]. Availlh
http://doi.acm.org/10.1145/1658939.1658966

