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Agile Components is a strategic effort at Sandia to maximize our impact as
computational scientists. The central idea is for all projects to both
leverage and contribute to a common base of knowledge and software.
This builds the foundation for impacting future projects.

Agile Components implementation plan:
» Develop a full range of independent yet interoperable software

components, both: M Capabilities [ Interfaces

» Adopt high standards for Software Quality tools and procedures

» Develop prototype applications that mature and demonstrate
capabilities and interoperability, and drive development

Agile Components stretch goals:
» Rapid development of PDE codes for new applications
= New codes can developed in 2 FTEs
* PDE code born with transformational analysis capabilities
» Shape Optimization, Embedded UQ, Sensitivity Analysis,
Optimization
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part 2..

Albany is an Agile Components demonstration application that has been
used to drive development of the vision, and measure progress towards the
stretch goals. Albany has interfaces to most of the algorithms delivered
through Trilinos, Dakota, Cubit, and SierraToolkit libraries. The code design
differs from a monolithic framework in that well-defined abstract interfaces
keep a clear separation of concerns.
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tch goals to (A) rapidly development of new physics and (B) use
nsformational analysis capabilities are reachable in large part by use of
templated field evaluators. When data types for Automatic Differentiation and

Expansions are automatically generated.

Polynomial Chaos Expansions are appropriately seeded, and passed through
the PDE residual evaluation, analytic Jacobians, Tangents, and Stochastic
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ape optimization is a special case where derivatives with respect

to the coordinate vector X are required. The reduced gradient which

is needed for gradient-based optimization algorithms, is assembled
ing a vari f differentiation meth .

dg _ 9g dgldf—1df dx

dp an de dr | dX dp

Linear
Solve
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is fig can go with part2 or part3, or cut

—Field Manager with Field Evaluators For
Sliding ElectroMagnetic Contact Application
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part 3..

Sliding ElectroMagnetic Contact Demonstration: In
this application, a slider (blue) is propelled between two
conductors (green and yellow) when a current is passed
through it (red dashed line). The design optimization
problem is to find the shape of the slider that minimizes
the temperature increase.

The shape is parameterized by 3 parabolas in the
Cubit mesh generator. A set of MeshMorphing
algorithms are under development, which reprocess the
coordinate positions as a function of geometry changes.

The current is simulated by a potential equation with a
proscribed voltage drop. The heat equation captures
conduction, convection, and a nonlinear joule heating
term. Since the electrical permittivity is inversely
dependent on the temperature, the two PDEs are
coupled and nonlinear. The properties, such as c,, vary
by material. A quasi-steady approximation is useg.

—V-0cVep = 0
—V -kVT —Vv-VT = (V)2
o(T) = oo/[1+ B(T —1T1p)]

\
\

h

1 6=0
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A 1-parameter design problem is solved
with a gradient-based optimization
algorithm in Dakota, which is verified
through a LOCA continuation run.
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Embedded UQ capability: A UQ Study was
performed for the 3D model. PCE
expansions are automatically propagated
through the PDEs. The full stochastic
nonlinear system is solved with Newton’s
Methods. No application-specific code
development was required.

The base electrical conductivity in the thin

gap regions is gien the following
distribution:

08 = [35.0P5(¢) + 15.0P; (6)]

leading to a polynomial expansion in Tmax

37 Py(¢) + 0.61P1(€) — 0.17P5(¢) + 0.04P3(¢&)

Std Deviation

solution_ Y
25.872817

solution_Y
0.3735989




‘Conclusions: The Agile Components strategy is to assemble a comprehensive set
of independent-yet-interoperable software libraries, abstract interfaces, and
software quality procedures. With this infrastructure and knowledge base, new PDE
codes can be rapidly written from scratch. By writing a templated PDE assembly,
one can just write the residual equations and a whole host of information
automatically. This provides the quantities needed for transformational analysis
algorithms.

As a demonstration, we created a simulator for a 3D coupled nonlinear model:
sliding electromagnetic contact. With just adding a few evaluators for the PDE
terms, all the infrastructure was in place to perform Shape Optimization and
embedded UQ.
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