

Uncertainty Quantification and Stochastic Dimension Reduction for Complex Coupled Systems

Eric Phipps (etphipp@sandia.gov),
Roger Pawlowski, John Red-Horse
Sandia National Laboratories,

Roger Ghanem, Ramakrishna Tipireddy
University of Southern California, and

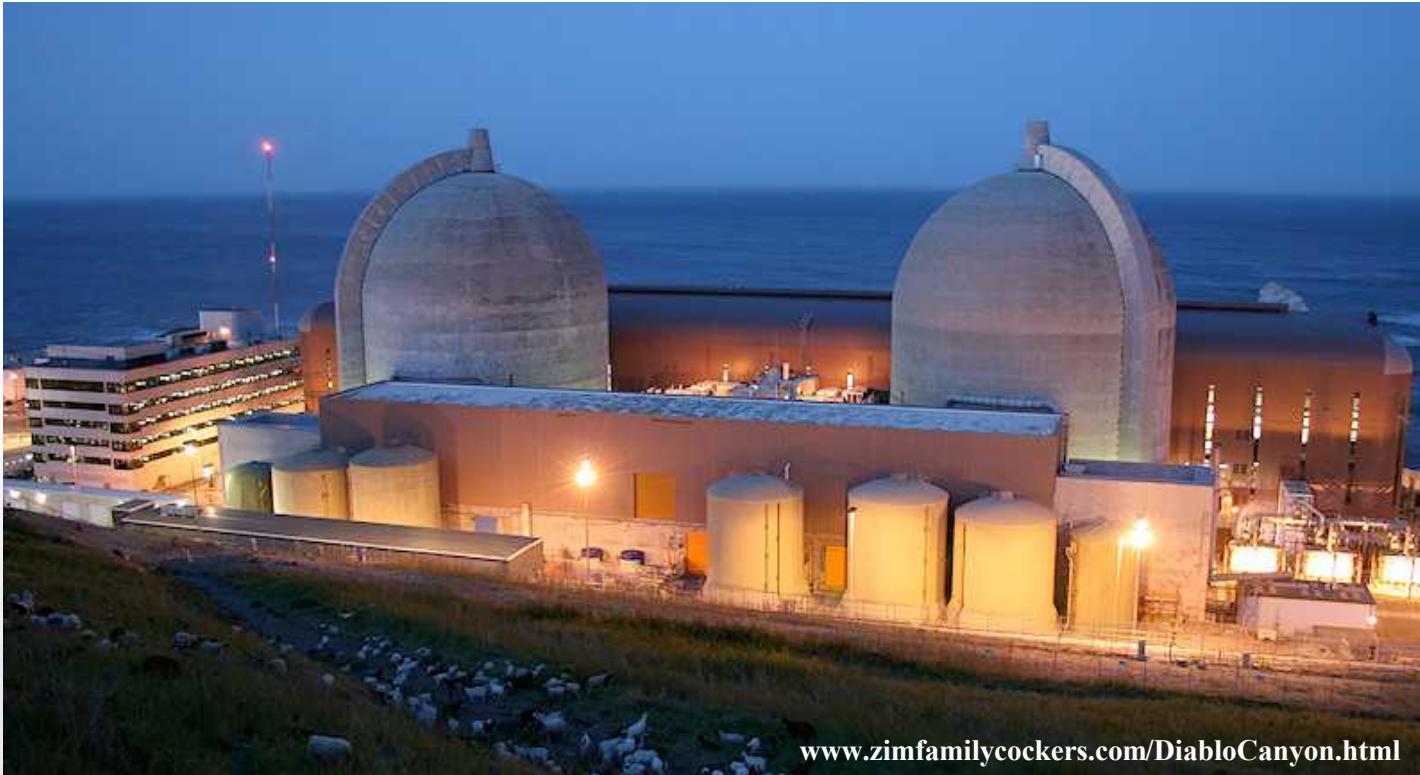
Maarten Arnst
University of Liège, Belgium

Workshop on Uncertainty Quantification for Multiphysics and Multiscale Systems

March 7-8, 2011

Uncertainty Quantification for Complex Coupled Systems

- Address *some* of the mathematical and computational challenges in predictive simulation of complex coupled systems such as...



www.zimfamilycockers.com/DiabloCanyon.html

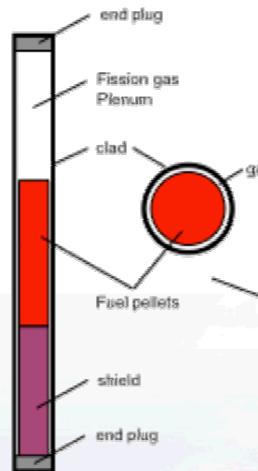
Sandia National Laboratories

Challenges for UQ of Complex Coupled Systems

Structures and physics whose features are too small for resolution on 3D grid

Fuel-pins and control rods

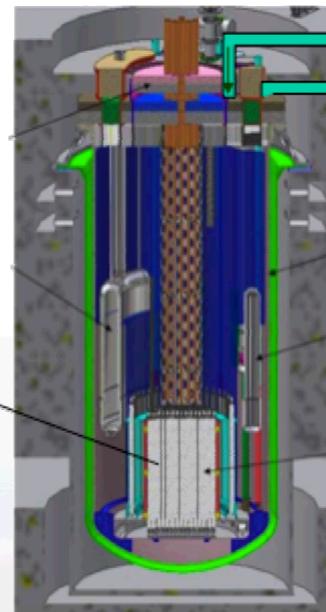
- 0.5 - 10 mm-scale features
- conduction, fission heating ...
- 2D or 3D representative models



"Meso-scale" resolved by 3D grid

In-vessel Reactor Components

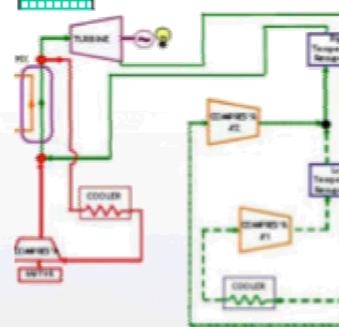
- 10 cm to 10 m scale geometry
- Neutronics, Turb flow & heat transfer, thermal-mechanics, conduction, ...
- 3D Modeling Framework



Balance of Plant Reactor System Components (& Containment)

- 1 - 50 m scale
- Pipes, pumps, valves, heat exchangers, turbines, rooms,
- 0D MELCOR models
- 3D Fire Modeling with RIO

Structures and physics whose features are too large for resolution on 3D grid



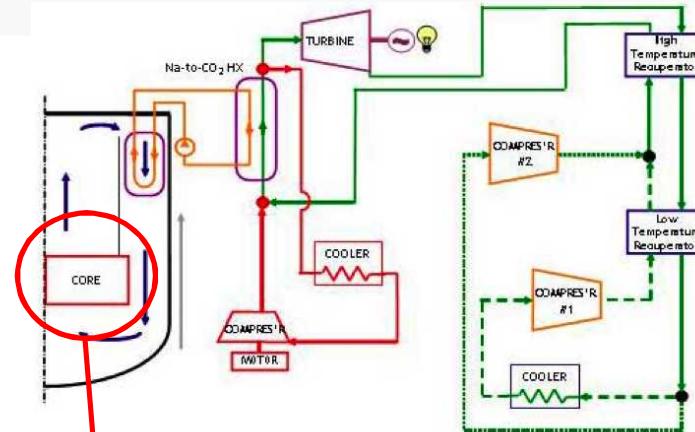
Argonne Advanced Burner Reactor Preconceptual Design

- Predictive simulation must capture critical couplings
- Coupling physics often necessitates reduction in model **fidelity**
- Reducing fidelity introduces additional uncertainty (component & interface)
- Strong coupling adds new dimensions of uncertainty to all components
- Cost of uncertainty quantification grows dramatically with **stochastic dimension**

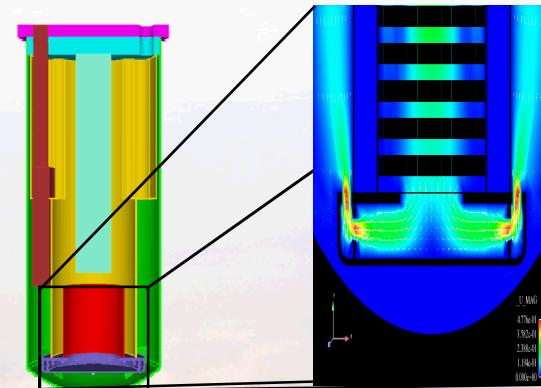
Sandia National Laboratories

Multi-Physics, Multi-Fidelity, Heterogeneous Uncertainty Quantification Approach

- Component-level uncertainty propagation via general expansion methodology
 - Network or multi-physics component
- Stochastic dimension reduction at component interfaces
- Strongly coupled solver technology for coupled stochastic problems
- Stochastic up-scaling for low-fidelity models
- Stochastic sensitivities with respect to system components



Low-fidelity Network Plant Model



High-fidelity Multi-physics Component Model (Core)

Sandia National Laboratories

Graphics courtesy: Rod Schmidt,
BRISCC project

General Stochastic Expansion Uncertainty Quantification Framework

- Steady-state spatially finite-dimensional stochastic problem:

Find $u(\xi)$ such that $f(u, \xi) = 0$, $\xi : \Omega \rightarrow \Gamma \subset R^M$, density ρ

- General stochastic expansion approximation:

$$Z = \text{span}\{\Psi_i : i = 0, \dots, P\} \subset L^2_\rho(\Gamma) \rightarrow u(\xi) \approx \hat{u}(\xi) = \sum_{i=0}^P u_i \Psi_i(\xi)$$

Intrusive Stochastic Galerkin (SG), a.k.a. (Generalized) Polynomial Chaos

- Orthogonal polynomial basis of total order at most N

$$\langle \Psi_i \Psi_j \rangle \equiv \int_{\Gamma} \Psi_i(x) \Psi_j(x) \rho(x) dx = \delta_{ij} \langle \Psi_i^2 \rangle, \quad i, j = 0, \dots, P_{SG}$$

- Galerkin Projection

$$F_i(u_0, \dots, u_P) \equiv \frac{1}{\langle \Psi_i^2 \rangle} \int_{\Gamma} f(\hat{u}(x), x) \Psi_i(x) \rho(x) dx = 0, \quad i = 0, \dots, P_{SG}$$

Non-Intrusive Polynomial Chaos (NIPC)

$$u_i = \frac{1}{\langle \Psi_i^2 \rangle} \int_{\Gamma} u(x) \Psi_i(x) \rho(x) dx \approx \frac{1}{\langle \Psi_i^2 \rangle} \sum_{k=0}^Q w_k u_k \Psi_i(x_k), \quad f(u_k, x_k) = 0, \quad i = 0, \dots, P_{SG}, \quad k = 0, \dots, Q$$

Non-Intrusive Stochastic Collocation (SC)

- Interpolatory polynomial basis defined by collocation points $\{x_j \in \Gamma : j = 0, \dots, P_{SC}\}$

$$\Psi_i(x_j) = \delta_{ij}, \quad f(u_j, x_j) = 0, \quad i, j = 0, \dots, P_{SC}$$

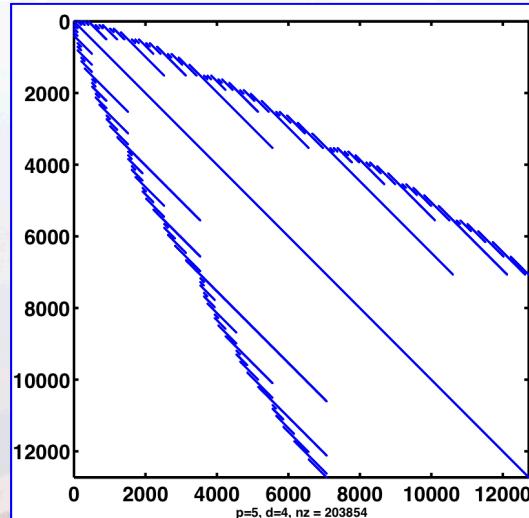
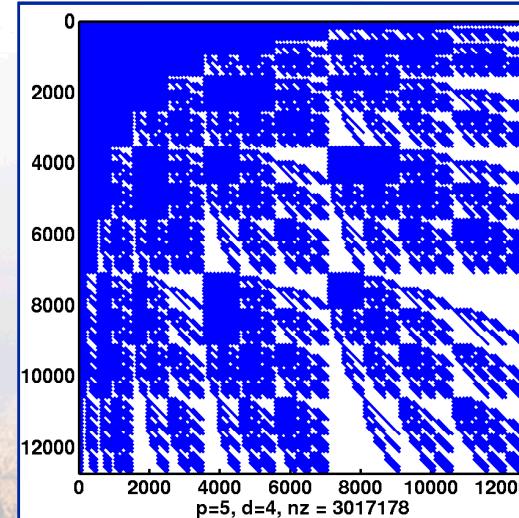
Sandia National Laboratories

Two Challenges for Intrusive SG

- Generating SG residual & Jacobian entries in complex simulation codes:

$$\begin{aligned} F_i &= \int_{\Gamma} f(\hat{u}(y), y) \psi_i(y) \rho(y) dy, \quad \langle \cdot \rangle \equiv \int_{\Gamma} \cdot \rho(y) dy, \\ \frac{\partial f}{\partial u}(\hat{u}(y), y) &\approx \sum_{k=0}^P J_k \psi_k(y), \quad J_k = \frac{1}{\langle \psi_k^2 \rangle} \int_{\Gamma} \frac{\partial f}{\partial u}(\hat{u}(y), y) \psi_k(y) \rho(y) dy, \\ \implies \frac{\partial F_i}{\partial u_j} &= \int_{\Gamma} \frac{\partial f}{\partial u}(\hat{u}(y), y) \psi_i(y) \psi_j(y) \rho(y) dy \approx \sum_{k=0}^P J_k \langle \psi_i \psi_j \psi_k \rangle \end{aligned}$$

- Solving resulting fully-coupled spatial-stochastic problem:



Trilinos Package Stokhos

- Tools for generating SG residual and Jacobian entries
 - Polynomial basis definition
 - Quadrature methods
 - Triple product tensors
 - Expansion/approximation methods for nonlinear terms
 - Automatic differentiation (via Sacado AD Trilinos package)
- Tools for forming and solving SG linear systems
 - Product vectors
 - SG matrix operators
 - Preconditioning methods
- Nonlinear application code interfaces
 - Nonlinear solver
 - Time integration
 - Optimization
 - ...

<http://trilinos.sandia.gov>

Sandia National Laboratories

Generating SG Residual and Jacobian Coefficients via Automatic Differentiation (AD)

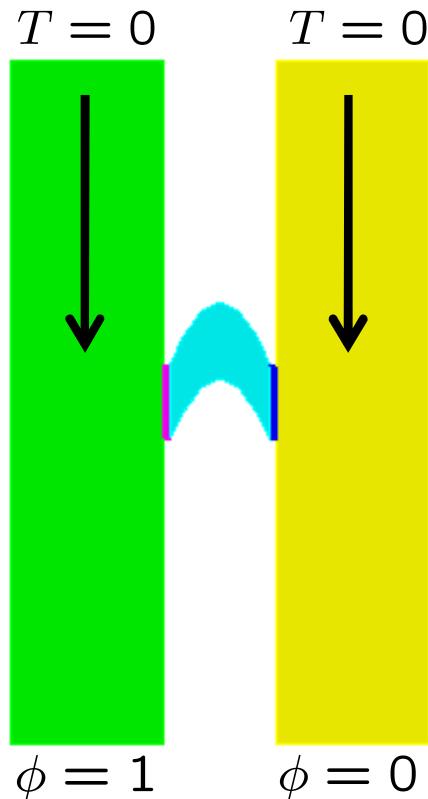
- AD relies on known derivative formulas for all intrinsic operations plus chain rule
 - Implemented in C++ via operator overloading
 - Template your code on scalar type, replacing double's with AD type

- Similar approach possible for SG expansion

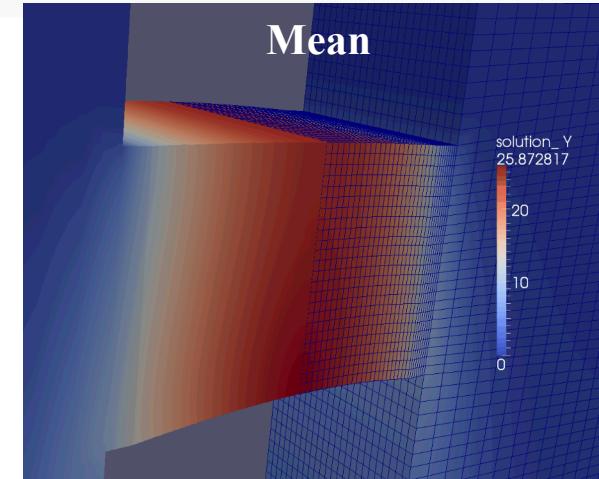
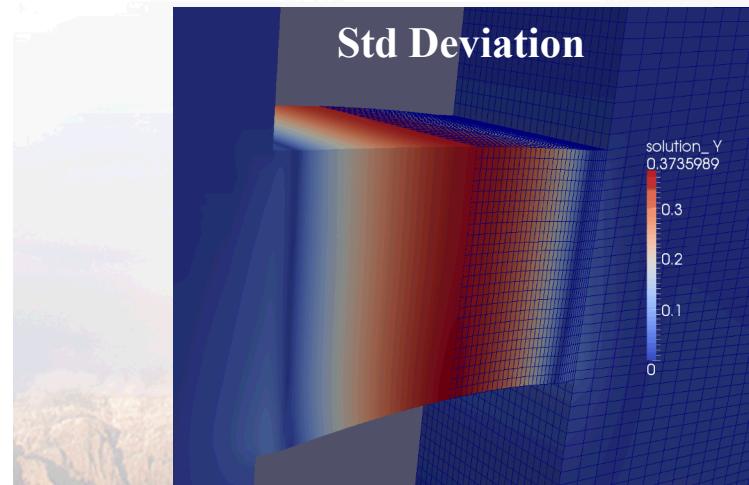
$$a = \sum_{i=0}^P a_i \psi_i, \quad b = \sum_{j=0}^P b_j \psi_j, \quad c = ab \approx \sum_{k=0}^P c_k \psi_k, \quad c_k = \sum_{i,j=0}^P a_i b_j \frac{\langle \psi_i \psi_j \psi_k \rangle}{\langle \psi_k^2 \rangle}$$

- Transcendental operations more difficult (see Debusschere *et al*, SISC, 2004)
 - Taylor series
 - Time integration
 - Sparse-grid quadrature
 - Research to be done here... (see Kevin Long's talk)
- Enables “easy” incorporation of SG calculations in codes that support AD
 - Stokhos provides Sacado “AD” data type for SG calculations

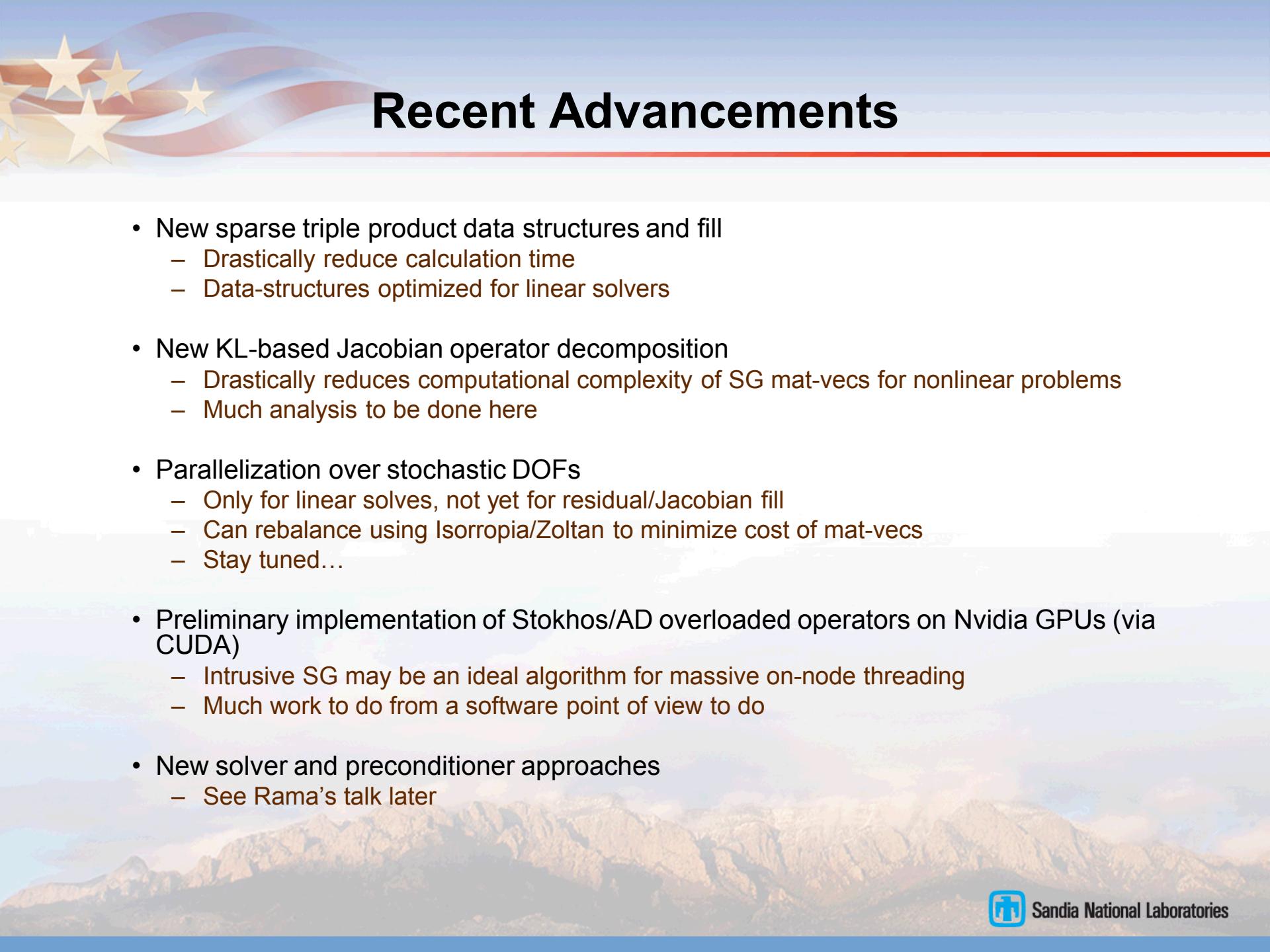
UQ in an Electromagnetic Contact Demonstration SNL Albany Code (Salinger et al)



$$\begin{aligned} -\nabla \cdot \sigma \nabla \phi &= 0 \\ -\nabla \cdot \kappa \nabla T - \mathbf{v} \cdot \nabla T &= \sigma(\nabla \phi)^2 \\ \sigma(T) &= \sigma_0/[1 + \beta(T - T_0)] \end{aligned}$$



Sandia National Laboratories



Recent Advancements

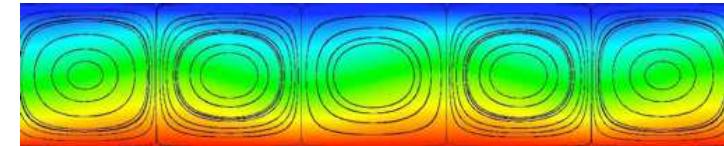
- New sparse triple product data structures and fill
 - Drastically reduce calculation time
 - Data-structures optimized for linear solvers
- New KL-based Jacobian operator decomposition
 - Drastically reduces computational complexity of SG mat-vecs for nonlinear problems
 - Much analysis to be done here
- Parallelization over stochastic DOFs
 - Only for linear solves, not yet for residual/Jacobian fill
 - Can rebalance using Isorropia/Zoltan to minimize cost of mat-vecs
 - Stay tuned...
- Preliminary implementation of Stokhos/AD overloaded operators on Nvidia GPUs (via CUDA)
 - Intrusive SG may be an ideal algorithm for massive on-node threading
 - Much work to do from a software point of view to do
- New solver and preconditioner approaches
 - See Rama's talk later

Coupled Nonlinear Systems

- Shared-domain multi-physics coupling
 - Equations coupled at each point in domain

$$\mathcal{L}_1(u_1(x), u_2(x)) = 0$$

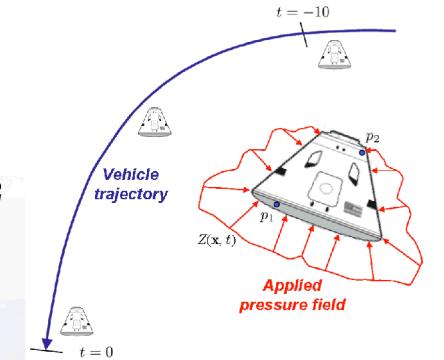
$$\mathcal{L}_2(u_1(x), u_2(x)) = 0$$



- Interfacial multi-physics coupling
 - Equations are coupled through boundaries

$$\mathcal{L}_1(u_1(x), v_2(x_2)) = 0, \quad v_2(x_2) = \mathcal{G}_2(u_2(x_2)), \quad x_2 \in \Gamma_2$$

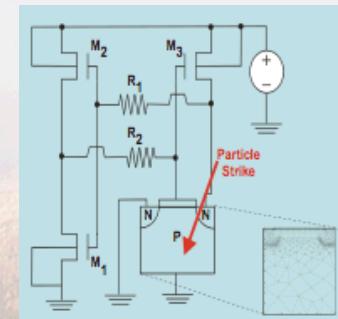
$$\mathcal{L}_2(v_1(x_1), u_2(x)) = 0, \quad v_1(x_1) = \mathcal{G}_1(u_1(x_1)), \quad x_1 \in \Gamma_1$$



- Network coupling
 - Equations are coupled through a set of scalars

$$\mathcal{L}_1(u_1(x), v_2) = 0, \quad v_2 = \mathcal{G}_2(u_2)$$

$$\mathcal{L}_2(v_1, u_2(x)) = 0, \quad v_1 = \mathcal{G}_1(u_1)$$



Finite Dimensional Coupled Nonlinear Systems

- All three forms can be written after discretization

$$f_1(u_1, v_2) = 0, \quad u_1 \in \mathbb{R}^{n_1}, \quad v_2 = g_2(u_2) \in \mathbb{R}^{m_2}, \quad f_1 : \mathbb{R}^{n_1+m_2} \rightarrow \mathbb{R}^{n_1}$$

$$f_2(v_1, u_2) = 0, \quad u_2 \in \mathbb{R}^{n_2}, \quad v_1 = g_1(u_1) \in \mathbb{R}^{m_1}, \quad f_2 : \mathbb{R}^{m_1+n_2} \rightarrow \mathbb{R}^{n_2}$$

- Shared-domain multi-physics coupling:

$$m_1, m_2 \sim n_1, n_2$$

- Interfacial multi-physics coupling:

$$1 \ll m_1, m_2 \ll n_1, n_2$$

- Network coupling:

$$m_1, m_2 \sim 1$$

Solution Strategies

- Successive substitution (Picard, Gauss-Seidel, ...)

- Appropriate for all three forms of coupled systems
 - Segregated solves

$$\text{Solve } f_1(u_1^{(l+1)}, v_2^{(l)}) = 0 \text{ for } u_1^{(l+1)}$$

$$\text{Solve } f_2(v_1^{(l+1)}, v_2^{(l+1)}) = 0 \text{ for } u_2^{(l+1)}$$

- Nonlinear elimination

- Practical only for network coupling
 - Segregated solves

$$v_1 - g_1(u_1(v_2)) = 0 \text{ s.t. } f_1(u_1, v_2) = 0$$

$$v_2 - g_2(u_2(v_1)) = 0 \text{ s.t. } f_2(v_1, u_2) = 0$$

- Full Newton (including JFNK)

- Appropriate for all three, but the most challenging to implement
 - No segregated solves

$$\begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial v_2} \frac{\partial g_2}{\partial u_2} \\ \frac{\partial f_2}{\partial v_1} \frac{\partial g_1}{\partial u_1} & \frac{\partial f_2}{\partial u_2} \end{bmatrix} \begin{bmatrix} \Delta u_1 \\ \Delta u_2 \end{bmatrix} = - \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

Stochastic Coupled Nonlinear Systems

- Introduce random variables:

$$f_1(u_1(\xi), v_2(\xi), \xi_1) = 0, \quad v_2(\xi) = g_2(u_2(\xi), \xi_2), \quad \xi = (\xi_1, \xi_2)$$

$$f_2(v_1(\xi), u_2(\xi), \xi_2) = 0, \quad v_1(\xi) = g_1(u_1(\xi), \xi_1), \quad |\xi_1| = M_1, \quad |\xi_2| = M_2$$

- Introduce stochastic expansion approximation:

$$\hat{u}_i(\xi) = \sum_{j=0}^P u_{i,j} \Psi_j(\xi), \quad \hat{v}_i(\xi) = \sum_{j=0}^P v_{i,j} \Psi_j(\xi)$$

Intrusive

$$\frac{1}{\langle \Psi_j^2 \rangle} \langle f_1(\hat{u}_1(\xi), \hat{v}_2(\xi), \xi_1) \Psi_j(\xi) \rangle = 0$$

$$\frac{1}{\langle \Psi_j^2 \rangle} \langle f_2(\hat{v}_1(\xi), \hat{u}_2(\xi), \xi_2) \Psi_j(\xi) \rangle = 0$$

Non-Intrusive

$$u_{i,j} = \sum_{k=0}^Q w_k u_i^k \Psi_j(\xi^k)$$

$$\text{s.t. } f_1(u_1^k, v_2^k, \xi_1^k) = 0$$

$$v_{i,j} = \sum_{k=0}^Q w_k v_i^k \Psi_j(\xi^k)$$

$$f_2(v_1^k, u_2^k, \xi_2^k) = 0$$

$$\begin{aligned} F_1(U_1, V_2) &= 0, & V_2 &= G_2(U_2) \\ F_2(V_1, U_2) &= 0, & V_1 &= G_1(U_1) \end{aligned}$$

- Corresponding coupled system for stochastic DOFs
 - Direct analog of the deterministic solution strategies

Sandia National Laboratories

Curse of Dimensionality

- Because system is coupled, each component must compute approximation over full stochastic space:

$$\hat{u}_1(\xi_1, \xi_2) = \hat{u}_1(\hat{v}_2(\xi_1, \xi_2), \xi_1)$$

- For segregated methods, requires solving sub-problems of larger dimensionality, e.g.,

$$\text{Solve } \frac{1}{\langle \Psi_j^2 \rangle} \langle f_1(\hat{u}_1(\xi), \hat{v}_2(\xi), \xi_1) \Psi_j(\xi) \rangle = 0 \text{ for } \{u_{1,j}\} \text{ given } \{v_{2,j}\}$$

- Adding more components, or more sources of uncertainty in other components, increases cost of each sub-problem

- For network problems, use interface to define new random variables

$$\hat{u}_1(\xi_1, \xi_2) = \sum_{j=0}^P u_{1,j} \Psi_j(\xi_1, \xi_2) \longrightarrow \tilde{u}_1(\eta_2, \xi_1) = \sum_{j=0}^{\tilde{P}_1} \tilde{u}_{1,j} \Phi_j(\eta_2, \xi_1), \quad \eta_2 = \hat{v}_2(\xi_1, \xi_2)$$

- Challenges:

- Measure transformation; Generating polynomials orthogonal w.r.t. joint PDF of η_2 and ξ_1
- Extending approach to other types of coupling

Dimension Reduction in Multi-Physics Problems

- Consider the shared-domain multi-physics problem:

$$\begin{aligned} f_1(\hat{u}_1(\xi), \hat{u}_2(\xi), \xi_1) &= 0 \\ f_2(\hat{u}_1(\xi), \hat{u}_2(\xi), \xi_2) &= 0, \quad \hat{u}_i(\xi) = \sum_{k=0}^P u_{i,k} \Psi_k(\xi) \end{aligned}$$

- Introduce truncated Karhunen-Loeve (KL) decomposition

$$\tilde{u}(\eta(\xi)) = u_0 + \sum_{k=0}^{\tilde{M}} \sqrt{\lambda_k} \varphi_k \eta_{(k)}(\xi), \quad \eta = (\eta_{(1)}, \dots, \eta_{(\tilde{M})})$$

- KL eigenvectors/values (eigenvalue problem):

$$(CC^T)\varphi_k = \lambda_k \varphi_k, \quad C = [u_1 \dots u_P]$$

- KL random variables (given by PCE):

$$\eta_{(k)}(\xi) = \frac{\varphi_k^T (\hat{u} - u_0)}{\sqrt{\lambda_k}} = \sum_{l=1}^P \frac{\varphi_k^T u_l}{\sqrt{\lambda_k}} \Psi_l(\xi)$$

- Denote this transformation by:

$$\eta = g(\hat{u})$$

Sandia National Laboratories

Dimension Reduction in Multi-Physics Problems

- Applying this to each sub-problem yields:

$$\begin{aligned} f_1(\hat{u}_1(\xi), \eta_2(\xi), \xi_1) &= 0, & \eta_2(\xi) &= g_2(\hat{u}_2(\xi)) \\ f_2(\eta_1(\xi), \hat{u}_2(\xi), \xi_2) &= 0, & \eta_1(\xi) &= g_1(\hat{u}_1(\xi)) \end{aligned}$$

- At this point, all we have done is introduce error
 - For computational savings, we also need measure transformation

$$\hat{u}_1(\xi_1, \xi_2) = \sum_{k=0}^P u_{1,k} \Psi_k(\xi_1, \xi_2) \longrightarrow \bar{u}_1(\xi_1, \eta_2) = \sum_{k=0}^{\tilde{P}_1} \bar{u}_{1,k} \Phi_{1,k}(\xi_1, \eta_2)$$

- Significant savings can be realized if

$$N_1 + M_2 < N_1 + N_2 \implies \tilde{P}_1 \ll P$$

Coupled neutron-transport and heat transfer demonstration

$$\frac{d}{dx} \left(D(T) \frac{d\Phi}{dx} \right) - \left(\Sigma_a(T) - \nu \Sigma_f(x, T) \right) \Phi = -s, \quad \text{with}$$

$$\frac{d}{dx} \left(k \frac{dT}{dx} \right) - h(T - T_\infty) = -q(T, \Phi), \quad \text{with}$$

$$\frac{d\Phi}{dx}(0) = \frac{d\Phi}{dx}(L) = 0,$$

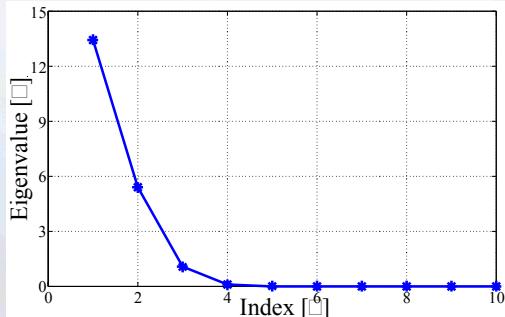
$$\frac{dT}{dx}(0) = \frac{dT}{dx}(L) = 0,$$

$$\nu \Sigma_f(x, T(x), \xi) = \nu \Sigma_f^{\text{ref}}(x, \xi) \sqrt{\frac{T^{\text{ref}}(x)}{T(x)}}$$

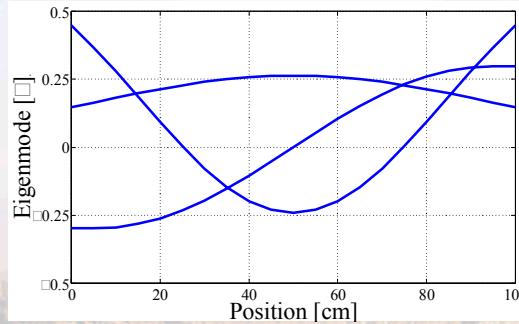
$$\implies \begin{cases} \mathcal{L}_1(T, \Phi, x, \xi) = 0 \\ \mathcal{L}_2(T, \Phi) = 0 \end{cases}$$

- Gauss-Seidel solution strategy
- Non-intrusive PCE

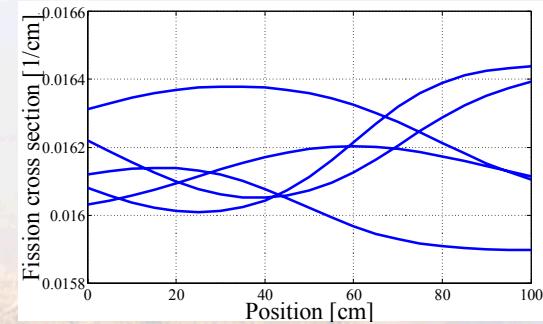
- Reference fission cross section modeled by a truncated KL expansion for a uniform random field:



KL Eigenvalues
 $\implies M = 3$



KL Eigenmodes

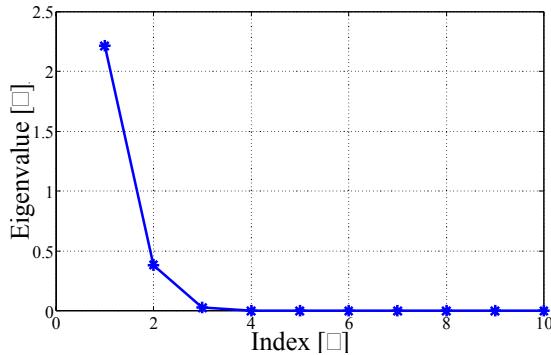


Sample paths

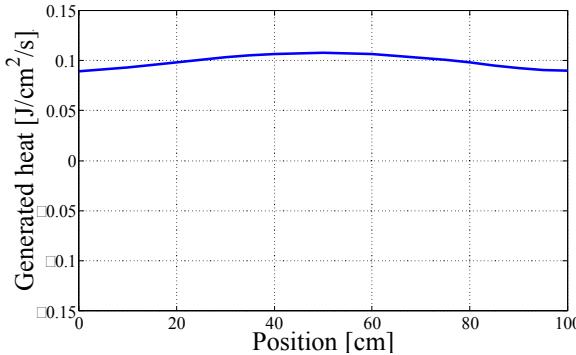
Sandia National Laboratories

Truncation Error Controlled by KL Terms

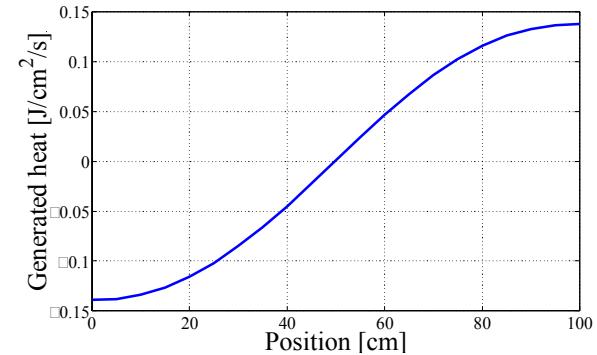
- KL decomposition of temperature:



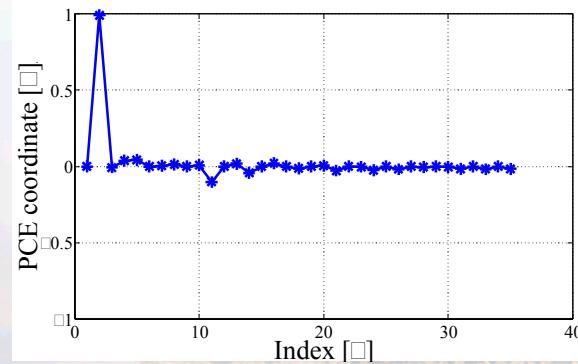
Eigenvalues
⇒ $\tilde{M} = 2$



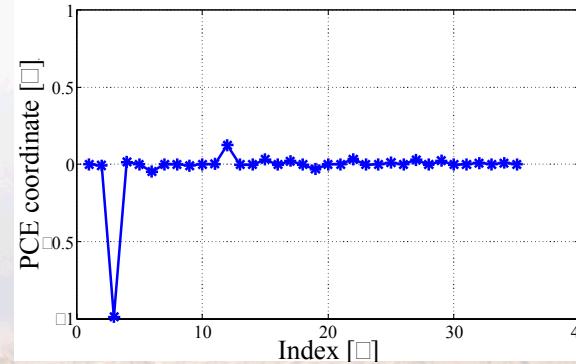
Eigenmode 1



Eigenmode 2



PCE ($M = 3, p = 4$), of η_1



PCE ($M = 3, p = 4$), of η_2

- Only need a few KL terms

Sandia National Laboratories

The Key is Measure Transformation

- Must generate orthogonal polynomials and quadrature rules for joint measure of (η, ξ)
 - Components are dependent
 - We don't have the joint measure
- What we can compute is expectation, given a quadrature rule for ξ

$$\int f(\eta) d\eta = \int f(\eta(\xi)) d\xi \approx \sum_{k=0}^Q w_k f(\eta(\xi^k)) = \sum_{k=0}^Q w_k f(\eta^k)$$

- Unclear how accurate of a rule this is
- Not useful for a non-intrusive approach since it doesn't reduce the number of samples
- Can be used to generate orthogonal polynomials via Gram-Schmidt
 - Enables intrusive approach, but too expensive

Approach Based on Point-wise Surrogate

(Inspired by Wan & Karniadakis, CMAME 2009)

- Generate 1-D polynomials orthogonal w.r.t. marginal density
 - Discretized Stieltjes procedure (Gautschi)
 - Use above quadrature rule to estimate necessary integrals
 - Can only generate limited order of polynomials

- Form tensor product of 1-D polynomials

$$\{\tilde{\Phi}_j(\eta_2, \xi_1) : 0 \leq j \leq \tilde{P}\}$$

- Orthogonal w.r.t. to product-of-marginals measure
- Generate corresponding Smolyak sparse-grid quadrature rule

- Solve sub-problem in this basis

$$f_1(\tilde{u}_1(\eta_2, \xi_1), \eta_2, \xi_1) = 0 \rightarrow \tilde{u}_1 = \sum_{j=0}^{\tilde{P}} \tilde{u}_{1,j} \tilde{\Phi}_j(\eta_2, \xi_1)$$

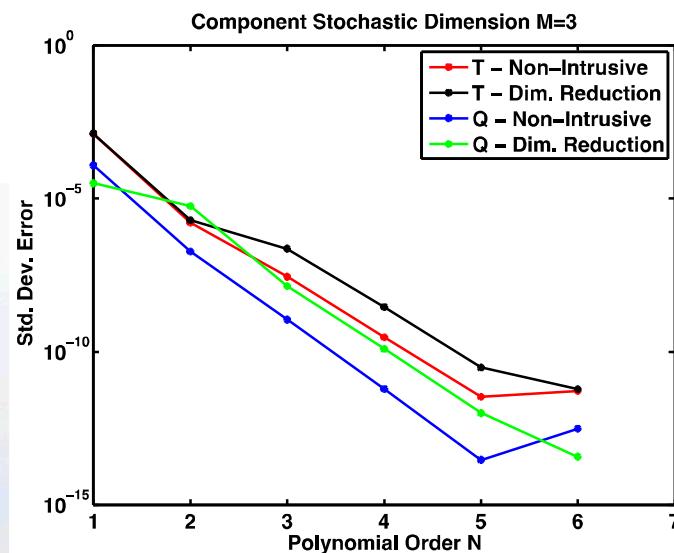
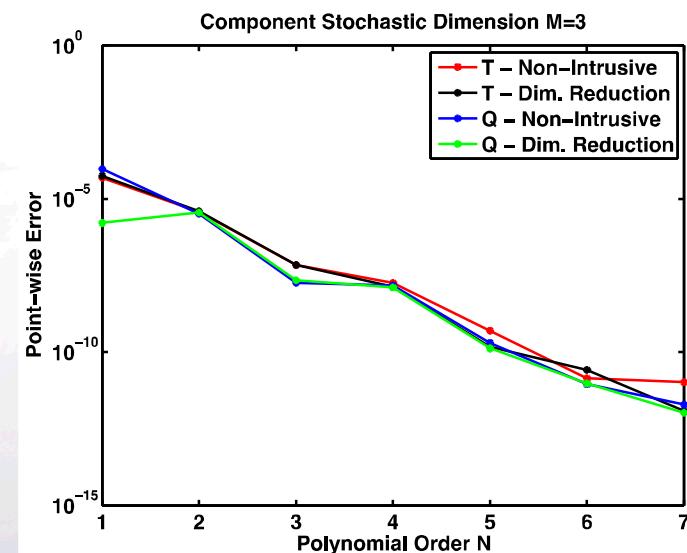
- Intrusive or non-intrusive
- Sample this solution to compute expansion in original basis

$$\hat{u}_1(\xi) = \sum_{j=0}^P u_{1,j} \Psi_j(\xi) \rightarrow u_{1,j} \approx \frac{1}{\langle \Psi_j^2 \rangle} \sum_{k=0}^Q w_k \tilde{u}_1(\eta_2(\xi^k), \xi_1^k)$$

- Relying on point-wise convergence

Demonstration

- Slight variant of coupled neutron/heat transfer
 - Hayes Stripling, Texas A&M, 2009 CSRI summer student
 - “Network” coupling
 - Nonlinear elimination



- Additional error in second moment

Sandia National Laboratories

Generating a Multi-Variate Quadrature Rule

(Inspired by Xiao and Gimbutas 2010)

- This is all Maarten's idea...
- Start with Gram-Schmidt orthogonal basis

$$\{\Phi_j(\eta_2, \xi_1) : 0 \leq j \leq \tilde{P}\}$$

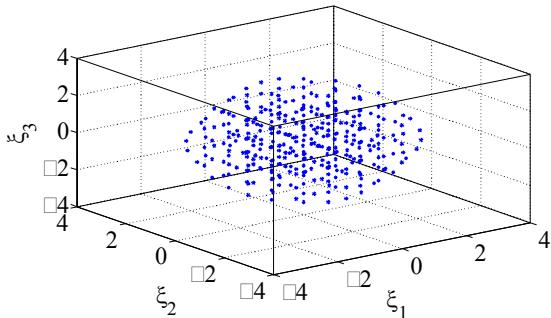
- Require quadrature rule to integrate basis exactly

$$\begin{bmatrix} \Phi_0(\eta_2^0, \xi_1^0) & \Phi_0(\eta_2^1, \xi_1^1) & \dots & \Phi_0(\eta_2^Q, \xi_1^Q) \\ \Phi_1(\eta_2^0, \xi_1^0) & \Phi_1(\eta_2^1, \xi_1^1) & \dots & \Phi_1(\eta_2^Q, \xi_1^Q) \\ \vdots & \vdots & \ddots & \vdots \\ \Phi_{\tilde{P}}(\eta_2^0, \xi_1^0) & \Phi_{\tilde{P}}(\eta_2^1, \xi_1^1) & \dots & \Phi_{\tilde{P}}(\eta_2^Q, \xi_1^Q) \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{\tilde{P}} \end{bmatrix} = \begin{bmatrix} \int \Phi_0(\eta_2, \xi) d(\eta_2, \xi) \\ \int \Phi_1(\eta_2, \xi) d(\eta_2, \xi) \\ \vdots \\ \int \Phi_{\tilde{P}}(\eta_2, \xi) d(\eta_2, \xi) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

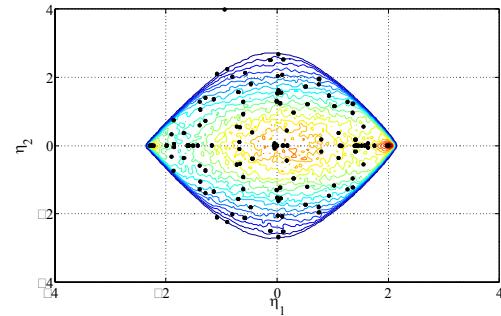
- Underdetermined system of equations
- Start with quadrature rule for ξ and $\xi \rightarrow \eta_2$ mapping
- Extract smallest set of columns with full row rank
 - QR with column pivoting
 - This defines the points
- Invert resulting linear system to obtain corresponding weights
- Use basis and quadrature rule in a non-intrusive approach

Sandia National Laboratories

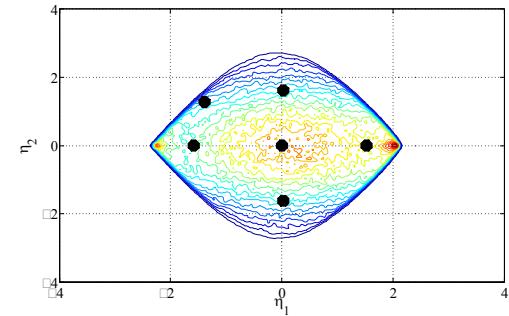
Applied to Heat-transfer/Neutron Diffusion Problem



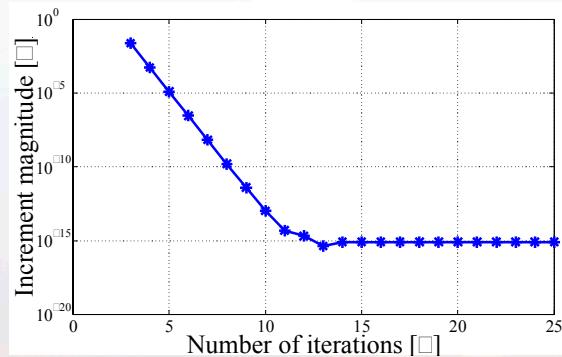
Sparse Grid Quadrature Rule
 $\{\xi^k : 1 \leq k \leq 165\}$



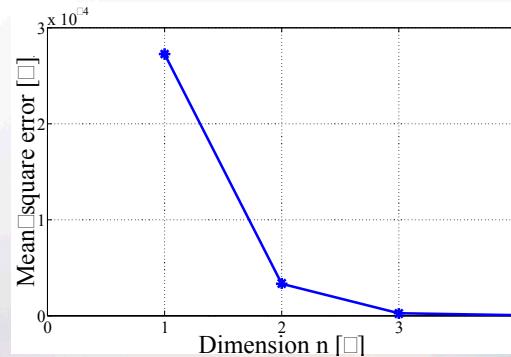
$\{\eta(\xi^k) : 1 \leq k \leq 165\}$



Reduced Quadrature Rule



Nonlinear Solver Convergence



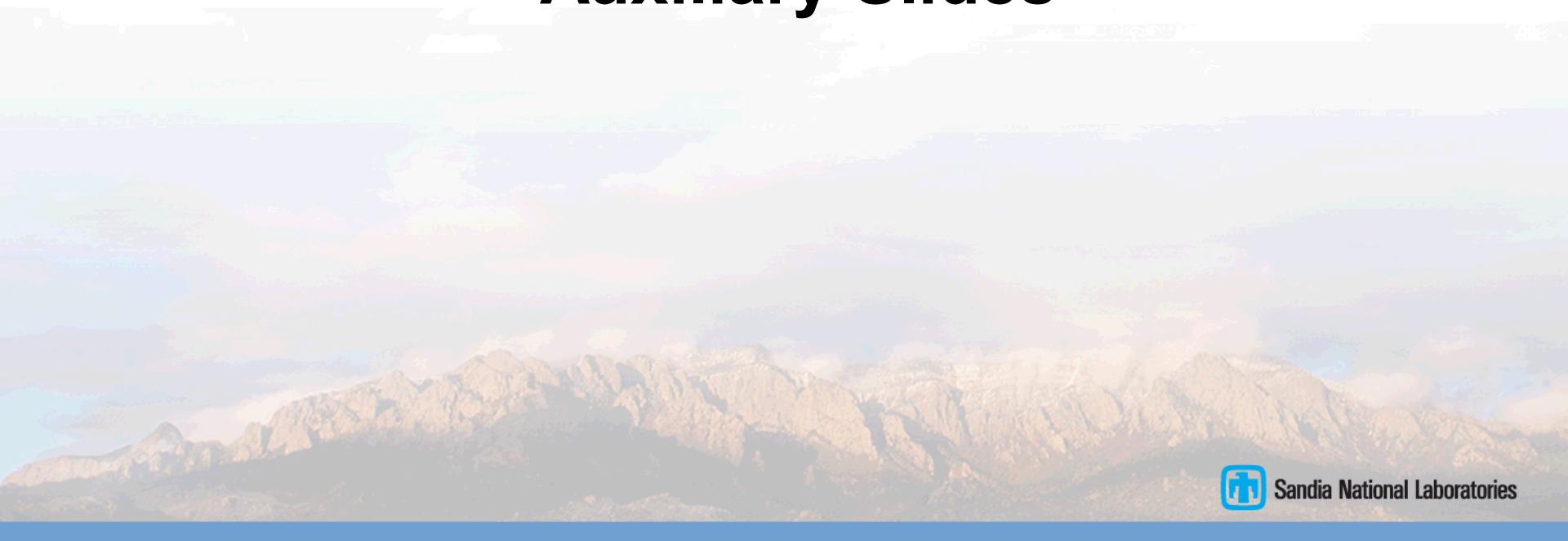
Convergence w.r.t. reduced dimension

Sandia National Laboratories

Open Questions

- This QR-based quadrature approach is largely unexplored
 - Efficiency
 - Accuracy/conditioning issues
- Several unresolved questions for the Stieltjes approach
 - Accuracy of calculations of integrals in Stieltjes procedure?
 - Can this be improved by estimating density directly (e.g., kernel density estimation)
 - Effects of point-wise convergence of intermediate expansions on overall error?
- We would like error analysis/estimates to tell us
 - How many terms to keep in the KL
 - What order to compute expansions in the transformed basis
- Can this be incorporated into other solver strategies?
 - Full Newton or JFNK?
- Can we further reduce cost by not transforming component responses back to original basis?
 - How would convergence be measured?

Auxiliary Slides



Sandia National Laboratories

General Stochastic Expansion Uncertainty Quantification Framework

- Stochastic collocation and non-intrusive polynomial chaos are *essentially* the same when the collocation points are the same as the quadrature points
 - Differences amount to a change of basis for similar, *but not identical*, spaces
- All three methods exploit regularity of solution w.r.t. random parameters to achieve much faster convergence rates than Monte Carlo
 - Cost grows rapidly with number of stochastic dimensions
- All three methods prefer independent random variables
 - Stochastic Galerkin: Polynomials are tensor products of 1-D polynomials of total order N
 - Stochastic Collocation/NIPC: Quadrature/collocation point grid built from tensor products or Smolyak sparse grids derived from Gaussian quadrature points from above 1-D polynomials
- Stochastic Galerkin requires forming and solving a new coupled spatial-stochastic nonlinear problem

$$0 = \mathbf{F}(\mathbf{U}) = \begin{bmatrix} \mathbf{F}_0 \\ \mathbf{F}_1 \\ \vdots \\ \mathbf{F}_{P_{SG}} \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} \mathbf{u}_0 \\ \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_{P_{SG}} \end{bmatrix}, \quad P_{SG} + 1 = \frac{(M + N)!}{M!N!}$$

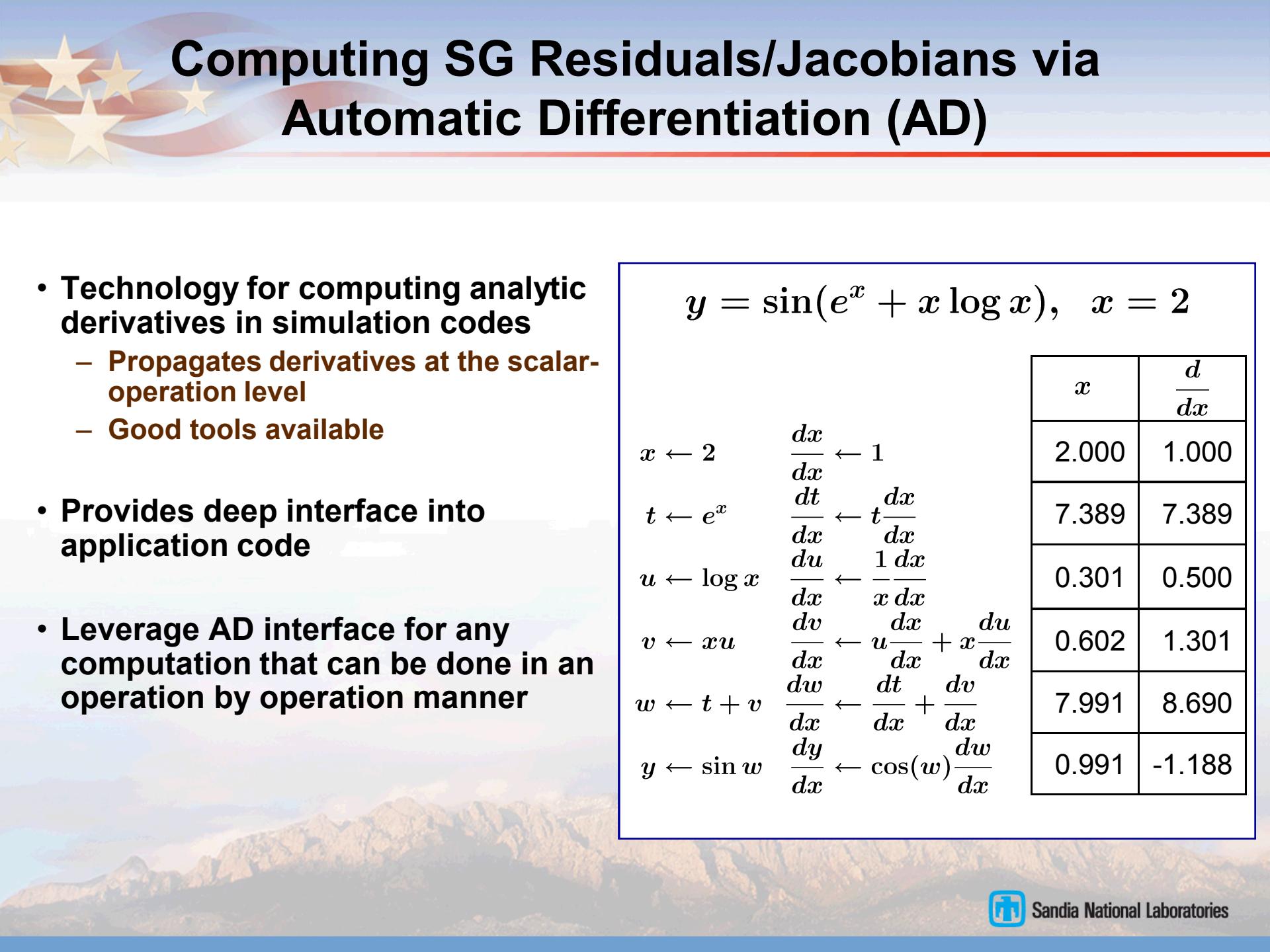
- Stochastic collocation/NIPC only require solving a sequence of deterministic nonlinear problems

$$f(u_i, x_i) = 0, \quad i = 0, \dots, P_{SC} = Q$$

- However:

$$Q = P_{SC} > P_{SG}$$

Sandia National Laboratories



Computing SG Residuals/Jacobians via Automatic Differentiation (AD)

- Technology for computing analytic derivatives in simulation codes
 - Propagates derivatives at the scalar-operation level
 - Good tools available
- Provides deep interface into application code
- Leverage AD interface for any computation that can be done in an operation by operation manner

$$y = \sin(e^x + x \log x), \quad x = 2$$

x	$\frac{d}{dx}$
2.000	1.000
7.389	7.389
0.301	0.500
0.602	1.301
7.991	8.690
0.991	-1.188

$x \leftarrow 2$ $\frac{dx}{dx} \leftarrow 1$
 $t \leftarrow e^x$ $\frac{dt}{dx} \leftarrow t \frac{dx}{dx}$
 $u \leftarrow \log x$ $\frac{du}{dx} \leftarrow \frac{1}{x} \frac{dx}{dx}$
 $v \leftarrow xu$ $\frac{dv}{dx} \leftarrow u \frac{dx}{dx} + x \frac{du}{dx}$
 $w \leftarrow t + v$ $\frac{dw}{dx} \leftarrow \frac{dt}{dx} + \frac{dv}{dx}$
 $y \leftarrow \sin w$ $\frac{dy}{dx} \leftarrow \cos(w) \frac{dw}{dx}$

Sacado: AD Tools for C++ Applications

- AD via operator overloading and C++ templating
 - Transform to template code & instantiate on Sacado AD types
 - Easy to add new AD types to a code
- Designed for use in complex C++ codes
 - `Sacado::FEApp` example demonstrates approach
- Very successful in enabling analytic sensitivity calculations in large-scale simulation codes
 - `Charon`, `Aria`, `Xyce`, `Alegra`, `LAMMPS`, `Albany`

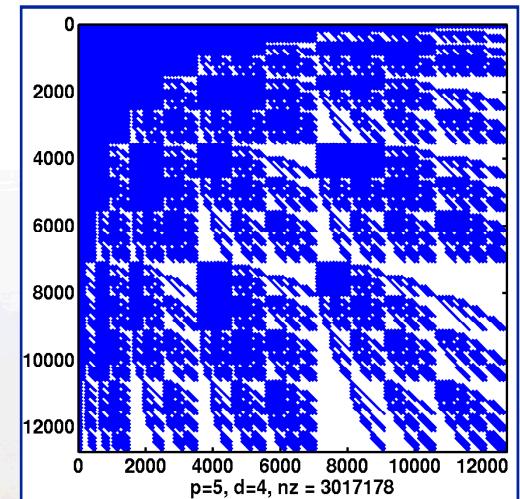
- <http://trilinos.sandia.gov>
- Algorithms and enabling technologies
- Large-scale scientific and engineering applications
- C++ Object oriented framework

Sandia National Laboratories

Stokhos: Trilinos Tools for Intrusive Stochastic Galerkin UQ Methods

- Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere, Omar Knio
- AD overloaded operators for SG propagation
 - Sacado: Trilinos AD tools for C++ applications
- Tools solving SG linear systems
 - Jacobian-free (Ghanem) or fully assembled
 - Mean-based preconditioning
 - Hooks to Trilinos parallel linear solvers
- Nonlinear SG application code interface
 - Interface to nonlinear solver, time integrator, optimizer
 - Global quadrature SG propagation method
- Enabling investigation of SG methods in complex applications

<http://trilinos.sandia.gov>



Sandia National Laboratories

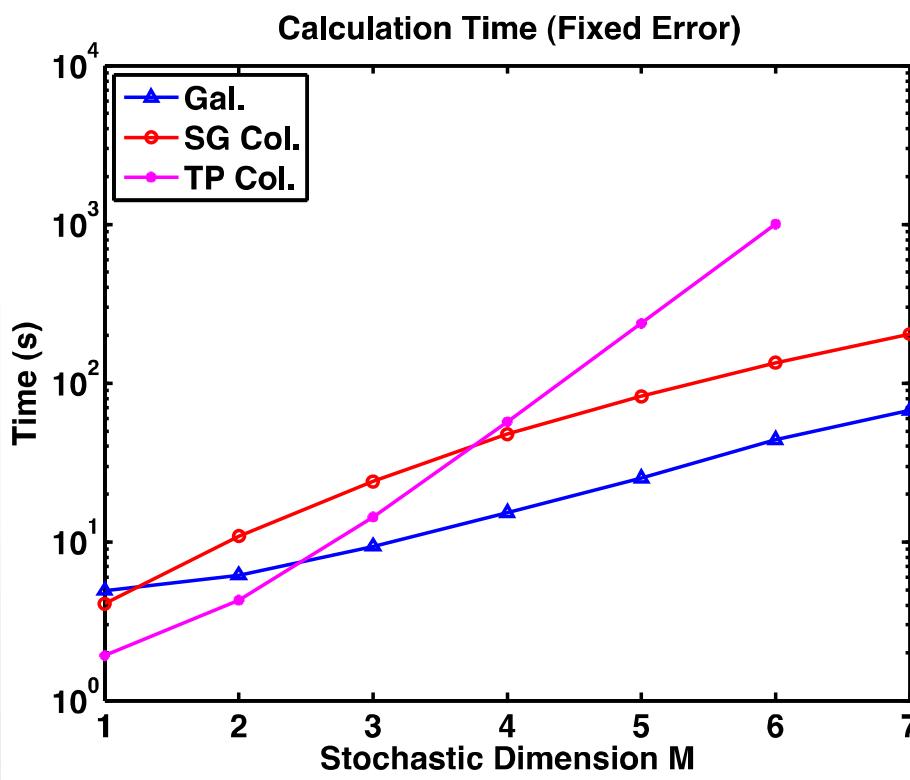
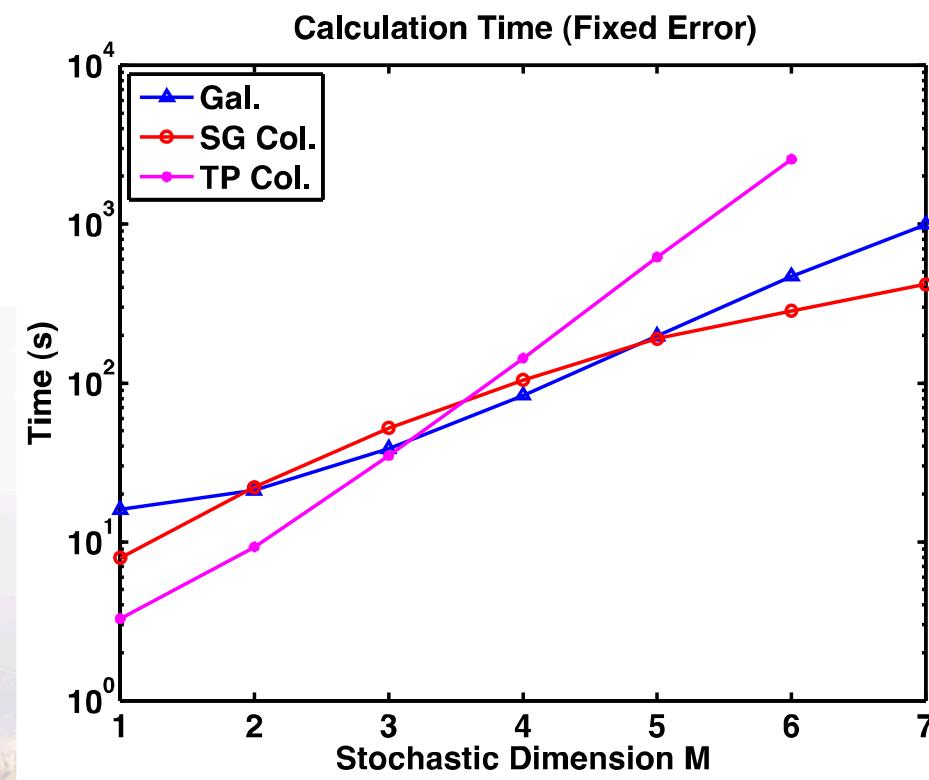
Comparing Linear and Nonlinear PDEs

$$-\nabla \cdot (a(x, \xi) \nabla u) = 1, \quad x \in [0, 1] \times [0, 1]$$

$$a(x, \xi) = \mu + \sigma \sum_{k=1}^M \sqrt{\lambda_k} f_k(x) \xi_k$$

$$-\nabla \cdot (a(x, \xi) \nabla u) = \alpha u^2, \quad x \in [0, 1] \times [0, 1]$$

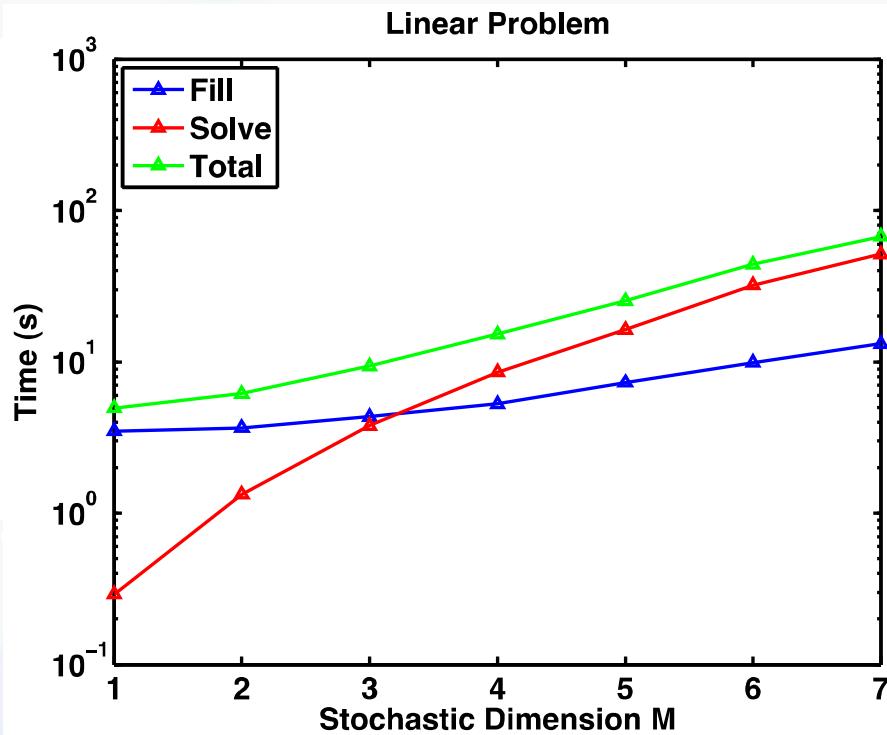
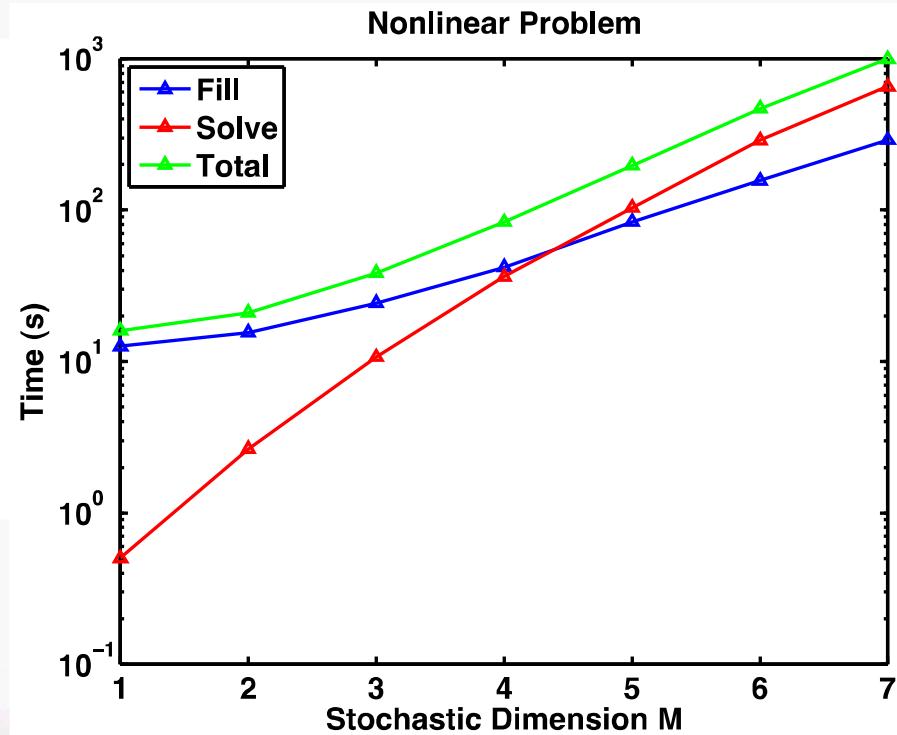
$$a(x, \xi) = \mu + \sigma \sum_{k=1}^M \sqrt{\lambda_k} f_k(x) \xi_k$$



DAKOTA tensor product (Gauss-Legendre) and sparse grid stochastic collocation (Gauss-Patterson, Burkardt/Eldred)

Sandia National Laboratories

Analysis of Intrusive SG Computational Cost



- Increased cost due to two sources
 - Filling nonlinear SG residual and Jacobian
 - Linear solve for each Newton iteration

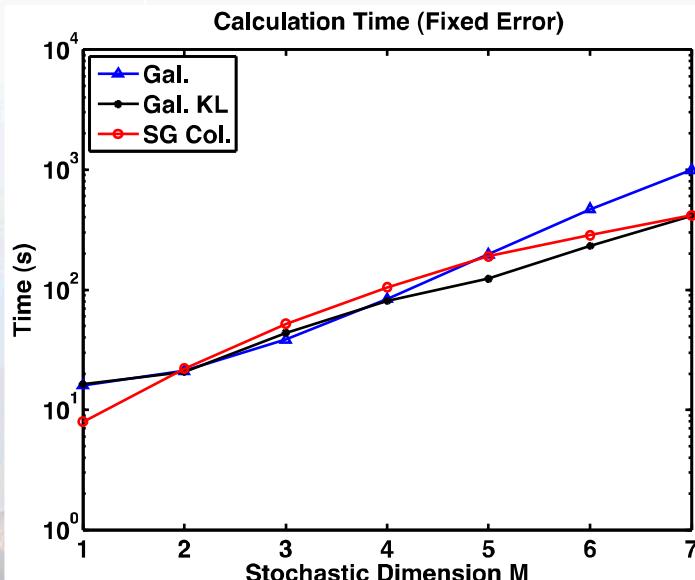
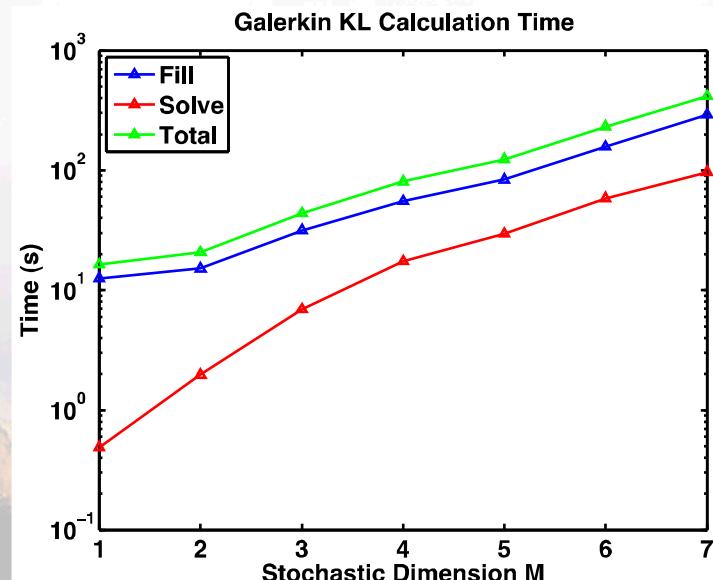
Matrix-vector product scales as $O(P^2)$ versus $O(MP)$

KL Expansion of SG Jacobian Operator

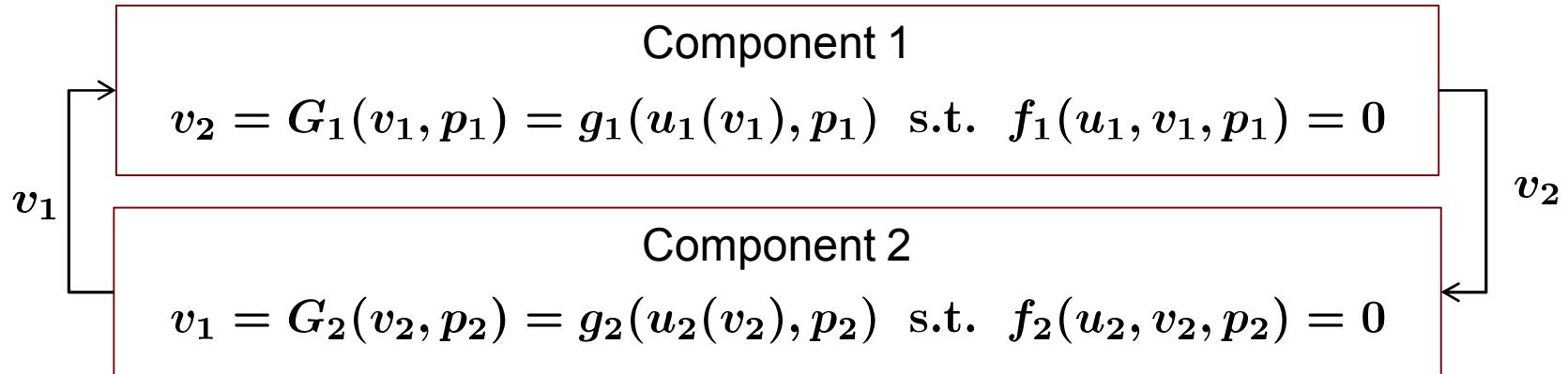
- SG Jacobian operator can be approximated by a truncated KL expansion:

$$\frac{\partial f}{\partial u}(\hat{u}(\xi), \xi) \approx \sum_{k=0}^P J_k \psi_k(\xi) \approx J_0 + \sum_{j=1}^{\bar{M}} \sqrt{\lambda_j} B_j \eta_j$$
$$\eta_j = \frac{1}{\sqrt{\lambda_j}} \sum_{k=1}^P \text{vec}(B_j)^T \text{vec}(J_k) \psi_k(\xi), \quad (ZZ^T) \text{vec}(B_j) = \lambda_j \text{vec}(B_j), \quad Z = [\text{vec}(J_1) \dots \text{vec}(J_P)]$$

- Reduces matrix-vector product cost to $\sim O(\bar{M}P)$



Nonlinear Elimination for Network Coupled Systems



Nonlinear elimination

Equations

$$\begin{aligned} v_2 - G_1(v_1, p_1) &= 0 \\ v_1 - G_2(v_2, p_2) &= 0 \end{aligned}$$

Newton Step

$$\begin{bmatrix} -dG_1/dv_1 & 1 \\ 1 & -dG_2/dv_2 \end{bmatrix} \begin{bmatrix} \Delta v_1 \\ \Delta v_2 \end{bmatrix} = - \begin{bmatrix} v_2 - G_1(v_1, p_1) \\ v_1 - G_2(v_2, p_2) \end{bmatrix}$$
$$\frac{dG_i}{dv_i} = -\frac{\partial g_i}{\partial u_i} \left(\frac{\partial f_i}{\partial u_i} \right)^{-1} \frac{\partial f_i}{\partial v_i}$$

(Semi-) Intrusive UQ for Network/Nonlinear Elimination Coupled Systems

Define: $\xi = (\xi_1, \xi_2)$, $\hat{u}_i(\xi) = \sum_{j=0}^P u_{ij} \Psi_j(\xi)$, $\hat{v}_i(\xi) = \sum_{j=0}^P v_{ij} \Psi_j(\xi)$

Where coefficients for $\hat{u}_i(\xi)$ are computed by any UQ method, e.g.,

Intrusive: $\frac{1}{\langle \Psi_j^2 \rangle} \langle (f_i(\hat{u}_i(\xi), \hat{v}_i(\xi), \xi_i) \Psi_j(\xi)) \rangle = 0$

Non-intrusive: $u_{ij} = \frac{1}{\langle \Psi_i^2 \rangle} \sum_{k=0}^Q w_k u_i^k \Psi_j(x_k)$, $f_i(u_i^k, \hat{v}_i(x_k), x_k) = 0$

Let $\hat{G}_i(\xi) = \sum_{j=0}^P G_{ij} \Psi_j(\xi)$, $G_{ij} = \frac{1}{\langle \Psi_j^2 \rangle} \langle g_i(\hat{u}_i(\xi), \xi_i) \Psi_j \rangle$

Then the intrusive SG network system is

$$\left. \begin{aligned} \frac{1}{\langle \Psi_j^2 \rangle} \langle (\hat{v}_2(\xi) - \hat{G}_1(\xi)) \Psi_j(\xi) \rangle &= 0 \\ \frac{1}{\langle \Psi_j^2 \rangle} \langle (\hat{v}_1(\xi) - \hat{G}_2(\xi)) \Psi_j(\xi) \rangle &= 0 \end{aligned} \right\} \implies \begin{cases} v_{2j} - G_{1j} = 0 \\ v_{1j} - G_{2j} = 0 \end{cases}, \quad j = 0, \dots, P$$

Which can be solved via a nonlinear elimination.

Sandia National Laboratories



Stieltjes Procedure (see Gautschi)

- Assume $\eta(\xi) = \hat{v}(\xi) = \sum_{k=0}^P v_i \Psi_i(\xi)$ given and $|\eta| = 1$
- Let $\{\phi_i : i = 0, \dots, \tilde{P}\}$ be (1-D) polynomials orthogonal w.r.t. measure of η :

$$\langle \phi_i \phi_j \rangle_\eta = \int_{\mathbb{R}} \phi_i(y) \phi_j(y) \rho_\eta(y) dy = \langle \phi_i^2 \rangle_\eta \delta_{ij}, \quad i, j = 0, \dots, \tilde{P}$$

- Polynomials defined a 3-term recurrence:

$$\phi_{i+1}(y) = (y - \alpha_i) \phi_i(y) - \beta_i \phi_{i-1}(y), \quad i = 0, 1, 2, \dots$$

$$\phi_{-1}(y) = 0, \quad \phi_0(y) = 1$$

where

$$\alpha_i = \frac{\int y \phi_i^2(y) \rho_\eta(y) dy}{\int \phi_i^2(y) \rho_\eta(y) dy}, \quad i = 0, 1, 2, \dots,$$

$$\beta_i = \frac{\int \phi_i^2(y) \rho_\eta(y) dy}{\int \phi_{i-1}^2(y) \rho_\eta(y) dy}, \quad i = 1, 2, \dots,$$

$$\beta_0 = 1$$

An Approach for Approximating Integrals w.r.t. Unknown Measure

- By measure transformation theorem:

$$\int_{\mathbb{R}} \phi_i^2(y) \rho_{\eta}(y) dy = \int_{\Gamma} \phi_i^2(\eta(x)) \rho_{\xi}(x) dx$$

- Approximate new basis in terms of old:

$$\phi_i(\eta(\xi)) \approx \sum_{j=0}^P \phi_{ij} \Psi_j(\xi), \quad \phi_{ij} = \frac{1}{\langle \Psi_j^2 \rangle_{\xi}} \int_{\Gamma} \phi_i(\eta(x)) \Psi_j(x) \rho_{\xi}(x) dx$$
$$\phi_{ij} \approx \frac{1}{\langle \Psi_i^2 \rangle_{\xi}} \sum_{k=0}^Q w_k \phi_i(\eta(x_k)) \Psi_j(x_k)$$

- Then

$$\int_{\mathbb{R}} \phi_i^2(y) \rho_{\eta}(y) dy \approx \int_{\Gamma} \left(\sum_{j=0}^P \phi_{ij} \Psi_j \right)^2 \rho_{\xi}(x) dx = \sum_{j=0}^P \phi_{ij}^2 \langle \Psi_j^2 \rangle_{\xi}$$

- Similarly

$$\int_{\mathbb{R}} y \phi_i^2(y) \rho_{\eta}(y) dy \approx \sum_{j,k,l=0}^P \phi_{ij} \phi_{ik} v_l \langle \Psi_j \Psi_k \Psi_l \rangle_{\xi}$$

Multi-Variate Basis and Dependence

- Multi-variate tensor product polynomials:

$$\tilde{\Phi}_i(\eta, \xi_1) = \phi_{i_1}^1(\eta_1) \dots \phi_{i_L}^L(\eta_L) \psi_{j_1}^{11}(\xi_{11}) \dots \psi_{j_{M_1}}^{1M_1}(\xi_{1M_1}), \quad |\eta| = L, \quad |\xi_1| = M_1$$

- In general, these polynomials not orthogonal w.r.t. joint PDF of (η, ξ_1)

$$\rho_{(\eta, \xi_1)}(y, x_1) \neq \rho_{\eta_1}(y_1) \dots \rho_{\eta_L}(y_L) \rho_{\xi_{11}}(x_{11}) \dots \rho_{\xi_{1M_1}}(x_{1M_1}) \equiv \tilde{\rho}(y, x_1)$$

- First approach: Orthogonalize this basis using Gram-Schmidt

$$\Phi_i = \tilde{\Phi}_i - \sum_{j=0}^{i-1} \frac{\langle \tilde{\Phi}_i \Phi_j \rangle_{\xi}}{\langle \Phi_j^2 \rangle_{\xi}} \Phi_j, \quad \langle \tilde{\Phi}_i \Phi_j \rangle_{\xi} = \int_{\Gamma} \tilde{\Phi}_i(\eta(x), \pi_1(x)) \Phi_j(\eta(x), \pi_1(x)) \rho_{\xi}(x) dx$$

- Don't know how to define a good set of quadrature points for this basis (so no non-intrusive approach)
- Intrusive Galerkin algorithm is much more expensive, e.g., $C_{ijk} = \langle \Phi_i \Phi_j \Phi_k \rangle$ is dense.

