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ABSTRACT

Graph analysis is playing an increasingly important role in
science and industry. Due to numerous limitations in shar-
ing real-world graphs, models for generating massive graphs
are critical for developing better algorithms. In this paper,
we analyze the stochastic Kronecker graph model (SKG),
which is the foundation of the Graph500 supercomputer
benchmark due to its many favorable properties and easy
parallelization. Our goal is to provide a deeper understand-
ing of the parameters and properties of this model so that
its functionality as a benchmark is increased. We develop a
rigorous mathematical analysis that shows this model can-
not generate a power-law distribution or even a lognormal
distribution. However, we formalize an enhanced version of
the SKG model that uses random noise for smoothing. We
prove both in theory and in practice that this enhancement
leads to a lognormal distribution. Additionally, we provide a
precise analysis of isolated vertices, showing that the graphs
that are produced by SKG might be quite different than in-
tended. For example, between 50% and 75% of the vertices
in the Graph500 benchmarks will be isolated. Finally, we
show that this model tends to produce extremely small core
numbers (compared to most social networks and other real
graphs) for common parameter choices.

1. INTRODUCTION

The role of graph analysis is becoming increasingly im-
portant in science and industry because of the prevalence
of graphs in diverse scenarios such as social networks, the
Web, power grid networks, and even scientific collaboration
studies. Massive graphs occur in a variety of situations, and
we need to design better and faster algorithms in order to
study them. However, it can be very difficult to get access
to informative large graphs in order to test our algorithms.
Companies like Netflix, AOL, and Facebook have vast ar-
rays of data but cannot share it due to legal or copyright
issues'. Moreover, graphs with billions of vertices cannot be
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communicated easily due to their sheer size.

As was noted in [5], good graph models are extremely
important for the study and algorithmics of real networks.
Such a model should be fairly easy to implement and have
few parameters, while exhibiting the common properties of
real networks. Furthermore, models are needed to test al-
gorithms and architectures designed for large graphs. But
the theoretical and research benefits are also obvious: gain-
ing insight into the properties and processes that create real
networks.

The stochastic Kronecker graph (SKG) [18, 17], a gener-
alization of recursive matriz (R-MAT) model [6], has been
proposed for these purposes. It has very few parameters and
can generate large graphs quickly. Indeed, it is one of the
few models that can generate graphs fully in parallel. It has
been empirically observed to have interesting real-network-
like properties. We stress that this is not just of theoretical
or academic interest—this model has been chosen to create
graphs for the Graph500 supercomputer benchmark [11].

It is important to know how the parameters of this model
affect various properties of the graphs. We stress that a
mathematical analysis is important for understanding the
inner working of a model. We quote Mitzenmacher [23]: “I
would argue, however, that without validating a model it
is not clear that one understands the underlying behavior
and therefore how the behavior might change over time. It
is not enough to plot data and demonstrate a power law,
allowing one to say things about current behavior; one wants
to ensure that one can accurately predict future behavior
appropriately, and that requires understanding the correct
underlying model.”

1.1 Notation and Background

We explain the SKG model and notation. Our goal is
to generate a graph G = (V,E) with n = |V| nodes and
m = |E| edges. The general form of the SKG model allows
for an arbitrary square generator matrix and assumes that n
is a power of its size. Here, we focus on the 2 x 2 case (which
is equivalent to R-MAT), defining the generating matrix as

T = b ta with t1 +to +t3 +ts = 1.
ts ta

We assume that n = 2° for some integer £ > 0. For the sake
of cleaner formulae, we assume that ¢ is even in our anal-
yses. Each edge is inserted according to the probabilities?

2We have taken a slight liberty in requiring the entries of T to sum
to 1. In fact, the SKG model as defined in [17] works with the matrix
mP, which is considered the matrix of probabilities for the existence
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P=TRT® ---T.
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£ times

In practice, the matrix P is never formed explicitly. Instead,
each edge is inserted as follows. Divide the adjacency ma-
trix into four quadrants, and choose one of them with the
corresponding probability t¢1,t2, s, or t4. Once a quadrant
is chosen, repeat this recursively in that quadrant. Each
time we iterate, we end up in a square submatrix whose di-
mensions are exactly halved. After ¢ iterations, we reach a
single cell of the adjacency matrix, and an edge is inserted.
Note that all edges can be inserted in parallel. This is one
of the major advantages of the SKG model and why it is ap-
propriate for generating large supercomputer benchmarks.

1.2 Our Contributions

Our overall contribution is to provide theoretical and prac-
tical guidance on choosing SKG parameters in order to con-
struct graphs with desired properties, especially in terms of
the degree distribution, the number of (non-isolated nodes),
the core size, and the trade-offs in these various goals.

1. Degree distribution: We provide a rigorous math-
ematical analysis of the degree distribution of SKGs. The
degree distribution has often been claimed to be power-law,
or sometimes as lognormal [6, 17, 13]. Kim and Leskovec
[13] prove that the degree distribution has some lognormal
characteristics. Groér et al. [12] give exact formulas for the
degree distribution, and express it as a mixture of normal
distributions. Nonetheless, the degree distribution has a os-
cillatory behavior (refer to Fig. 1) that has not been properly
explained before. Since the distribution is quite far from be-
ing truly lognormal, there has been no simple closed form
expression that closely approximates it. We fill this gap by
providing a complete mathematical description. We prove
that SKG cannot generate a power law distribution, or even
a lognormal distribution. It is most accurately character-
ized as fluctuating between a lognormal distribution and an
exponential tail. We provide a fairly simple formula the ap-
proximates the degree distribution.

2. Noisy SKG: It has been mentioned in passing [6] that
adding noise to SKG at each level smoothens the degree dis-
tribution, but this has never been formalized or studied. We
define a specific noisy version of SKG (NSKG). We prove
theoretically and empirically that NSKG leads to a lognor-
mal distribution. The lognormal distribution is important
since it has been observed in real data [3, 25, 22, 7]. One of
the major benefits of our enhancement is that only £ random
numbers are needed in total. Using Graph500 parameters,
Fig. 1 plots the degree distribution of a (standard) SKG and
NSKG for two levels of (maximum) noise. We can clearly see
that noise dampens the oscillations, leading to a lognormal
distribution.

3. Isolated vertices: An isolated vertex is one that has
no edges incident to it (and hence is not really part of the
output graph). We provide an easy to compute formula
that (very accurately) estimates the fraction of isolated ver-
tices. We discover the rather surprising result that in the
Graph500 benchmark graphs, 50-75% vertices are isolated;
see Tab. 1. This is a major concern for the benchmark, since
the massive graph generated has a much reduced size. Fur-

of each individual edge (though it might be more accurate to think
of it as an expected value).
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Figure 1: Comparison of degree distributions (averaged over
25 instances) for SKG and two noisy variations, using the T’
from the Graph500 Benchmark parameters with ¢ = 16.

Table 1: Expected percentage of isolated vertices and repeat
edges (according to [12]), along with average degree of non-
isolated nodes for the Graph 500 benchmark. Excluding
the isolated vertices results in a much higher average degree
than the value of 16 that is specified by the benchmark.

¢ % Isolated Nodes % Repeat Edges Avg. Degree

26 51 1.2 32
29 57 0.7 37
32 62 0.4 41
36 67 0.2 49
39 71 0.1 55
42 74 0.1 62

thermore, the average degree is now much higher than ex-
pected.

4. Core numbers: The study of k-cores is an important
tool used to study the structure of social networks because
it is a mark of the connectivity and special processes that
generate these graphs [5, 15, 1, 9, 10, 4, 2]. We empirically
show how the core numbers have surprising correlations with
SKG parameters. We observed that for most of the current
SKG parameters used for modeling real graphs, max core
numbers are extremely small (much smaller than most cor-
responding real graphs). We show how modifying the ma-
trix T" affects core numbers. Most strikingly, we observe that
changing T' to increase the max core number actually leads
to an increase in the fraction of isolated vertices.

1.3 Parameters for empirical study

Throughout the paper, we discuss a few sets of SKG pa-
rameters. The first is the Graph500 benchmark [11]. The
other two are parameters used in [17] to model a co-authorship
network (CAHepPh) and a web graph (WEBNotreDame).
We list these parameters here for later reference.

e Graph500: T = [0.57,0.19;0.19,0.05], ¢ € {26, 29, 32,
36, 39, 42}, and m = 16 - 2°.

e CAHepPh: T = [0.42,0.19;0.19,0.20], £ = 14, and
m = 237, 010.

e WEBNotreDame®: T = [0.48,0.20;0.21,0.11], £ =
18, and m = 1,497, 134.

3111 [17], £ was 19. We make it even because, for the sake of presen-
tation, we perform experiments and derive formulae for even £.



2. PREVIOUS WORK

The R-MAT model was defined by Chakrabarti et al.
[6]. The general and more powerful SKG model was in-
troduced by Leskovec et al. [16] and fitting algorithms were
proposed by Leskovec and Faloutsos [18] (combined in [17]).
This model has generated significant interest and notably
was chosen for the Graph500 benchmark [11]. Kim and
Leskovec [13] defined the Multiplicative Attribute Graph
(MAG) model, a generalization of SKG where each level
may have a different matrix 7. They suggest that certain
configurations of these matrices could lead to power-law dis-
tributions.

Since the appearance of the SKG model, there have been
analyses of its properties. The original paper [17] provides
some basic theorems and empirically show a variety of prop-
erties. Mahdian and Xu [20] specifically study how the
model parameters affect the graph properties. They show
phase transition behavior (asymptotically) for occurrence of
a large connected component and shrinking diameter. They
also initiate a study of isolated vertices. When the SKG
parameters satisfy a certain condition, then the number of
isolated vertices asymptotically approaches n. Their theo-
rems are quite strong, but do not give information about
the number of isolated vertices for a fixed SKG instance.
In the analysis of the MAG model [13], it is shown that the
SKG degree distribution has some lognormal characteristics.
(Lognormal distributions have been observed in real data 3,
25, 7). Mitzenmacher [22] gives a survey of lognormal dis-
tributions.)

Sala et al. [26] perform an extensive empirical study of
properties of graph models, including SKGs. Miller et al.
[21] show that they can detect anomalies embedded in an
SKG. Moreno et al. [24] study the distributional properties
of families of SKGs.

As noted in [6], the SKG generation procedure may give
repeated edges. Hence, the number of edges in the graph
differs slightly from the number of insertions (though, in
practice, this is barely 1% for Graph500). Groér et al. [12]
prove that the number of vertices of a given degree is nor-
mally distributed, and provide algorithms to compute the
expected number of edges in the graph (as a function of the
number of insertions) and the expected degree distribution.

3. DEGREE DISTRIBUTION

In this section, we analyze the degree distribution of SKGs,
which are known to follow a multinomial distribution. While
an exact expression for this distribution can be written, this
is unfortunately a complicated sum of binomial coefficients.
Eyeballing the log-log plots of the degree distribution, one
sees a general heavy-tail like behavior, but there are large
oscillations. The degree distribution is far from being mono-
tonically decreasing. Refer to Fig. 2 to see some examples of
SKG degree distributions (plotted in log-log scale). Groér
et al. [12] show that the degree distribution behaves like the
sum of Gaussians, giving some intuition for the oscillations.
Recent work of Kim and Leskovec [13] provide some mathe-
matical analysis explaining connections to a lognormal dis-
tribution. But this is only the beginning of the story. What
does the distribution oscillate between? Is the distribution
bounded below by a power law? Can we approximate the
distribution with a simple closed form function? None of
these questions have satisfactory answers.

Our analysis gives a precise explanation for the SKG de-
gree distribution. We prove that the SKG degree distribu-
tion oscillates between a lognormal and exponential tail, and
we precisely characterize how. We provide plots and experi-
mental results to back up and provide more intuition for our
theorems.

The oscillations are a somewhat disappointing feature of
SKG. Real degree distributions do not have large oscilla-
tions (they are by and large monotonically decreasing), and
more importantly, do not have any exponential tail behav-
ior. This is a major issue both for modeling and benchmark-
ing purposes, since degree distribution is one of the primary
characteristics that distinguishes real networks.

But how do we rectify the oscillations of the SKG degree
distribution? We apply a certain model of noise to SKG
and provide both mathematical and empirical evidence that
this “straightens out” the degree distribution. Indeed, small
amounts of noise lead to a degree distribution that is pre-
dominantly lognormal. This also shows a very appealing
aspect of our degree distribution analysis. We can very nat-
urally explain how noise affects the degree distribution and
give explicit bounds on these affects.

We set some parameters that grant simplified expressions.

e A =m/n (average degree)

e 0 = (t1+t2)—1/2 (We refer to this as the skew. For con-
venience, we assume that ¢ > 0.1, a reasonable assumption
for SKG parameters”.)

e 7= (14+20)/(1-20)

e A=Al —40?)"?

Slices: The vertices of the graph are numbered from 0 to
n — 1. Each vertex has an ¢-bit binary representation and
therefore corresponds to an element of the boolean hyper-
cube {0,1}*. We can partition the vertices into slices, where
each slice consists of vertices whose representations have the
same number of 0’s (same Hamming weight). Recall that
we assume £ is even. For r € [—£/2,£/2], we say that slice
r consists of all vertices whose binary representations have
exactly (£/2+7) O0’s.

These binary representations and slices are intimately con-
nected with edge insertions in the SKG model. For each
insertion, we are trying to randomly choose a source-sink
pair. First, let us simply choose the first bit (of the repre-
sentations) of the source and the sink. Note that there are 4
possibilities (first bit for source, second for sink): 00, 01, 10,
and 11. We choose one of the combinations with probabili-
ties t1, t2, t3, and t4 respectively. This fixes the first bit of the
source and sink. We perform this procedure again to choose
the second bit of the source and sink. Repeating ¢ times, we
finally decide the source and sink of the edge. Since ¢; is the
largest value, we tend to add more edges between vertices
that have many zeroes. Note that as r becomes smaller, a
vertex in an r-slice tends to have higher degree.

3.1 Analysis

We begin by stating and explaining the main result of this
section. The next subsection gives a verbal explanation of
the results and the intuition behind how we proved them.
Recall that, for the sake of presentation, we assume that £ is

4This is not essential and theorems can be readily modified for general
o. But it allows for more readable formulae and the exclusion of nasty
corner cases.
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Figure 2: We plot the degree distribution of graphs generated using our three different SKG parameter sets. We then plot the
respective bounds predicted by Thm. 1 and Lem. 3. Observe how Thm. 1 correctly guesses the peaks and troughs of the degree
distribution. Lem. 3 is practically an exact match (except when the degree is below 2¢ or, in Graph500, slight inaccuracies

when the degree is too large).

even. All theorems can be suitably modified for the general
case.

For a real number z, |z] is the closest integer to z. We use
o(1) as a shorthand for a quantity that is negligible. Typi-
cally, this becomes asymptotically zero very rapidly as d or
¢ increases. To provide clean expressions, we make certain
approximations which are slightly off for certain regions of
d and ¢ (essentially, when d is either too small or too large).
Furthermore, as our figures will make amply clear, our ex-
pressions are not only upper bounds, but tightly approxi-
mate the degree distribution. For the sake of formalism, we
have stated all our theorems as upper bounds. The lower
order error terms in all the following are extremely small.
The following theorem is a sort of informal yet accurate de-
scription of the degree distribution. We focus on outdegrees,
but these theorems hold for indegrees as well.

THEOREM 1. Leto > 0.1. For degreed, let 04 = In(d/\)/InT.

Define T'q = [04] and va = |04 — Tal. The expected outde-
gree distribution of a SKG is bounded above by a function
that oscillates between a lognormal and an exponential tail.
Formally, assume (eln2)¢ < d < +/n. IfT'qy > £/2, then the
expected number of vertices of degree d is negligible (expec-
tation is o(1)). If 'y < £/2, the expected number of vertices
of degree d is bounded above (up to a small constant factor)

by
22
iexp( dvy;In 7‘) 14 .
v 2 0/2 + Ty

Note that I'y = [In(d/A)/In7] = ©(Ind). Hence (Z/Qil“,i)
can be thought of as (€/2+é(ln d)). The function (e/;_m) rep-
resents a normal distribution of x, and therefore this is a log-

normal distribution of d. This is multiplied by exp(—dy3 In® 7/2).

We can see that vq € [0,1/2]. When ~4 is very close to 0,
then the exponential term is almost 1. Hence the product
represents a lognormal tail. On the other hand, when 4 is
a constant (say > 0.2), then the product becomes an expo-
nential tail. Observe that 74 oscillates between 0 and 1/2,
leading to the characteristic behavior of SKG. As 6,4 becomes
closer to an integer, there are more vertices of degree d. As
it starts to have a larger fraction part, the number of such

vertices plummets exponentially. Note that there are many
values of d (a constant fraction) where 74 > 0.2. Hence,
for all these d, the degrees are bounded above by an expo-
nential tail. As a result, the degree distribution cannot be
a power law or a lognormal. Thm.1 also clearly shows the
importance of the skew, o.

The estimates provided by Thm. 1 for our three different
SKG parameter sets are shown in Fig. 2. Note how this sim-
ple estimate matches the oscillations of the actual degree
distribution very accurately. We provide a slightly more
complex expression in Lem.3 that almost completely ex-
plains the degree distribution.

The details of proving Thm. 1 are omitted due to length.
We just state some of the main lemmas and give an intuitive
explanation in the next subsection. The following lemma
bounds the probability that a vertex v at slice r has degree
d. This lemma needs the technical assumption that d <
v/n. Hence, our formula becomes slightly inaccurate when
d becomes large, but as our figures show, it is not a major
issue. This technical condition can be removed, at the cost
of making the expressions more messy.

LEMMA 2. Let v be a vertex in slice v and suppose that
d < \/n. Then the probability that v has (out-)degree d is at
most
Ld (Tr)d
d! exp(Ar7)’

(1+0(1))

The following lemma is the main technical result. Thm.1
is a direct corollary of this lemma. Let X4 be the random
variable for the number of vertices of (out-)degree d. In the
following, the expectation is over the random choice of the
graph. We stress that the following bound is actually a tight
estimate (and can be proven so with a slight modification
of our arguments). For the sake of rigor, we only state an
upper bound.

LEMMA 3. Let 04 =

In(d/N)/InT, rq = |0a], and dq =
0q — ra. Let (eln2)f < d <

V. If ra > €/2, E[X4] is



negligible. Otherwise, we have

MX4<1+dDem<—wmﬁT>< ¢ >

Vord 2 6/24*?"4

a1 s 2102
4 1+ o(1) exp ( d(1—64)°In T) 14 '
2nd 2 0/24+rq+1

We plot the bound given by this lemma in Fig.2. Note
how it completely captures the behavior of the degree dis-
tribution (barring a slight inaccuracy for larger degrees of
the Graph500 graph because we start exceeding the upper
bound for d in Lem. 3).

3.2 Understanding the degree distribution

The following is a verbal explanation of our proof strategy
and captures the essence of the math.

It will be convenient to think of the parameters having
some fixed simple values. Let A = 1 and 7 = e. (This can
be achieved with a reasonable choice of T', ¢, A.) We begin by
looking at the different slices of vertices. Vertices in a fixed
r-slice have an identical behavior with respect to the degree
distribution. Lem. 2 uses elementary probability arguments
to argue that the probability that a vertex in slice r has
(out-)degree d is roughly

exp(d;“!— e’) (1)

When r > Ind, the numerator will be less than 1, and the
overall probability is < 1/d!. Therefore, those slices will not
have many (or any) vertices of degree d. If r < Ind, the nu-
merator is o(d!) and the probability is still (approximately)
at most 1/d!. Observe that when r is negative, then this
probability is extremely small, even for fairly small values
of d. This shows that half of the vertices (in slices where
the number of 1’s is more than 0’s) have extremely small
degrees.

It appears that the “sweet spot” is around Ind. Applying
Taylor approximations to appropriate ranges of r (details
omitted due to length), we can show that a suitable approx-
imation of the probability of a slice r vertex having degree
d is roughly exp(—d(r — Ind)?). We can now show that the
SKG degree distribution is bounded above by a lognormal
tail. Only the vertices in slice » ~ Ind have a good chance
of having degree d. This means that the expected number of
vertices of degree d is at most (Z/Q-ﬁln d). Since the latter is
normally distributed as a function of Ind, it (approximately)
represents lognormal tail. A similar conclusion was drawn in
[13], though their approach and presentation is very different
from ours.

This is where we significantly diverge. The crucial obser-
vation is that r is a discrete variable, not a continuous one.
When |r—Ind| > 1/3 (say), the probability of having degree
d is at most exp(—d/9). That is an exponential tail, so we
can safely assume that vertices in those slices have no ver-
tices of degree d. Refer to Fig. 3. Since In d is not necessarily
integral, it could be that for all values of r, |r —Ind| > 1/3.
In that case, there are (essentially) no wvertices of degree d.
For concreteness, suppose Ind = 100/3. Then, regardless
of the value of r, |[r —Ind| > 1/3. And we can immedi-
ately bound the fraction of vertices that have this degree
by the exponential tail, exp(—d/9). When Ind is close to
being integral, then for r = |Ind], the r-slice (and only this

r-2 r-1 rIn(d) r+1 r+2

Figure 3: Probability of nodes of degree d for various slices.
If Ind is far from integral, a vertex from slice r» will have
almost no vertices of degree d. Adding noise can be thought
of as an average over the Gaussian. The probability of a
slice r vertex having degree d is now the area of the shaded
region.

slice) will contain many vertices of degree d. The quantity
|Ind — [Ind]| fluctuates between 0 and 1/2, leading to the
oscillations in the degree distribution.

Let I'y = |[Ind] and v¢ = |I'q — Ind|. Putting the argu-
ments above together, we can get a very good estimate of the
number of vertices of degree d. This quantity is essentially
exp(—v3d) (£/2ﬁ—1‘d)’ as stated in Thm.1. A more nuanced
argument leads to the bound in Lem. 3.

3.3 Enhancing SKG with Noise

Let us now focus on a noisy version of SKG that removes
the fluctuations in the degree distribution. The idea is quite
simple. For convenience, focus on the case when T is sym-
metric. For each level i < /, define a new matrix T; in
such a way that the expectation of T; is just T. At level
i in the edge insertion, we use the matrix 7; to choose the
appropriate quadrant.

Here is a formal description. We will assume that T is
symmetric®. Let b be our noise parameter such that b <
min((¢t1 + t4)/2,t2). For level i, choose u; to be a uniform
random number in the range [—b, +b]. Set T; to be

_ 2pity .

7= |1 2
. _ AHita
tat i ta— 7

Note that T; is symmetric, its entries sum to 1, and all
entries are positive. This is by no means the only model
of noise, but it is certainly convenient for analysis. Each
level involves only one random number p;, which changes
all the entries of T" in a linear fashion. Hence, we only need
¢ random numbers in total.

In Figures 1, 4a, and 4b, we show the effects of noise. Ob-
serve how even a noise parameter as small as 0.05 (which
is extremely small compared to the matrix values) signifi-
cantly reduces the magnitude of oscillations. A noise of 0.1
completely removes the oscillations, and we attain a true
lognormal distribution (Thm.4). (Even this is very small
noise, since the standard deviation of this noise parameter
is just 0.0033.) This completely annihilates the undesirable
exponential tail behavior of SKG, and leads to a truly mono-
tone decrease.

51t can easily be generalized, but this is omitted due to space.
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Figure 4: The figures show the degree distribution of stan-
dard SKG and NSKG as the averages of 25 instances. Notice
how effectively a noise of 0.1 straightens the degree distri-
bution.

3.4 Why does noise help?

We first state our formal theorem. Essentially, when the
noise is large enough, then we can show that the degree
distribution is at least a lognormal tail on average. This is a
significant change from SKG, where many degrees are below
an exponential tail. Again, we only state a slightly weaker
lower bound here, but we can prove that degree distribution
converges to a lognormal for large d and £. The proof details
are omitted due to length. Nonetheless, the reader does not
have to take our words on faith, since our figures provide
clear evidence that the degree distribution of NSKG (with
noise = 0.1) is lognormal.

THEOREM 4. Suppose o € [0.1,0.4] and the noise b is at
least 1/(4vVk). Let Ty = |In(d/\)/In7]. Then the expected

degree distribution is bounded below by a lognormal. For-
mally, when I'q < £/2 and d < \/n,

1 4
BlXd = 27 <€/2 + Fd> :

We now provide a verbal description of the main ideas.
Let us assume that A = 1 and 7 = e, as before. We focus
attention on a vertex v of slice r, and wish to compute the
probability that it has degree d. Note the two sources of
randomness: one coming from the choice of the noisy SKG
matrices, and the second from the actual graph generation.
We associate a bias parameter p, with every vertex v. This
can be thought of as some measure of how far the degree
behavior of v deviates from its noiseless version. Actually,
it is the random variable Inp, that we are interested in.
It can be shown that Inp, is distributed like a Gaussian.
The distribution of p, is identical for all vertices in slice
r. (Though it does not matter for our purposes, for a given
instantiation of the noisy SKG matrices, vertices in the same
slice can have different biases.)

We approximate the probability that v has degree d by

exp(dr + dln p, — pye”)/d!.

After some simplifying, this is roughly equal to exp(—d(r —
Ind — Inp,)?). The additional In p, will act as a smoothing
term. Observe that even if Ind has a large fractional part,
we could still get vertices of degree d. Suppose Ind = 10.5,
but In p, happened to be close to 0.5. Then vertices in slice
|In d] would have degree d with some reasonable probability.

Contrast this with regular SKG, where there is almost no
chance that degree d vertices exist.

Think of the probability as exp(d(r — Ind — X)?), where
X is a random variable. The expected probability will be
an average over the distribution of X. Intuitively, instead
of the probability just being exp(d(r — Ind)?) (in the case
of SKG), it is now the average value over some interval. If
the standard deviation of X is sufficiently large, even though
exp(d(r—Ind)?) is small, the average of exp(d(r—Ind—X)?)
can be large. Refer to Fig. 3.

We know that X is a Gaussian random variable (with
some standard deviation o). So we can formally express the
(expected) probability that v has degree d as an integral,

too 2 —-X2/202
/ exp(d(r —Ind — X)7) - e dX.
This definite integral can be evaluated exactly (since it is
just a Gaussian). Intuitively, this is roughly the average
value of exp(d(r — Ind — X)?), where X ranges from —o
to +o. Suppose ¢ > 1. Since r ranges over the integers,
there is always some r such that |r —Ind| < 1. For this
value of r, the average of exp(d(r — Ind — X)?) over the
range X € [—1,+1] will have a reasonably large value. This
ensures that (in expectation) many vertices in this slice r
have degree d. This can be shown for all degrees d, and we
can prove that the degree distribution is at least lognormal.

4. ISOLATED VERTICES

In this section, we give a simple formula for the number of
isolated vertices in SKG. This can be derived from elemen-
tary probability calculations (described in the full version).
We focus on the symmetric caseﬁ, where t2 = ¢3 in the ma-
trix 7. We assume that ¢ is even in the following, but the
formula can be extended for ¢ being odd. The real con-
tribution here is not the methodology, but the final result,
since it gives a clearer understanding of how many vertices
SKG leaves isolated and how the SKG parameters affects
this number. At the cost of a tiny error, the following gives
a formula that is intuitive and easy enough to compute on
a calculator.

THEOREM 5. The number of isolated vertices can be ap-
prozimated (within additive error 0.01n) by

r=£/2

> ( ) /2€+ r> exp(—2Ar") (2)

r=—=~0/2

The fraction of isolated vertices in a slice r is essentially
exp(—A7"). Note that 7 is larger than 1. Hence, this is a de-
creasing function of r. This is quite natural, since if a vertex
v has many zeroes in its representation (higher slice), then
it is likely to have a larger degree (and less likely to be iso-
lated). This function is doubly exponential in 7, and there-
fore decreases very quickly with r. The fraction of isolates
rapidly goes to 0 (resp. 1) as r is positive (resp. negative).

Relation of SKG parameters to the number of iso-
lated vertices: When \ decreases, the number of isolated
vertices increases. Suppose we fix the SKG matrix and aver-
age degree A, and start increasing £. Note that this is done
in the Graph500 benchmark, to construct larger and larger
graphs. The value of A decreases exponentially in ¢, so the

6Our formula can be extended to the general case but is less elegant.



10°
CAHepPh
* * * R-MAT
105 WEBNotreDame
R-MAT
o
N o
n
o 10*
Q
M
<
10°
10’ 0 1 2 3
10 10 10 10

Figure 5: Core decompositions of real graphs and their SKG
model. Observe that the max core of SKG is an order of
magnitude smaller.

number of isolated vertices will increase. Our formula sug-
gests ways of counteracting this problem. The value of A
could be increased, or the value o could be decreased. But,
in general, this will be a problem for generating large sparse
graphs using a fixed SKG matrix.

When ¢ increases, then A decreases and 7 increases. None-
theless, the effect of A is much stronger than that of 7.
Hence, the number of isolated vertices will increase as o
increases.

In Tab.1, we compute the estimated number of isolated
vertices in graphs for the Graphb500 parameters. Observe
how the fraction of isolated vertices consistently increases
as { is increased. For the largest setting of £ = 42, only one
fourth of the vertices are not isolated.

5. k-CORES IN SKG

Structures of k-cores are a very important part of social
network analysis [4, 1, 15], as they are a manifestation of the
community structure and high connectivity of these graphs.

DEFINITION 6. Given an undirected graph G = (V, E),
the subgraph induced by set S C V, is denoted by G|s :=
(S, E'), where E' contains every edge of E that is completely
contained in S. For an undirected graph, the k-core of G the
largest induced subgraph of minimum degree k. The max
core number of G is the largest k such that G contains a
(non-empty) k-core. (These can be extended to directed ver-
sions: a k-out-core is a subgraph with min out-degree k.)

A bipartite core is an induced subgraph with every vertex
has either a high in-degree or out-degree. The former are
called authorities and the latter are hubs. Large bipartite
cores are present in web graphs and are an important struc-
tural component [8, 14]. Note that if we make the a directed
graph undirected (by simply removing the directions), then
a bipartite core becomes a normal core. Hence, it is useful to
compute cores in a directed graph by making it undirected.

We begin by comparing the sizes of k-cores in real graphs,
and their models using SKG [17]. Refer to Fig.5. We plot
the size of the maximum k-core with k. The k at which the
curve ends is the max core number. (For CAHepPh, we look
at undirected cores, since this is an undirected graph. For
WEBNotreDame, a directed graph, we look at out-cores.
But the empirical observations we make holds for all other
core versions.) For both our examples, we see how drasti-
cally different the curves are. By far the most important

difference is that the curve for the SKG versions are ex-
tremely short. This means that the max core number is
much smaller for SKG modeled graphs compared to their
real counterparts. For the web graph WEBNotreDame, we
see the presence of large cores, probably an indication of
some community structure. The maximum core number of
the SKG version is an order of magnitude smaller. Minor
modifications (like increasing degree, or slight variation of
parameters) to these graphs do not increase the core sizes
or max cores numbers much. This is a problem, since this is
strongly suggesting that SKG do not exhibit localized den-
sity like real web graphs or social networks.

If we wish to use SKG to model real networks, then it
is imperative to understand the behavior of max core num-
bers for SKG. Indeed, in Tab. 2, we see that our observation
is not just an artifact of our examples. SKGs consistently
have very low max core number. Only for the peer-to-peer
Gnutella graphs does SKG match the real data, and this
is specifically for the case where the max core number is
extremely small. For the undirected graph (the first three
coauthorship networks), we have computed the undirected
cores. The corresponding SKG is generated by copying the
upper triangular part in the lower half to get a symmetric
matrix (an undirected graph). The remaining graphs are
directed, and we simply remove the direction on the edges
and compute the total core. Our observations hold for in and
out cores as well (given in full version), and a wide range of
data. This is an indication that SKG is not generating dense
enough subgraphs.

Table 2: Core sizes in real graphs and SKG version
Graph

Real max core SKG max core

CAGrQc 43 4
CAHepPh 238 16
CAHepTh 31 5
CITHepPh 30 19
CITHepTh 37 19
P2PGnutella25 5 5
P2PGnutella30 7 6
SOCEpinions 67 43
WEBNotreDame 155 31

We focus our attention on the max core number of SKG.
How does this number change with the various parameters?
The following summarizes our observations.

EMPIRICAL OBSERVATION 7. We focus on the case of sym-
metric T. As before, o = (t1 +t2) — 1/2.

1. The maz core number increases with o. By and large,
if 0 < 0.1, mazx core numbers are extremely tiny.

2. Max core numbers grow with ¢ only when the values
of o are sufficiently large. Even then, the growth is much
slower than the size of the graph. For smaller o, max core
numbers exhibit essentially negligible growth.

8. Max core numbers increase essentially linearly with A.

Large mazx core numbers require larger values of o. As
mentioned in §4, increasing o increases the number of iso-
lated vertices. Hence, there is an inherent tension between
increasing the max core number and decreasing the number
of isolated vertices.

For the sake of consistency, we performed the following
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Figure 6: We plot the max core number against various parameters. In the first picture, we plot the max core number of an
(symmetric) SKG graph with increasing o. Next, we show how the max core number increases with ¢, the number of levels.
Observe the major role that the matrix o plays. For Graph500, o is much larger than the other parameter sets. Finally, we
show that regardless of the parameters, the max core number increases linearly with A.

experiments on the max core after taking a symmetric ver-
sion of the SKG graph. Our results look the same for in
and out cores as well. In Fig. 6a, we show how increasing o
increases the max core number. We fix the values of £ = 16
and m = 6 x 2'6. (There is nothing special about these val-
ues. Indeed the results are basically identical, regardless of
this choice.) Then, we fix ¢1 (or t2) to some value, and slowly
increase o by increasing t2 (resp. t1). We see that regardless
of the fixed values of t1 (or t2), the max core consistently
increases. But as long as ¢ < 0.1, max core numbers remain
almost the same.

In Fig.6b, we fix matrix 7" and average degree A, and
only vary £. For WEBNotreDame”, we have o = 0.18 and
for CA-HEP-Ph, we have 0 = 0.11. For both cases, in-
creasing £ barely increases the max core number. Despite
increasing the graph size by 8 orders of magnitude, the max
core number only doubles. Contrast this with the Graph500
setting, where o = 0.26, and we see a steady increase with
larger ¢. This is a predictable pattern we notice for many
different parameter settings: larger o leads to larger max
core numbers as £ goes up. Finally, in Fig.6c, we see that
the max core number is basically linear in A.

6. CONCLUSIONS

For a true understanding of a model, a careful theoretical
and empirical study of its properties in relation to its param-
eters is imperative. This not only provides insight into why
certain properties arise, but also suggests ways for enhance-
ment. One strength of the SKG model is its amenability to
rigorous analysis, which we exploit in this paper.

We prove strong theorems about the degree distribution,
and more significantly show how adding noise can give a true
lognormal distribution by eliminating the oscillations in de-
gree distributions. Our proposed method of adding noise
requires only ¢ random numbers all together, and is hence
cost effective. We want to stress that our major contribution
is in providing both the theory and matching empirical evi-
dence. The formula for expected number of isolated vertices
provides an efficient alternative to methods for computing

"Even though the matrix 7' is not symmetric, we can still define o.
Also, the off diagonal values are 0.20 and 0.21, so they are almost
equal.

the full degree distribution. Besides requiring fewer opera-
tions to compute and being less prone to numerical errors,
the formula transparently relates the expected number of
isolated vertices to the SKG parameters . Our studies on
core numbers establish a connection between the model pa-
rameters and the cores of the resulting graphs. In particular,
we show that commonly used SKG parameters generate tiny
cores, and the model’s ability to generate large cores is lim-
ited.

As for our future work, we believe that most of the SKG
behavior studied in this paper, and possibly others, can be
better understood by looking at the distribution of entries
of SKG. In Fig. 7, we present the distribution of the entries
of the probability matrix for the Graph500 SKG (£ = 420.
This figure shows that SKG matrix is composed of a hand-
ful of distinct entries (946 in this case) that act similarly.
Moreover, some of these entries are significantly large, which
means these edges will surely be in the resulting graph, while
some other are so small that their selection can be considered
an exception. We want to note that the red line in Fig.7
marks 1, and many entries of SKG are actually larger than
1, which means they cannot be interpreted as probabilities.
To keep all entries below 1, we need t; < 1/2@ < 0.5, fur-
ther restricting the model. We believe the structure in Fig. 7
bears a lot of information that can help us better understand
SKG.

Multiplicity

SKG entries

Figure 7: Distribution of SKG entries, with the red line
marking 1.
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