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@ Sensitivity analysis
e Small parameter perturbations
@ Predictability assessment

e Larger parameter uncertainties
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@ Sensitivity analysis

e Small parameter perturbations
@ Predictability assessment

e Larger parameter uncertainties
@ Parameter estimation

e Inverse problems
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UQ components and methods

Spectral Methods
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@ Forward UQ methods
e Direct (intrusive)

- Derive new forward model
- Intrusive Spectral Projection (ISP)

e Sampling (non-intrusive)

- Monte-Carlo, Quasi Monte-Carlo
- Non-intrusive Spectral Projection (NISP)
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Tackle two of the challenges encountered in forward UQ:

© Output observables exhibit
discontinuities for smooth
changes in the input parameters

@ Model predictions exhibit
fat-tailed distributions.
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Polynomial Chaos expansion represents any random

variable as a polynomial of a standard random variable

@ Truncated PCE: finite dimension n and order p
P
X(A(m) = ali(n)
k=0

with the number of terms P+ 1 = (”nm)!,

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]
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Polynomial Chaos expansion represents any random

variable as a polynomial of a standard random variable

@ Truncated PCE: finite dimension n and order p

Output X — X(A(n)) ~ > cWk(n) <— Input

with the number of terms P+ 1 = (”nm)!.

@ 1= (n1,---,nn) Standard i.i.d. r.v.
¥y standard orthogonal polynomials
Cx spectral modes.

@ Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]
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UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be
subdivided into regions with smooth model response where spectral
uncertainty quantification methods can be used

@ Need to represent model output in a problem-independent fashion
that takes into account the bifurcations

e Bayesian inference of the location of the discontinuity

@ Need to perform uncertainty quantification with only a limited set
of sample points, due to the computational cost of the forward
model

e Polynomial chaos representation via parameter domain
mapping
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Bayesian Inference of the Location of Discontinuity

@ Parameterize the discontinuity: r ~ pg(\) = ZE:O cPk(N)

@ Approximation model:

Mc=g(Ar) = m + (Mr—m) 1+ tanh (a(r — pc(N)))

2
@ Noise model postulated: o(\,r)
@ Likelihood function:
N 2
z —g(Ar
logP(D|Mc) = Zlog Z|Me))=-)_ %
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Bayesian Inference of the Location of Discontinuity

@ Parameterize the discontinuity: r ~ pc(A\) = Sk o ckPk()\)

@ Bayes’ formula: P(M|D) = 2RIDPM)

P(D)
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Discontinuity Detection - Highlights

@ Any distribution of input points

@ Generalizes to multiple dimensions —
@ Probabilistic representation oo
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Discontinuity curve samples and their pdf
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Parameter Domain Mapping via Rosenblatt

Transformation

@ Assume linear discontinuity o
@ Use Rosenblatt AT
Transformation (RT) to map 5 ¢
the pair of uncertain S
parameters (\,r) to i.i.d. N
uniform random variables 7, '
and np: .
A Fy 1( 1), sosf
)\2 = Fr|>\(’f]2|’f]1) % 1]1115 1 Go. ?115 .1

ROSENBLATT TRANSFORMATION: (A1, A2) — (11, 12)

@ Apply the RT mapping to both
sides of the discontinuity
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PC Expansion, Averaged Over Discontinuity Curves

@ PC expansion for each discontinuity curve sample:

ZI(_: R(X Z zp\11(2 (7)

@ Model expansion depends on the parameter location:

@ Average over all PC expansions via RT:

¢)Zc(N)de = Z .= (N)dif
/p c(A)dc = /[071}K+1 R—l(n)( )aij

Safta (SNL) SIAM CSE 2011 Feb. 28, 2011 9/17



Discontinuous Data Represented Well with the Averaged PC

PCE Coefficients via Bayesian Inference PCE Coefficients via Hybrid Approach

Output PDF
— Forward model
2.5| — Orthogonal projection
— Bayesian inference
2| — Hybrid approach

SIAM CSE 2011
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Tackle two of the challenges encountered in forward UQ:

@ Model predictions exhibit
fat-tailed distributions.
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Precipitation Data from Climate Simulations

Africa - South Asia - West
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@ Black lines - 2 year averages;
@ Red lines - 10 year averages;
@ Green lines - 3Y-order PC expansions.
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Forward UQ: Input Parameter PDF — Output

Observable PDF
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@ Compute the probability that average precipitation exceeds a
certain amount:

P(precip > py) = / pdf (7)dr
7f(7)>pr
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Polynomial Chaos Expansions and Galerkin Projection

@ PC expansion for the output observable Z = f()\)

K
Z=>"ZW(¢)
k=0
with
<%@%@»E/%@%@Mﬁm&:W%@ﬁ

@ Galerkin (orthogonal) projection

5. — (@) ()
V(@)

is weighted-L, optimal, i.e. it minimizes

/
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Non-conventional and Custom Basis Functions
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@ LU : independent of position @ Design custom polynomials that
@ GH : worse in “tails”, away from are orthogpna_l with respect to fat
the origin tailed distributions to get a better

) ] o accuracy in the tail region.
@ JB : small in desired region, i.e. it ) o
is controllable! @ Quadrature points’ distribution for

polynomials orthogonal w.r.t.
truncated log-normal pdf.
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“Tail” Probabilities Based on PC Basis Surrogates

Africa—South Asia-West
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@ Black lines - “Exact” values; Red lines - Hermite PC basis (9"
order); Green lines - Custom PC basis (9" order).

@ The set of quadrature points corresponding to the custom PDF
have a better coverage of the distribution’s tail compared to the set
corresponding to a Gaussian PDF.
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Summary and Future Work

@ Nonlinearities, Bifurcations, Bimodalities
e Probabilistic detection of discontinuities followed by domain
mapping and polynomial chaos expansions to construct
model “surrogates”
e Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information
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Summary and Future Work

@ Nonlinearities, Bifurcations, Bimodalities
e Probabilistic detection of discontinuities followed by domain
mapping and polynomial chaos expansions to construct
model “surrogates”
e Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information

@ Tail regions

e Construct custom spectral basis based on “expected” shape
of the climate model output to improve convergence of the
spectral expansion.

e Extend this methodology to multi-dimensional parameter
dependencies.

e Develop surrogate models as mixed PC expansions:
accurate both near the mean as well as in the tail regions.
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