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Uncertainty Quantification for 
Complex Coupled Systems

• Address some of the mathematical and computational challenges in 
predictive simulation of complex coupled systems such as…

www.zimfamilycockers.com/DiabloCanyon.html



Challenges for UQ of Complex 
Coupled Systems

• Predictive simulation must capture critical couplings
• Coupling physics often necessitates reduction in model fidelity
• Reducing fidelity introduces additional uncertainty (component & interface)
• Strong coupling adds new dimensions of uncertainty to all components
• Cost of uncertainty quantification grows dramatically with stochastic dimension

Argonne Advanced Burner 
Reactor Preconceptual Design



Multi-Physics, Multi-Fidelity, Heterogeneous 
Uncertainty Quantification Approach

• Component-level uncertainty propagation via 
general expansion methodology

– Network or multi-physics component

• Stochastic dimension reduction at component 
interfaces 

• Strongly coupled solver technology for coupled 
stochastic problems

• Stochastic up-scaling for low-fidelity models

• Stochastic sensitivities with respect to system 
components
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General Stochastic Expansion
Uncertainty Quantification Framework

• Steady-state spatially finite-dimensional stochastic problem:

• General stochastic expansion approximation:

Intrusive Stochastic Galerkin (SG), a.k.a. (Generalized) Polynomial Chaos

• Orthogonal polynomial basis of total order at most N

• Galerkin Projection

Non-Intrusive Stochastic Collocation (SC)

• Interpolatory polynomial basis defined by collocation points

Non-Intrusive Polynomial Chaos (NIPC)



Two Challenges for Intrusive SG

• Generating SG residual & Jacobian entries in complex simulation codes:

• Solving resulting fully-coupled spatial-stochastic problem:



Trilinos Package Stokhos

• Tools for generating SG residual and Jacobian entries

– Polynomial basis definition

– Quadrature methods

– Triple product tensors

– Expansion/approximation methods for nonlinear terms

– Automatic differentiation (via Sacado AD Trilinos package)

• Tools for forming and solving SG linear systems

– Product vectors

– SG matrix operators

– Preconditioning methods

• Nonlinear application code interfaces

– Nonlinear solver

– Time integration

– Optimization

– …

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Generating SG Residual and Jacobian
Coefficients via Automatic Differentiation (AD)

• AD relies on known derivative formulas for all intrinsic operations plus 
chain rule

– Implemented in C++ via operator overloading

– Template your code on scalar type, replacing double’s with AD type

• Similar approach possible for SG expansion

• Transcendental operations more difficult (see Debusschere et al, SISC, 2004)

– Taylor series

– Time integration

– Sparse-grid quadrature

– Research to be done here…(see Kevin Long’s talk)

• Enables “easy” incorporation of SG calculations in codes that support AD

– Stokhos provides Sacado “AD” data type for SG calculations



UQ in an Electromagnetic Contact Demonstration
SNL Albany Code (Salinger et al)

Mean

Std Deviation



Recent Advancements

• New sparse triple product data structures and fill
– Drastically reduce calculation time
– Data-structures optimized for linear solvers

• New KL-based Jacobian operator decomposition
– Drastically reduces computational complexity of SG mat-vecs for nonlinear problems
– Much analysis to be done here

• Parallelization over stochastic DOFs
– Only for linear solves, not yet for residual/Jacobian fill
– Can rebalance using Isorropia/Zoltan to minimize cost of mat-vecs
– Stay tuned…

• Preliminary implementation of Stokhos/AD overloaded operators on Nvidia GPUs (via 
CUDA)

– Intrusive SG may be an ideal algorithm for massive on-node threading
– Much work to do from a software point of view to do

• New solver and preconditioner approaches
– See Rama’s talk later



Coupled Nonlinear Systems

• Shared-domain multi-physics coupling

– Equations coupled at each point in domain

• Interfacial multi-physics coupling

– Equations are coupled through boundaries

• Network coupling

– Equations are coupled through a set of scalars



Finite Dimensional Coupled Nonlinear Systems

• All three forms can be written after discretization

– Shared-domain multi-physics coupling:

– Interfacial multi-physics coupling:

– Network coupling:



Solution Strategies

• Successive substitution (Picard, Gauss-Seidel, …)

– Appropriate for all three forms of coupled systems

– Segregated solves

• Nonlinear elimination

– Practical only for network coupling

– Segregated solves

• Full Newton (including JFNK)

– Appropriate for all three, but the most challenging to implement

– No segregated solves



Stochastic Coupled Nonlinear Systems

• Introduce random variables:

• Introduce stochastic expansion approximation:

• Corresponding coupled system for stochastic DOFs

– Direct analog of the deterministic solution strategies

Intrusive Non-Intrusive



• Because system is coupled, each component must compute approximation over full 
stochastic space:

– For segregated methods, requires solving sub-problems of larger dimensionality, e.g., 

– Adding more components, or more sources of uncertainty in other components, increases 
cost of each sub-problem

• For network problems, use interface to define new random variables

• Challenges:

– Measure transformation;  Generating polynomials orthogonal w.r.t. joint PDF of       and

– Extending approach to other types of coupling

Curse of Dimensionality



Dimension Reduction in Multi-Physics Problems

• Consider the shared-domain multi-physics problem:

• Introduce truncated Karhunen-Loeve (KL) decomposition

• KL eigenvectors/values (eigenvalue problem):

• KL random variables (given by PCE):

• Denote this transformation by: 



Dimension Reduction in Multi-Physics Problems

• Applying this to each sub-problem yields:

• At this point, all we have done is introduce error

– For computational savings, we also need measure 
transformation

– Significant savings can be realized if 



Coupled neutron-transport and heat transfer
demonstration

• Reference fission cross section modeled by a truncated KL expansion for a 
uniform random field:
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KL Eigenvalues KL Eigenmodes Sample paths

• Gauss-Seidel solution strategy

• Non-intrusive PCE



Truncation Error Controlled by KL Terms

• KL decomposition of temperature:

• Only need a few KL terms

Eigenvalues Eigenmode 1 Eigenmode 2
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The Key is Measure Transformation

• Must generate orthogonal polynomials and quadrature rules for joint 
measure of

– Components are dependent

– We don’t have the joint measure

• What we can compute is expectation, given a quadrature rule for 

– Unclear how accurate of a rule this is

– Not useful for a non-intrusive approach since it doesn’t reduce the number of 
samples

– Can be used to generate orthogonal polynomials via Gram-Schmidt

• Enables intrusive approach, but too expensive



Approach Based on Point-wise Surrogate
(Inspired by Wan & Karniadakis, CMAME 2009)

• Generate 1-D polynomials orthogonal w.r.t. marginal density

– Discretized Stieltjes procedure (Gautschi)

– Use above quadrature rule to estimate necessary integrals

• Can only generate limited order of polynomials

• Form tensor product of 1-D polynomials

– Orthogonal w.r.t. to product-of-marginals measure

– Generate corresponding Smolyak sparse-grid quadrature rule

• Solve sub-problem in this basis

– Intrusive or non-intrusive

• Sample this solution to compute expansion in original basis

– Relying on point-wise convergence



Demonstration

• Slight variant of coupled neutron/heat transfer

– Hayes Stripling, Texas A&M, 2009 CSRI summer student

– “Network” coupling

– Nonlinear elimination

• Additional error in second moment



Generating a Multi-Variate Quadrature Rule
(Inspired by Xiao and Gimbutas 2010)

• This is all Maarten’s idea…

• Start with Gram-Schmidt orthogonal basis

• Require quadrature rule to integrate basis exactly

– Underdetermined system of equations

• Start with quadrature rule for   and             mapping

• Extract smallest set of columns with full row rank

– QR with column pivoting

– This defines the points

• Invert resulting linear system to obtain corresponding weights

• Use basis and quadrature rule in a non-intrusive approach



Applied to Heat-transfer/Neutron Diffusion 
Problem
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Open Questions

• This QR-based quadrature approach is largely unexplored
– Efficiency
– Accuracy/conditioning issues

• Several unresolved questions for the Stieltjes approach
– Accuracy of calculations of integrals in Stieltjes procedure?
– Can this be improved by estimating density directly (e.g., kernel density estimation)
– Effects of point-wise convergence of intermediate expansions on overall error?

• We would like error analysis/estimates to tell us
– How many terms to keep in the KL
– What order to compute expansions in the transformed basis

• Can this be incorporated into other solver strategies?
– Full Newton or JFNK?

• Can we further reduce cost by not transforming component responses back to 
original basis?

– How would convergence be measured?



Auxiliary Slides



General Stochastic Expansion
Uncertainty Quantification Framework

• Stochastic collocation and non-intrusive polynomial chaos are essentially the same when 
the collocation points are the same as the quadrature points

– Differences amount to a change of basis for similar, but not identical, spaces

• All three methods exploit regularity of solution w.r.t. random parameters to achieve much 
faster convergence rates than Monte Carlo

– Cost grows rapidly with number of stochastic dimensions

• All three methods prefer independent random variables
– Stochastic Galerkin:  Polynomials are tensor products of 1-D polynomials of total order N

– Stochastic Collocation/NIPC:  Quadrature/collocation point grid built from tensor products or 
Smolyak sparse grids derived from Gaussian quadrature points from above 1-D polynomials

• Stochastic Galerkin requires forming and solving a new coupled spatial-stochastic 
nonlinear problem

• Stochastic collocation/NIPC only require solving a sequence of deterministic nonlinear 
problems

• However:  



Computing SG Residuals/Jacobians via 
Automatic Differentiation (AD)

• Technology for computing analytic 
derivatives in simulation codes
– Propagates derivatives at the scalar-

operation level

– Good tools available

• Provides deep interface into 
application code

• Leverage AD interface for any 
computation that can be done in an 
operation by operation manner

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188



Sacado:  AD Tools for C++ Applications

• AD via operator overloading and C++ templating

- Transform to template code & instantiate on 
Sacado AD types

- Easy to add new AD types to a code

• Designed for use in complex C++ codes

–Sacado::FEApp example demonstrates approach

• Very successful in enabling analytic sensitivity 
calculations in large-scale simulation codes

– Charon, Aria, Xyce, Alegra, LAMMPS, Albany

• http://trilinos.sandia.gov 

• Algorithms and enabling 
technologies

• Large-scale scientific and 
engineering applications

• C++ Object oriented 
framework

http://trilinos.sandia.gov


Stokhos:  Trilinos Tools for Intrusive 
Stochastic Galerkin UQ Methods

• Eric Phipps, Chris Miller, Habib Najm, Bert 
Debusschere, Omar Knio

• AD overloaded operators for SG propagation
– Sacado:  Trilinos AD tools for C++ applications

• Tools solving SG linear systems
– Jacobian-free (Ghanem) or fully assembled

– Mean-based preconditioning

– Hooks to Trilinos parallel linear solvers

• Nonlinear SG application code interface
– Interface to nonlinear solver, time integrator, optimizer

– Global quadrature SG propagation method

• Enabling investigation of SG methods in complex 
applications

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Comparing Linear and Nonlinear PDEs

DAKOTA tensor product (Gauss-Legendre) and sparse grid stochastic 
collocation (Gauss-Patterson, Burkardt/Eldred) 



Analysis of Intrusive SG Computational Cost

• Increased cost due to two sources

– Filling nonlinear SG residual and Jacobian

– Linear solve for each Newton iteration
Matrix-vector product scales as O(P2) versus O(MP)



KL Expansion of SG Jacobian Operator

• SG Jacobian operator can be approximated by a truncated KL 
expansion:

• Reduces matrix-vector product cost to 



Nonlinear elimination

Nonlinear Elimination for
Network Coupled Systems

Component 1

Component 2

Equations Newton Step



(Semi-) Intrusive UQ for Network/Nonlinear 
Elimination Coupled Systems

Define:

Where coefficients for           are computed by any UQ method, e.g.,

Intrusive:

Non-intrusive:

Let

Then the intrusive SG network system is 

Which can be solved via a nonlinear elimination.



Stieltjes Procedure (see Gautschi)

• Assume                                           given and

• Let                               be (1-D) polynomials orthogonal w.r.t. measure of   :

• Polynomials defined a 3-term recurrence: 

where



An Appproach for Approximating 
Integrals w.r.t. Unknown Measure

• By measure transformation theorem:

• Approximate new basis in terms of old:

• Then

• Similarly



Multi-Variate Basis and Dependence

• Multi-variate tensor product polynomials:

• In general, these polynomials not orthogonal w.r.t. joint PDF of

• First approach:  Orthogonalize this basis using Gram-Schmidt

– Don’t know how to define a good set of quadrature points for this basis (so no 
non-intrusive approach)

– Intrusive Galerkin algorithm is much more expensive, e.g.,                              is 
dense. 


