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Primary Goal:

In preparation for some testing to validate a unique  
impact to fireball computational capability, we are 
first simulating the environment to understand 
how best to instrument the test.

• Water dispersal from the braking of a rocket sled 
will be used to evaluate code capability.

• Sierra/StructuralDynamics Presto code for 
structural dynamics

• Sierra/FluidMechanics Fuego code for predicting 
reacting flows

• It is hoped that this capability will address aircraft 
impact simulation needs for scenarios like that of 
September 11, 2001  

Methods:
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Outline

• Introduction and Demonstration of Past Work

– Novel Methods Introduction

– Water Slug Impact Validation

– Heptane Cube Impact 

• Methods

– Description of Rocket Test

– Description of Simulation Matrix

• Simulation Results (First Round)

• Subsequent Simulation Findings

• Summary
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Code Details

• Presto SPH used for highly deforming structure 
and water

– Using constants to approximate liquid behavior

– Typical runs on ~100 CPUs for a few days

• Fuego CFD Lagrangian/Eulerian Drop Models 
used:

– Reactions modeled with Eddy Dissipation Concept 
(EDC) reactions and Temporal Filtering of the 
Navier-Stokes Equations (TFNS) turbulence model

– Multiple levels of mesh refinement

– Drop breakup with a modified Taylor Analogy 
Break-up (TAB) model

– Typically run on ~200 CPUs for around 8 days
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Simulation Codes

• Coupling methods are significant, and have required study 
and development to best model these scenarios

• Dimensionless drop separation distance used to define 
transfer time appropriate for individual drops:

Presto Phenomena Fuego

Gravity Force
Structural Deformation

Mass Conservation
Momentum

~ Energy Conservation ~
Structural Material Interactions

~ Sensible Energy
Surface Tension Forces ~

~ Liquid Phase Viscous Forces ~
~ Gas Phase Transport
~ Multiphase Interactions ~

Chemically Reacting Flows
~ Wind

Turbulence
~ Thermal Response of Materials

• Presto products initialized as 
spheres in Fuego

• Aluminum (casing) ignored in 
Fuego

• Impacting drops all stick in 
Fuego

Illustrating the Physics Challenge

ngthsticDropLeCharacteri

cetantionDissticSeparaCharacteri
B 
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Scenarios

Two previous cases are presented here as 
introduction:

• Validation to a large-scale water tank impacting a 
concrete barricade

– Brown A.L., Wagner, G.J., “Fluid Spread Model Validation for Emerging Liquid Tank Impact 
Predictive Methods,” Accepted to the ASME IHTC Conference, ASME IHTC-2010, August 8-13, 
2010, Washington DC, USA, IHTC14-23067. 

• A notional impact of a 0.3 m square tank of 
heptane  

– Brown A.L., “Impact and Fire Modeling Considerations Employing SPH Coupling to a Dilute 
Spray Fire Code,” Proceedings of the ASME 2009 Summer Heat Transfer Conference, ASME 
SHTC-2009, July 19-23, 2009, San Francisco, CA, USA, HT2009-88493. 

– Brown A.L., “Impact and Fire Modeling for Complex Environment Simulation,” The 2010 
Western States Meeting of the Combustion Institute, Paper # 10S-12, March 21-23, 2010, 
Boulder, CO, USA. 
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Impact Validation

• Tests performed in 2002 provided data for 
validating liquid spread dynamics for an 
aluminum tank impacting a concrete slab

• Liquid deposition, particle sizing, and video data
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Simulation Matrix

• Wind was not reported, so it was treated as a free 
parameter

• Geometry fidelity was examined, including 
undercarriage and cross-member for high fidelity

• Various temporal staging assumptions were 
analyzed

Case Geometry 
Fidelity

Wind Temporal Staging

1 Low No No
2 Low No 5 times*
3 High No 6 times**
4 Low 2 m/s No
5 Low 1 m/s No
6 High No 11 times**
7 High 1 m/s 11 times**

* Dimensionless Staging Distance: 1.7
** Dimensionless Staging Distance: 1.5

Fluid Test Matrix
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Drop size and Spread Distance Results

• Simulation matrix evaluated transfer coupling, 
geometry fidelity, and wind assumptions  
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Liquid Deposition Results

• Geometry fidelity was found to be most 
significant, and coupling methodology was also 
important
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Simulation Videos
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The Scenario

Designed to help understand discretization 
sensitivities

• 23 cm cube of liquid in a 2.54 cm thick  aluminum 
tank with two adjacent cubes

– Impact an immobile target at 182 m/s

– Presto modeled with SPH and 4 levels of 
refinement

• Open air environment with ground located 6.35 m 
below impact point

– Two levels of fluid 

mesh refinement
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Simulation Matrix

• Cases are named to indicate meshes used and 
staging assumptions

• Differences between cases reflect accuracies 
with discretization and staging

Case Fuego 
Mesh

Presto 
Mesh

Temporal 
Staging

Dimensionless 
Spacing

ccu coarse coarse No
cmu coarse medium No
cfu coarse fine No
cxfu coarse xfine No

cfs1.1 coarse fine Yes 1.1
cfs1.3 coarse fine Yes 1.3
cfs1.5 coarse fine Yes 1.5

cfs1.5_18 coarse fine Yes* 1.5
cfs1.7 coarse fine Yes 1.7
mfs medium fine Yes 1.5
mfu medium fine No

mmu medium medium No
*All staged cases use 1 ms steps out to 12 ms except this one, which uses 1 ms steps out to 18 ms.



Slide # 14s

Mass Results (1/2)

• Results are relatively similar, with subtle 
differences not well illustrated by line plots.
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Mass Results (2/2)

• Mass loss is slower for staged predictions

• Mass loss is faster for medium Fuego mesh

• Moderate trend depending on dimensionless 
spacing magnitude assumed
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Maximum Predicted Particles Results

• Staging appears to increase break-up

• Finer Fuego mesh yields more particles

• Dimensionless spacing significant to result

• Small to moderate effect of Presto resolution

• 18 ms case results in substantially more particles
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Coarse Video

• Case cfs1.5
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Medium Video
• Case mfs

• Substantial increase in resolution of the fireball
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Sled Track Simulation Details

These simulations are pre-test design calculations 
to locate instruments for validation data:
– liquid dispersal velocity (photometrics)

– local droplet size distributions and velocities (Malvern Spraytec and 
phase Doppler particle analyzer)

– ground level liquid deposition (catch pans)

– droplet evaporation and vapor transport (RH sensors)

Initial Presto Geometry

Two Mesh Densities Used

Designed Geometry
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Simulation Matrix

The simulation matrix involved three Presto 
calculations and four Fuego calculations.  

Simulation Water Element 
Size (cm)

Water 
Draw (cm)

Initial Scoop 
Velocity (m/s)

S1 1.9 10.2 146
S2 1.9 15.9 91.4
S3 0.95-1.9 10.2 146

Structural Test Matrix

Fluid Test Matrix

Fuego
Simulation

Presto
Sim.

Simulation 
Transfer 
Time (s)

Number 
of 

Transfers

Fuego Mesh 
Elements

(Thousands)
F1 S1 0.01-0.10 10 700
F2 S2 0.02-0.24 11 700
F3 S3 0.01-0.11 11 700
F4 S1 0.01-0.10 10 2,000

B=1.3
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Sled Track Presto Video

Case S3



Slide # 22s

Sled Track Fuego Video

Case F1
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Predicted Environment

Ground deposition and air water vapor concentration 
predictions help locate instrumentation

Lesson: Catch pans need to be close to the track
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Structural Resolution Differences

Two otherwise identical cases with varying SPH 
resolution gave significantly different results (below)

The explanation did not make the conference paper 
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Deposition for SPH Resolution Increases

F1

F3

Further 
refinement

Mass Deposition Density
[kg/m2]
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Issue Resolution

• A subsequent (additional) SPH refinement case was 
performed.

• Dip in deposition and recovery results were similar to 
the intermediate refinement case (S3/F3).

• Results were more similar in general.  

• This demonstrates a length scale refinement sensitivity 
for this calculation methodology

– Not clear yet if it is only expressed in the fluid code, or the 
structural code as well

– More work needs to be done to fully understand mesh 
sensitivity
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Summary 

• A new capability exists to predict fires from impact 
scenarios involving code coupling.

• Model validation work is ongoing, with existing validation 
suggesting the accuracy of the capability.

• Modeling resolution assumptions including discretization 
and coupling transfer method have been analyzed, and 
are shown to be important to the predictive results.

• Predictions help locate instrumentation for the test.

• The validation work provides confidence in being able to 
employ these capabilities for other similar scenarios.

• Future work includes additional validation and scenarios 
more closely related to the application space.
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Extra Viewgraphs 
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Properties 

Property Units Value
Heat of Vaporization kJ/kg 310
Boiling Temperature K 371.58
Critical Temperature K 540.3
Density kg/m

3
692

Thermal Conductivity W/m/K 0.15
Specific Heat J/kg/K 2100
Viscosity kg/m/s 0.000542
Absorptivity -- 0.05
Surface Tension Nm 0.0216
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Coupling Details 

Time (ms)

0 2 4 6 8 10 12 14 16 18 20

P
a

rt
ic

le
s 

In
je

ct
e

d

0

2000

4000

6000

8000

10000

12000

14000

16000

1.7 

1.5 
1.3 

1.1 

1.5_18 



Slide # 32s

Ground Deposit at 1.0 s

Deposit mass almost identical from 0.4 to 1.25 
seconds: early versus late deposit

• Any refinement mostly lowers deposit

• Dimensionless spacing has minor effect
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Sauter Mean Diameter

• No particular trends evident

• Uniformly, larger average drops predicted at later 
times
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