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Spectral Methods

Bayesian Framework

Sensitivity analysis

• Small parameter perturbations

Predictability assessment

• Larger parameter uncertainties

Parameter estimation

• Inverse problems
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UQ components and methods

Input Computer
Model

Output

Spectral Methods

Forward UQ methods

• Direct (intrusive)

- Derive new forward model
- Intrusive Spectral Projection (ISP)

• Sampling (non-intrusive)

- Monte-Carlo, Quasi Monte-Carlo
- Non-intrusive Spectral Projection (NISP)
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Objective

Tackle two of the challenges encountered in forward UQ:

1 Output observables exhibit
discontinuities for smooth
changes in the input parameters

2 Model predictions exhibit
fat-tailed distributions.
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Polynomial Chaos expansion represents any random
variable as a polynomial of a standard random variable

Truncated PCE: finite dimension n and order p

X(λ(η)) ≃
P

∑

k=0

ckΨk(η)

with the number of terms P + 1 = (n+p)!
n!p! .

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maı̂tre & Knio, 2010]
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Polynomial Chaos expansion represents any random
variable as a polynomial of a standard random variable

Truncated PCE: finite dimension n and order p

X(λ(η)) ≃
P

∑

k=0

ckΨk(η)

with the number of terms P + 1 = (n+p)!
n!p! .

η = (η1, · · · , ηn) standard i.i.d. r.v.
Ψk standard orthogonal polynomials
ck spectral modes.

Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maı̂tre & Knio, 2010]
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UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be
subdivided into regions with smooth model response where spectral

uncertainty quantification methods can be used

Need to represent model output in a problem-independent fashion
that takes into account the bifurcations

• Bayesian inference of the location of the discontinuity

Need to perform uncertainty quantification with only a limited set
of sample points, due to the computational cost of the forward
model

• Polynomial chaos representation via parameter domain
mapping
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Bayesian Inference of the Location of Discontinuity

Parameterize the discontinuity: r ≈ pc(λ) =
∑K

k=0 ckPk(λ)

Approximation model:

Mc ≡ g(λ, r) = mL + (mR − mL)
1 + tanh (α(r − pc(λ)))

2

Noise model postulated: σ(λ, r)

Likelihood function:

log P(D|Mc) =

N
∑

i=1

log (P(zi |Mc)) = −

N
∑

i=1

(zi − g(λ, r))2

2σ(λ, r)2 .
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Bayesian Inference of the Location of Discontinuity

Parameterize the discontinuity: r ≈ pc(λ) =
∑K

k=0 ckPk(λ)

Bayes’ formula: P(M|D) = P(D|M)P(M)
P(D)
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Discontinuity Detection - Highlights

Any distribution of input points

Generalizes to multiple dimensions

Probabilistic representation
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Parameter Domain Mapping via Rosenblatt
Transformation

Assume linear discontinuity

Use Rosenblatt
Transformation (RT) to map
the pair of uncertain
parameters (λ,r) to i.i.d.
uniform random variables η1

and η2:

λ1 = F−1
λ (η1),

λ2 = F−1
r |λ(η2|η1)

Apply the RT mapping to both
sides of the discontinuity
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PC Expansion, Averaged Over Discontinuity Curves

PC expansion for each discontinuity curve sample:

ZL,R
c (~λ) = Z̃c(~η) =

P
∑

p=0

zpΨ
(2)
p (~η)

Model expansion depends on the parameter location:

Zc(~λ) =

{

ZL
c(~λ) if (~λ) ∈ DL

ZR
c(~λ) if (~λ) ∈ DR

.

Average over all PC expansions via RT:

Ẑ(~λ) =

∫

C
p(c)Zc(~λ)dc =

∫

[0,1]K+1
ZR−1(~~η)

(~λ)d~η
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Discontinuous Data Represented Well with the Averaged PC

PCE Coefficients via Bayesian Inference
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PCE Coefficients via Hybrid Approach
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Objective

Tackle two of the challenges encountered in forward UQ:

2 Model predictions exhibit
fat-tailed distributions.
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Precipitation Data from Climate Simulations

Africa - South
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Black lines - 2 year averages;

Red lines - 10 year averages;

Green lines - 3rd-order PC expansions.
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Forward UQ: Input Parameter PDF → Output
Observable PDF
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Compute the probability that average precipitation exceeds a
certain amount:

P(precip. > pr) =

∫

τ :f (τ)>pr

pdf(τ)dτ
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Polynomial Chaos Expansions and Galerkin Projection

PC expansion for the output observable Z = f (λ)

Z =
K

∑

k=0

ZkΨk(ξ)

with

〈Ψi(ξ)Ψj(ξ)〉 ≡

∫

Ψi(ξ)Ψj(ξ)pξ(ξ)dξ = δij 〈Ψi(ξ)
2〉

Galerkin (orthogonal) projection

Zk =
〈f (λ(ξ))Ψk(ξ)〉

〈Ψ2
k(ξ)〉

is weighted-L2 optimal, i.e. it minimizes

∫

∣

∣

∣

∣

∣

f (λ(ξ)) −

K
∑

k=0

ZkΨk(ξ)

∣

∣

∣

∣

∣

2

pξ(ξ)dξ
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Non-conventional and Custom Basis Functions
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Design custom polynomials that
are orthogonal with respect to fat
tailed distributions to get a better
accuracy in the tail region.

Quadrature points’ distribution for
polynomials orthogonal w.r.t.
truncated log-normal pdf.
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“Tail” Probabilities Based on PC Basis Surrogates
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Black lines - “Exact” values; Red lines - Hermite PC basis (9th

order); Green lines - Custom PC basis (9th order).

The set of quadrature points corresponding to the custom PDF
have a better coverage of the distribution’s tail compared to the set
corresponding to a Gaussian PDF.
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Summary and Future Work

Nonlinearities, Bifurcations, Bimodalities
• Probabilistic detection of discontinuities followed by domain

mapping and polynomial chaos expansions to construct
model “surrogates”

• Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information
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• Probabilistic detection of discontinuities followed by domain

mapping and polynomial chaos expansions to construct
model “surrogates”

• Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information

Tail regions
• Construct custom spectral basis based on “expected” shape

of the climate model output to improve convergence of the
spectral expansion.

• Extend this methodology to multi-dimensional parameter
dependencies.

• Develop surrogate models as mixed PC expansions:
accurate both near the mean as well as in the tail regions.
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