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N Uncertainty Quantification for
Complex Coupled Systems

» Address some of the mathematical and computational challenges in

predictive simulation of complex coupled systems such as.

www.zimfamilycockers.com/DiabloCanyon.html
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- Challenges for UQ of Complex
Coupled Systems

Structures and physics “Meso-scale” resolved by 3D grid Balance of Plant Reactor System
whose featyres are too.small In-vessel Reactor Components Components (& Containment)
for resolution on 3D grid -10 cm to 10 m scale geomtry -1-50 m scale
N - Neutronics, Turb flow & heat transfer, - Pipes, pumps, valves, heat

Fuel-pins and control rods thermal-mechanics, conduction, ... exchangers, turbines, rooms,

- 0.5 - 10 mm-scale features - 3D Modeling Framework - 0D MELCOR models

- conduction, fission heating ... - 3D Fire Modeling with RIO

- 2D or 3D representative models
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* Predictive simulation must capture critical couplings

» Coupling physics often necessitates reduction in model fidelity

» Reducing fidelity introduces additional uncertainty (component & interface)

« Strong coupling adds new dimensions of uncertainty to all components

* Cost of uncertainty quantification grows dramatically with stochastic dimension
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Multi-Physics, Multi-Fidelity, Heterogeneous
Uncertainty Quantification Approach

@ ~@

general expansion methodology

Component-level uncertainty propagation via | liﬂ
114 @ __|

— Network or multi-physics component

interfaces

Stochastic dimension reduction at component g

Strongly coupled solver technology for coupled
stochastic problems

Stochastic up-scaling for low-fidelity models

Stochastic sensitivities with respect to system
components
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General Stochastic Expansion
Uncertainty Quantification Framework

Steady-state spatially finite-dimensional stochastic problem:
Find u(¢) such that f(u,£) =0, ¢: Q2 — T C RM, density p

General stochastic expansion approximation:
P
Z =span{¥; :i=0,...,P} C L3(T) — u(é) = a(¢) = > _ u;¥;(¢)
1=0

Intrusive Stochastic Galerkin (SG), a.k.a. (Generalized) Polynomial Chaos
Orthogonal polynomial basis of total order at most N

(O, 9;) = / W, (2)¥; () p(a)de = 6i;(¥3), 4,5 =0,...,Psq

Galerkin Projection
1

(¥3)
Non-Intrusive Polynomial Chaos (NIPC)

1 Q
/F u(e) (@) p(e)de = (o

Fi(uo,...,up) = /Pf(ﬁ(w)afﬂ)‘I’i(iB)P(fB)dw =0,1=0,...,Psq

U; = <\Il2> Z wkuk.\Ilz(a:k), f(uk, CBk) = O, == O, ooy ch;, k = O, . Q
(! k=0
Non-Intrusive Stochastic Collocation (SC)
- Interpolatory polynomial basis defined by collocation points {z; € I': 5 = 0,..., Psc}

\Ilz(mg) = 5ij7 f(uj, mj) S gt =20 e P e Sandia National Laboratories



Two Challenges for Intrusive SG

» Generating SG residual & Jacobian entries in cgmplex simulation codes:

F, = / £ (a(y), )i (v)p()dy, () = / . p(y)dy,

of

@2 Jr Bu (@(y), ¥)¥r(y)p(y)dy,

of P
8_(a(y)a y) ~ Z Jk¢k(y)7 Jk —
u k=

= ot = [ L aw v @i = 3 i)

ou Py

« Solving resulting fully-coupled spatial-stochastic problem:
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- " Trilinos Package Stokhos

 Tools for generating SG residual and Jacobian entries
— Polynomial basis definition
— Quadrature methods
— Triple product tensors
— Expansion/approximation methods for nonlinear terms
— Automatic differentiation (via Sacado AD Trilinos package)
 Tools for forming and solving SG linear systems
— Product vectors
— SG matrix operators
— Preconditioning methods
» Nonlinear application code interfaces
— Nonlinear solver
— Time integration
— Optimization

Jalinos

http://trilinos.sandia.gov
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Generating SG Residual and Jacobian
Coefficients via Automatic Differentiation (AD)

* AD relies on known derivative formulas for all intrinsic operations plus
chain rule

— Implemented in C++ via operator overloading
— Template your code on scalar type, replacing double’s with AD type

« Similar apEroach possliDbIe for SG expanpsion .,
a= Zai¢i’ b= Z bj’lﬁj, c=ab~r Z Ck¢k7 Cr — Z aibj <¢z¢g¢k>

2
1=0 7=0 k=0 i,7=0 <¢k;>

» Transcendental operations more difficult (see Debusschere et al, SISC, 2004)
— Taylor series
— Time integration
— Sparse-grid quadrature
— Research to be done here...(see Kevin Long’s talk)
» Enables “easy” incorporation of SG calculations in codes that support AD
— Stokhos provides Sacado “AD” data type for SG calculations

117! Sandia National Laboratories




- ?UQ in an Electromagnetic Contact Demonstration
SNL Albany Code (Salinger et al)

T=0
v
Std Deviation
—V.-0Vep = 0
—V -kVT —v-VT = o(V¢)?
o(T) = og/[1+ B(T —Top)]

111! Sandia National Laboratories
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Recent Advancements

New sparse triple product data structures and fill
— Drastically reduce calculation time
— Data-structures optimized for linear solvers

New KL-based Jacobian operator decomposition
— Drastically reduces computational complexity of SG mat-vecs for nonlinear problems
— Much analysis to be done here

Parallelization over stochastic DOFs
— Only for linear solves, not yet for residual/Jacobian fill
— Can rebalance using Isorropia/Zoltan to minimize cost of mat-vecs
— Stay tuned...

(P:relimi)nary implementation of Stokhos/AD overloaded operators on Nvidia GPUs (via
UDA

— Intrusive SG may be an ideal algorithm for massive on-node threading
— Much work to do from a software point of view to do

New solver and preconditioner approaches
— See Rama’s talk later
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Coupled Nonlinear Systems

» Shared-domain multi-physics coupling
— Equations coupled at each point in domain
Li(ui(x),uz(x)) =0
Lo(uy(x),uz(x)) =0

* Interfacial multi-physics coupling
— Equations are coupled through boundaries
Li1(u1(z),v2(x2)) =0, wv2(x2) = G2(u2(x2)),
L2(v1(x1), u2(x)) =0, vi(x1) = G1(ua(z1)),

Network coupling
— Equations are coupled through a set of scalars
Li(u1(x),v2) =0, vz = Ga(u2)
Ez(’vl, ’U;z(CE)) = O, V1 = gl(ul)

@J Sandia National Laboratories



Finite Dimensional Coupled Nonlinear Systems

 All three forms can be written after discretization
fl(ul, ’02) = O, U1 & Rnl, Vo = g2(’u,2) - Rmz, fl . Rn1+m2 — R"™1
fz(’vl, ’U,2) — O, U2 - an, V1 = gl(’u,l) - le, f2 : le-l-’nz — an
— Shared-domain multi-physics coupling:
my, M2 ~ 7111412
— Interfacial multi-physics coupling:
1K< my,me < Ny, N
— Network coupling:

myi, Mo ~ 1

117! Sandia National Laboratories




Solution Strategies

« Successive substitution (Picard, Gauss-Seidel, ...)
— Appropriate for all three forms of coupled systems
— Segregated solves
Solve fl(u§l+1),’v§l)) = 0 for ugH_l)
Solve f5 (fv§l+1), 'ng_l)) = 0 for ugl_l_l)
* Nonlinear elimination
— Practical only for network coupling
— Segregated solves
v — gi1(u1(v2)) =0 s.t. fi(ug,v2) =0
vz — g2(uz2(v1)) =0 s.t. fa(vi,uz) =0
 Full Newton (including JFNK)

— Appropriate for all three, but the most challenging to implement
— No segregated solves

2apIRBOa [Ag Ty [,
9f2 991 9f2 Aus fa

8'01 Bul B’UQ
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Stochastic Coupled Nonlinear Systems

* Introduce random variables:

J1(u1(€),v2(€);€1) =0, v2(§) = g2(u2(§),&2), & = (&1,&2)
F2(v1(€),u2(8),€2) =0, v1(€) = g1(u1(§),8&2), |1 = My, |€2] = M2
* Introduce stochastic expansion approximation:

§=0

Intrusive

@i (€) = Y ui;¥;(8), () =) vi;¥;(€)

Q Non-Intrusive
1 R kay . (¢k

<\Il?> <f1('111(€)7 7}2(5)’ €1)‘I’J(€)> =0 Uz, = kz::()wkuz \IIJ (£ ) . fl(u’f7 ’U’.—j, €’f) =0
1

() 2 (01(€), B2(€), &) ¥5 () = 0

Q  fa(vf,ub, €85) =0
vij = Y wior®;(£)

Fl(Ul, Vz) = 0, V2 — Gz(U2)
F>(V1,U2) =0, Vi =G1(Us)

» Corresponding coupled system for stochastic DOFs
— Direct analog of the deterministic solution strategies

117! Sandia National Laboratories




Curse of Dimensionality

» Because system is coupled, each component must compute approximation over full
stochastic space:

U1 (51, 52) = U (62(517 52)7 51)

— For segregated methods, requires solving sub-problems of larger dimensionality, e.g.,

) 1010, 820, €)5(©) =0 for ) given {va;)

Solve

— Adding more components, or more sources of uncertainty in other components, increases
cost of each sub-problem

* For network problems, use interface to define new random variables

P P
@1 (81, €2) = Y w1 ¥;(&1,62) — @1 (n2,€1) = ) @1,595(n2,€1), M2 = B2(61, &2)

» Challenges:

— Measure transformation; Generating polynomials orthogonal w.r.t. joint PDF of M2 and &1
— Extending approach to other types of coupling

117! Sandia National Laboratories




Dimension Reduction in Multi-Physics Problems

» Consider the shared-domain multi-physics problem:

fi1(w1(&),02(£),61) =0 o P y
f2 (11 (€),2(€),&2) =0 w;(§) = kz_:o ik Pr()

* Introduce truncated Karhunen-Loeve (KL) decomposition

M
@(n(€)) = uo+ Y VAeprnw) (&), 1= M@)s---»Mr)
k=0

» KL eigenvectors/values (eigenvalue problem):

(CCT)QOk = )\k,gok,, C = [u1 o o uP]
« KL random variables (given by PCE):

Ny (&) = (;U)LUO) Z cpk = ‘1’1(5)

* Denote this transformation by:
n=g(a)

Sandia National Laboratories



Dimension Reduction in Multi-Physics Problems

» Applying this to each sub-problem yields:

J1(21(£),m2(€),81) =0, m2(§) = g2(02(8))
fz(nl(é)aﬁﬂ(é)a 52) = 0, 771(5) — gl(ﬁ'l(g))

* At this point, all we have done is introduce error

— For computational savings, we also need measure
transformation

P P,
11(&1,82) = Z U1,Vr(€1,82) — ©1(&1,Mm2) = Z U1,P1,6 (&1, M2)

— Significant savings can be realized if
Ni+My; <Ny +Ny = PP

117! Sandia National Laboratories




Coupled neutron-transport and heat transfer
demonstration

d d® . dd, db
2 (D(T)E) — (5(@) = w2, 1)) = —s, with (0)= (1) =0,
(¥5) — (T~ Tw) = —a(z. @) with ©(0)= (1) =0,
ref €T
V8w, T(w), €) = V5! (, £) TT(i))

Ly(T,®,2,§) =0 - Gauss-Seidel solution strategy
Lo(T,P) =0 « Non-intrusive PCE

» Reference fission cross section modeled by a truncated KL expansion for a
uniform random field:

15 0.5

Ep.0166
12 - / =
=) jo.zs>< 50.0164— e ]
E‘. o \ 3 \ 7;7& .§ L /
S g e ;o.msz——— e -
el \ FCo2s —~— S ool T >
B — 2 ~—
™ " 4 5 E .015
o g ¢ Ind:ax [m] 1 "o » P‘g)sition [c(;%] * 10 W 2 P‘g)sition [c(;%] * 10
KL Eigenvalues KL Eigenmodes Sample paths
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Truncation Error Controlled by KL Terms

« KL decomposition of temperature:
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The Key is Measure Transformation

» Must generate orthogonal polynomials and quadrature rules for joint
measure of (n, &)

— Components are dependent
— We don'’t have the joint measure

» What we can compute is expectation, given a quadrature rule for ¢
Q Q
[ £ondn= [ $m@©)de~ Y ot (r€") = 3 wif ()
k=0 k=0

— Unclear how accurate of a rule this is

— Not useful for a non-intrusive approach since it doesn’t reduce the number of
samples

— Can be used to generate orthogonal polynomials via Gram-Schmidt
» Enables intrusive approach, but too expensive

117! Sandia National Laboratories




Approach Based on Point-wise Surrogate
(Inspired by Wan & Karniadakis, CMAME 2009)

» Generate 1-D polynomials orthogonal w.r.t. marginal density
— Discretized Stieltjes procedure (Gautschi)
— Use above quadrature rule to estimate necessary integrals
« Can only generate limited order of polynomials
* Form tensor product of 1-D polynomials
{®;(n2,61) : 0 < j < P}
— Orthogonal w.r.t. to product-of-marginals measure
— Generate corresponding Smolyak sparse-grid quadrature rule
» Solve sub-problem in this basis B
fr(e1(m2,€1),m2,81) = 0 — 1y = Z "11,3'&)3'(772,51)
— Intrusive or non-intrusive 7=0
» Sample this solution to compute expansion In original basis
P
@1(§) = Z u1,; (&) = u1; = Z w1 (n2(€5), £)

j=0
— Relying on point-wise convergence

<‘I’2>

117! Sandia National Laboratories




Demonstration

« Slight variant of coupled neutron/heat transfer

— Hayes Stripling, Texas A&M, 2009 CSRI summer student

— “Network™ coupling
— Nonlinear elimination

Component Stochastic Dimension M=3

10
—+—T - Non-Intrusive
——T - Dim. Reduction
—+— Q - Non-Intrusive
\ Q - Dim. Reduction
107}
2
& \
>
[}
[a}
3
[%2) 10-10_
_»
107" + . + . .
1 2 3 4 5 6

Polynomial Order N

» Additional error in second moment

Point-wise Error

Component Stochastic Dimension M=3

—+—T - Non-Intrusive

—+—T — Dim. Reduction
—+— Q - Non-Intrusive
Q - Dim. Reduction

1 2 3 4 5 6 7
Polynomial Order N
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Generating a Multi-Variate Quadrature Rule
(Inspired by Xiao and Gimbutas 2010)

 This is all Maarten’s idea...
 Start with Gram-Schmidt orthogonal basis
{®;(n2,€1) : 0 < j < P}

* Require quadrature rule to integrate basis exactly

Do (12,£9)  Bo(ni,El) ... Bo(ng €7)] [wo [ ®o(n2,€)d(n2,€) ] (1]
1(n3,€9) @13, &l) ... Bu(ng &) | |wi| | [ @1(n2,€)d(n2,8) | |0
S0 E0) Bp(nl.E)) ... pmDeD)]) lwpl [ ®sm Od,6] o

— Underdetermined system of equations
 Start with quadrature rule for¢ and ¢ — n. mapping
» Extract smallest set of columns with full row rank
— QR with column pivoting
— This defines the points
* Invert resulting linear system to obtain corresponding weights

» Use basis and quadrature rule in a non-intrusive approach
Sandia National Laboratories



Applied to Heat-transfer/Neutron Diffusion
Problem

g, 2 4s 2 4 n |
Sparse Grid Quadrature Rule {n(ék) ;1< k <165} Reduced Quadrature Rule
{¢8:1 < k <165} - =
10° jx10”
) . F
%105 \ 'Dg \
ElOll R \ §
£ Z
%1015 \‘*r: O ?%1 \
10200 5 10 . 15 20 25 00 1 . 2 4
Number of iterations [[] Dimension n [[]]
Nonlinear Solver Convergence Convergence w.r.t. reduced dimension
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Open Questions

» This QR-based quadrature approach is largely unexplored
— Efficiency
— Accuracy/conditioning issues

» Several unresolved questions for the Stieltjes approach
— Accuracy of calculations of integrals in Stieltjes procedure?
— Can this be improved by estimating density directly (e.g., kernel density estimation)
— Effects of point-wise convergence of intermediate expansions on overall error?

« We would like error analysis/estimates to tell us
— How many terms to keep in the KL
— What order to compute expansions in the transformed basis

« Can this be incorporated into other solver strategies?
— Full Newton or JFNK?

- Can we further reduce cost by not transforming component responses back to
original basis?
— How would convergence be measured?

117! Sandia National Laboratories
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General Stochastic Expansion
Uncertainty Quantification Framework

Stochastic collocation and non-intrusive polynomial chaos are essentially the same when
the collocation points are the same as the quadrature points

— Differences amount to a change of basis for similar, but not identical, spaces
All three methods exploit regularity of solution w.r.t. random parameters to achieve much
faster convergence rates than Monte Carlo

— Cost grows rapidly with number of stochastic dimensions
All three methods prefer independent random variables

— Stochastic Galerkin: Polynomials are tensor products of 1-D polynomials of total order N

— Stochastic Collocation/NIPC: Quadrature/collocation point grid built from tensor products or

Smolyak sparse grids derived from Gaussian quadrature points from above 1-D polynomials

Stochastic Galerkin requires forming and solving a new coupled spatial-stochastic
nonlinear problem

Fy Uo

F1 U1 M—|—N'
o=r@) = | T | u=| " | Pz BT

_FPSG_ | UPsc

Stochastic collocation/NIPC only require solving a sequence of deterministic nonlinear
problems

f(ul,w'l,) :O, izO,...,PSC :Q
However:

Q = Psc > Psg 1) Sandia National Laboratories




Computing SG Residuals/Jacobians via
Automatic Differentiation (AD)

« Technology for computing analytic o T __
Y o . — sin(e xlogx), =2
derivatives in simulation codes Y (" + g ),
— Propagates derivatives at the scalar- d
operation level T A
— Good tools available dx
x — 2 o 1 2.000 | 1.000
* Provides deep interface into t— e” a td—m 7.389 | 7.389
application code gq"j ﬂj’m
u<«— logx — «— —— 0.301 | 0.500
dx xdx
- Leverage AD interface for any v zu W T 0602 1.301
computation that can be done in an élw d;iw p dx
operation by operation manner wettv — 220 7.991 | 8.690
dx dr dx
y <« sinw dy — cos(w)d—w 0.991 | -1.188
dx dx
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Sacado: AD Tools for C++ Applications

« AD via operator overloading and C++ templating

- Transform to template code & instantiate on
Sacado AD types

- Easy to add new AD types to a code

* Designed for use in complex C++ codes
—Sacado: : FEApp example demonstrates approach

* Very successful in enabling analytic sensitivity
calculations in large-scale simulation codes

— Charon, Aria, Xyce, Alegra, LAMMPS, Albany

» http://trilinos.sandia.gov

+ Algorithms and enabling

technologies

 Large-scale scientific and

engineering applications

« C++ Object oriented

framework

117! Sandia National Laboratories
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Stokhos: Trilinos Tools for Intrusive
Stochastic Galerkin UQ Methods

* Eric Phipps, Chris Miller, Habib Najm, Bert
Debusschere, Omar Knio

» AD overloaded operators for SG propagation
— Sacado: Trilinos AD tools for C++ applications

* Tools solving SG linear systems
— Jacobian-free (Ghanem) or fully assembled
— Mean-based preconditioning
— Hooks to Trilinos parallel linear solvers

* Nonlinear SG application code interface TUNLY NN
— Interface to nonlinear SOlver, time integrator, Optimizer 0 2ooo 4ogod20 8000 10000 12000
p=5, d=4, nz = 30171
— Global quadrature SG propagation method

» Enabling investigation of SG methods in complex
applications

117! Sandia National Laboratories
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Comparing Linear and Nonlinear PDEs

—V - (a(x,&)Vu) =1, z € [0,1] x [0,1] —V - (a(x,£)Vu) = au?, = € [0,1] x [0, 1]
M M
a(w,€) = p+ 0o >V Afr(®)ék a(z,) = p+0 >V Aefr(@)ék
Calculation Time (Fixed Error) Calculation Time (Fixed Error)
10° : . ; 10° : . .

—— Gal. —— Gal.

—e—SG Col. ——SG Col.
——TP Col. ——TP Col.

2 3 4 5 6 7 1 2 3 4 5 6 7
Stochastic Dimension M Stochastic Dimension M

DAKOTA tensor product (Gauss-Legendre) and sparse grid stochastic
collocation (Gauss-Patterson, Burkardt/Eldred) 111} Sandia National Laboratories




Analysis of Intrusive SG Computational Cost

s Linear Problem s Nonlinear Problem
10 I 10 r ;
—— Fill —— Fill 3
——Solve ——Solve {
Total Total

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Stochastic Dimension M Stochastic Dimension M

* Increased cost due to two sources
— Filling nonlinear SG residual and Jacobian

— Linear solve for each Newton iteration

Matrix-vector product scales as O(P?) versus O(MP)
111} Sandia National Laboratories




KL Expansion of SG Jacobian Operator

» SG Jacobian operator can be approximated by a truncated KL
expansion

—(u(é) §) = Z Jepr(§) = Jo + Z \//BJT’J

nj = \/)\_J kzlvec(BJ)Tvec(Jk)tpk,(&), (ZZT)Vec(B ) = )\Jvec(B ), Z = [vec(Jy)...vec(Jp)]

- Reduces matrix-vector product cost to ~ O(M P)

. Calculation Time (Fixed Error) R Galerkin KL Calculation Time
10 I T T T T 10 T T
——Gal. —4—Fill
——Gal. KL —4—Solve |
——SG Col. Total
10° ~
0
Py 1 x o
£ 10
[

2 3 4 5 6
Stochastic Dimension M

1 2 3 4 5 7 :
Stochastic Dimension M inal Laboratories



Nonlinear Elimination for
Network Coupled Systems

Component 1

v = G1(v1,p1) = g1(u1(v1),p1) s.t. fi(ui,v1,p1) =0

U1 U2
Component 2
v1 = Ga(v2,p2) = g2(u2(v2),p2) s.t. fa(uz,ve,p2) =0 |
Nonlinear elimination
Equations Newton Step
v — G1(v1,p1) =0 —dG1/dv, 1 ] [A'U1] _ [02 — G1(v1,p1)
V1 — Gz(’Uz,pz) =0 1 _dGZ/dUZ AUZ o U1 — G2(”29p2)
dG;  Og; <8fi>_1 O f;
dvi - _8uz 8’11,,,, 8vi

117! Sandia National Laboratories




(Semi-) Intrusive UQ for Network/Nonlinear
Elimination Coupled Systems

P P
Define: € = (£1,€2), @i(€) =) uy¥;(€), 9:(€) =) vy ¥;(€)
—

§=0

Where coefficients for ; (&) are computed by any UQ method, e.g.,

Intrusive:

((fi(ai(§),0:(£),8:)P;(§)) =0
1 Q
(‘I’2> Z WrU; \Pj(wk)’ fz(uzavz(wk),mk) =0

<2>

Non-intrusive: u;; =

Let Gi(¢&) =D Gi;¥;(¢), G (gi(1:(£),&:)¥;)

<o 5=

Then the intrusive SG network system is

(q,2><(v2(s) G =0 Glj:O} |
y J=0,...,P

(81(8) = C2(£)T;(£)) = O v1j —

/

<‘I’2>
Which can be solved via a nonlinear elimination. Sandia National Laboratories



Stieltjes Procedure (see Gautschi)

P
- Assume (&) = 9(€) = > v ¥(¢) givenand |n] =1

k=0

« Let {¢; : i =0,..., P}be (1-D) polynomials orthogonal w.r.t. measure of
(it00 = [ $:(0)bsWpn(W)dy = (BFhabisy i25=0,.... P

» Polynomials defined a 3-term recurrence:

dit1(y) = (y — ) 9i(y) — Bidpi—1(y), 1 =0,1,2,...
d_1(y) =0, ¢o(y) =1

here
i - [ yoi(y)pn(y)dy o et
Y [ P2(y)pa(y)dy Y
s [ &7 (y)pn(y)dy o

= [ (wpn(w)dy’
Bo =1

Sandia National Laboratories



An Appproach for Approximating
Integrals w.r.t. Unknown Measure

» By measure transformation theorem:
| S wra@idy = [ s2m@)pe@)da
» Approximate new basis in terms of old:

»i(n(§)) = Z ®i;V;(§), ¢ij =

<\I:2> / ¢i(n(x))¥;(x)pe(x)dz

Pij = Z wr @i (n(xk)) ¥, (k)

<‘I'2>
* Then

P P
[ @enay = [ (Y 6:59;) pe@rdz = Y 632,
R r o =0
« Similarly

/ yo; (y) py(y)dy = Z GijPirvi(P; Vi P1)e

7,k,1=0
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Multi-Variate Basis and Dependence

* Multi-variate tensor product polynomials:

®;(n,&1) = ¢;,(m) ... 7, (M) j! (€a1) - - ¥y, (6anny), |0l = L, |&] = My

* In general, these polynomials not orthogonal w.r.t. joint PDF of (7, &1)
P(n,er)(Ys 1) 7 Py (Y1) « -« P (YL) Pgry (Z11) -+ - Peyns, (Tang, ) = P(Y, 1)

* First approach: Orthogonalize this basis using Gram-Schmidt

jr (83850 = / B (), m1.(2)) B ((x), 1. (2)) e () dee

— Don’t know how to define a good set of quadrature points for this basis (so no
non-intrusive approach)

— Intrusive Galerkin algorithm is much more expensive, e.9., C;;, = (®;®,;®;) IS
dense.
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