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Examples of Tangled Meshes

a) Horseshoe
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c) Inverted Hole

b) Hole-in-Square

d) Shest Grid




Pure vs. Simultaneous Untanglers
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Result of Simultaneous Untangle & Smooth (one step)




Limitations

Pure Untanglers — None guarantee result is untangled
(sometimes they work & sometimes they don’t)
- Even when result is untangled, the shape is usually poor.

Pure Untangle + Barrier -Second step improves shape, but requires the result of the first
step to be untangled.

Simultaneous Untanglers - Although they improve shape, none guarantee result is
untangled

Why do Untanglers fail?

-- i) the mesh cannot be untangled via node movement, or

-- ii) an untangled mesh exists but, although an untangled mesh is guaranteed if the global
minimum of the objective function is attained, the optimization procedures often only find
a local minimum. The guarantee does not hold for local minimums.



The “Pure” Untanglers

|.  Freitag & Plassman (2001) — Maximize the minimum Jacobian
determinant on a series of local mesh patches

Il. Shashkov, Vachal (2001) — Place mesh vertices at the centroid of the
feasible region of a series of local mesh patches.

lll. Knupp (2001) - Minimize ﬂr—ﬁ\—(r—ﬁ)} on a local or global patch.

All of these were quite effective, some of the time.

None of them guaranteed that the result would be untangled.




Two Types of ‘Simultaneous’ Untanglers

l. ‘Incidental’ —those which improve shape or angles, without any explicit
mechanism to encourage the mesh to be untangled.

Example: Laplace Smoothing

Il. ‘Intentional’ —those which improve shape or angles, and contain an explicit
mechanism to encourage the resulting mesh to be untangled.

Examples: (1) The Moving Barrier Method
(2) The Pseudo-Barrier Method
(3) The “Maximum Value” Method



1. The Moving Barrier Method

The Barrier Method Fzz(ffwij
k

T 4

If all the initial V’s are positive, then the resulting V’s are guaranteed to be
positive. If some of the V’s are positive and some are negative, then the

method cannot be used.
2 2
V0
The Shifted-Barrier Method F = Z 1 2
k V _Vmin

Since all of the initial V’s are greater than V-min, the method can be used.
The resulting V’s are guaranteed to be greater than V-min.

Vrnin = Inkin {Vk}

The Moving-Barrier Method.
Use the shifted-Barrier Method iteratively, updating V-min, until V-min
becomes positive.

Barrera-Sanchez, Tinoco-Ruiz (1998). Often effective, but relatively
expensive.



2. The Pseudo-Barrier Method

Objective Function: / \

Foy| UL

k \;(MJ V2+(Vref)2j

V-ref << V.

There is no Barrier in this method, but the OF does tend to become large as V
becomes negative. When V is positive, F is approx. the Barrier Method.

Escobar, et. al. (2003) No guarantee that result will be non-inverted but
method can be used whether or not initial mesh
is tangled.



3. The Maximum Value Method

Objective Function: £ = Zk:f(a“(Tk))

with f, a function of a local quality metric, given by

- {i-cl-u-(i-e )
( nis a local quality metric satisfying a certain property. )

Knupp, Franks (2010) No guarantee result will be inverted.



The Maximum Value Method

The Target-matrix Paradigm

Two ‘Incidental’ Simultaneous Untangle Metrics from TMOP
Mathematical Propositions about the Metrics

The function f(u)

Results



VI.

|. The Target-Matrix Optimization Paradigm (TMOP)

For every mesh element, define a mapping from a master element to
the physical element, in terms of the element vertices.

Certain points = within the master element, called sample points, are
selected.

Let 4; be the Jacobian matrix of the map at the k-th sample point.
det(A4; ) is a measure of the local volume at the sample point.

Definition: in TMOP, a mesh is inverted if there exists any sample point
in the mesh for which det(4,) <=0. An inverted element is an element
which contains a sample point at which the local volume is negative.

Let W«ibe the reference or taget-Jacobian matrix at the sample point.

Wi represents the desired or ideal Jacobian matrix that we wish to
create in the optimal mesh. Let Tk:Ak(Wk)1

Ti= det(Tk) >0 iff det(Ak)> 0



Il. The TMOP “Relative Volume” Metric

The metric:

Hry (T) = (7_1)2

Metric is non-negative, and is zero if and only if t=1.  If t=1,
Then det(A) = det(W) > 0 (by construction). The metric does not have a Barrier.

Choice of Target matrix: W = KS,.deal (and for all subsequent)

This metric is the basis for a mesh untangler. Itis not a ‘pure’ untangler
because it encourages more than positive volume; it encourages the volume

to be close to det(W). Perhaps it is best classified as an ‘intentional’ simultaneous
mesh untangler.

Results: The metric creates nearly equal-sized, non-smooth meshes.
It was able to untangle 3 of our 4 test meshes.



Optimal Meshes Created via the Relative Volume Metric

ik
A

[y
)
it

mesinny
wifiey
ey

)

i

1o

.Y
.

e

o5
mte

[T T

P
L1
LTI
L
L]




Il. The TMOP “Size & Shape” Metric

The metric: we(T) =] —|T[ +27 +2

The metric is non-negative and is zero if and only if T=R, with R an
undetermined rotation matrix. The metric thus controls local shape and size

(relative volume). The metric has no barrier and thus can be used on initially
tangled meshes.

The metric is best classified as an ‘incidental’ simultaneous mesh untangler

because there is no explicit mechanism to untangle and because it can do
much more than untangle.

Results: The metric creates well-shaped elements with near-equal sizes.
It was able to untangle 3 of our 4 test meshes.



Optimal Meshes Created via the ‘Shape & Size” Metric
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Proposition |

Let Tbeadxdreal matrix. If Uz <l then O0<7<2

Proposition I

Let T be a d x d real matrix. If /JSS<1 then T > ()

Corollary to Both

If mkax{,u(Tk)}<1 then the mesh is non-inverted.

Not all TMOP metrics have propositions like this.
Van der Zee showed that if |T_[|2 <1,thent>0.
(Note that p>1 does not necessarily mean that t < 0)




lll. Direct Application of the Propositions

Minimize over the global mesh:

max (7.

Clearly, this approach cannot guarantee that the optimal mesh will be
untangled.

However, if the mesh is untangle-able, and a solution to the global
optimization problem can be found, the resulting mesh will be untangled.

Intuition: as the objective function decreases, the Shape+Size of the mesh
Improves, and the mesh may become untangled. In this method, untangling

and improvement are seen to be consistent goals.



Ill. An Indirect Application of the Propositions

ﬂ[l—g ]—H\—([l—g]— H)F 0<e<<1.

Define Jam

.,C

1-¢ vl

If £=0, then p<1, and so t>0.
Minimize: F= Zf(.U(Tk))
k

f penalizes locations in the mesh where the metric is greater than 1.
F=0 means mesh is untangled.



Optimal Meshes Created by f( 1)
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Optimal Meshes Created by (1)
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IV. Summary Table of Results

Horseshoe  Shest Hole-in-Square _ Inv. Hole #T
Initial Mesh T T T T 4
Laplace T U T U 2
Knupp 2001 U U U U 0
Relative Vol U U T U 1
f(Ury) U U U U 0
Shape+Size U U T U 1
(L gs) U U T U 1

1 0 4 0

Results show that the 2D test meshes are all untangle-able.

Since f( Hgs) did not untangle the Hole-in-Square, a tangled local minimum
must have been found. A better solver could help.






Summary Table for 3D Results

P1 P2 P3 P4 H5 HPT T4 #T
Initial T T T T T T T 7
Laplace U U U U U T U 1
Knupp 01 U U T T U U U 2
Rel Vol U U T T U T U 3
SS U U U U U T U 1
f-RV U U T T U U U 2
[-SS U U T U U T U 2

0 0 4 3 0 4 0

Untangle failures again most likely due to failure to find global minimum.

|
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Conclusions

1. In general, the simultaneous untangle & improve (SUI) methods appear
superior to the pure untanglers because the shape quality is better.

2. The SUI methods can be applied to initially tangled meshes.

3. Maximum Value Method is an alternative to the two other methods for
Simultaneous Mesh Untangling & Improvement.

4. MVM guarantees that the optimal mesh will be non-inverted provided
(i) the mesh is untangle-able and (ii) the global minimum is found.

5. Maximum Value Method contains the global parameter €, which is easy to
choose. The Pseudo-Barrier method requires one to choose V-ref, which
is a local parameter.

6. MVM also requires choosing the appropriate Target-Matrix (the Size factor
in particular). For homogeneously-sized meshes, the Size factor is easy
to choose, but could be difficult for heterogeneously-sized meshes.

7. f-SS would seem preferable to f-RV since the former can produce smooth
meshes. MVM without use of f also worth considering.

8. Better solvers appear essential for robust MVM.



