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1 INTRODUCTION

It is well known that the mechanical properties of soft biological
tissue are closely related to pathology. Thus, the identification
of viscoelastic material properties has shown significant promise
for disease diagnosis. For instance, viscoelastic properties can
significantly increase specificity in differentiating malignant and
benign tumors [4]. Yet, the direct measurement of viscoelastic
material properties in-vivo is very difficult, if not impossible.
However, indirect measurements in the form of solutions to
inverse problems have been promising.

In this work, we present an inverse problem methodology
based on an error in constitutive equations (ECE) for the
identification of viscoelastic properties from dynamic tests.
The basic premise in the ECE approach is that, given
an over-determined set of boundary or internal data (e.g.
displacements and tractions), and a set of kinematically
admissible displacements and statically admissible stresses, a
cost functional is defined based on the error in the constitutive
equations that connect these sets of stresses and strains. This
cost functional has the important property of being zero for
the exact constitutive equations and strictly positive otherwise.
For example, ECE-based identification strategies for transient
and materially nonlinear situations have been recently proposed
in [2], while other aspects of ECE are surveyed in [1]. For
viscoelasticity, we will present an ECE approach for frequency
domain formulations.

2 FORMULATION

2.1 The Forward Problem

The variational form of the forward steady-state dynamics
problem can be stated as findu ∈U such that

a(u,v) = ℓ(v) ∀ v ∈V (1)

where

a(u,v) =

∫

Ω
∇v∗ : σ dΩ−ρω2

∫

Ω
v∗ ·u dΩ (2)

ℓ(v) =
∫

Γt

v∗ · t dΓt , (3)

In the above equations, the test function spaceV and the trial
solution spaceU are defined as

V = {v : v |v ∈ H1(Ω),v = 0 onΓu} (4)

U = {u : u | ui ∈ H1 (Ω) ,u = u0 onΓu}. (5)

The asterisk denotes complex conjugate and bold quantities
are used to represent vectors and second-order tensors. The
spaceH1(Ω) is defined as the collection of functions that along
with their first derivatives are square integrable. In the above
equations,Ω represents the interior of a body whose boundary
is Γ = Γu ∪Γt , Γt is the portion of the boundary where external
tractions are specified,Γu is the portion of the boundary where
displacements are specified,ω denotes angular frequency,σ is
the stress tensor,ρ is the mass density (assumed constant in this
work), u is the displacement field, andt denotes tractions.

The solution to the variational problem defined in Eq. (1)
was approximated in this work using the finite element method.
The details for the discretization of the problem can be found in
conventional finite element textbooks and are not shown herein
for the sake of brevity.

2.2 The Error in Constitutive Equations Approach

The inverse viscoelasticity problem can be described as, given a
set of displacement fields{um

i }
n
i=1, corresponding to frequencies

{ωi}
n
i=1, find the complex moduliG and K as functions

frequency. The part of the domain where displacements are
measured is denoted asΩm ⊆ Ω̄ = Ω∪Γ.

The basic premise in the ECE approach is to define a cost
functional based on the error in the constitutive equationsthat
connect a set of kinematically admissible displacements and a
set of dynamically admissible stresses. The inverse problem
is solved by finding material properties along with admissible
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displacement and stress fields such that the ECE functional is
minimized. The ECE functional used in this work is defined as

J(σN ,uD,K,G) =
1
2

∫

Ω
‖σN −2GEd(uD)−KeuI‖2dΩ (6)

whereeu = E(uD)kk is the volumetric strain,Ed(uD) = E(uD)−
1
3euI is the deviatoric strain tensor,E(uD) is the strain tensor,
andI is the second-order identity tensor. The subscriptN in the
stress field andD in the strain field are used to highlight the fact
that these fields are constructed from different forward problems
as explained below. Since the fields for different frequencies are
independent of each other, we can concentrate on the derivations
of the basic equations for a single frequency.

The goal is to find the fields,σN ,uD,G, andK that minimize
the ECE functional (6) under the constraints that the stresses
are dynamically admissible and the strains are kinematically
admissible. The dynamically admissible set is composed of
stresses that satisfy the variational form of the equationsof
motion and is defined formally as

Ŝ =
{

σN : σN ∈ L2 (Ω) ,

∫

Ω

(

∇v∗ : σN −ρω2v∗ ·uN
)

dΩ

−

∫

Γt

v∗ · (σNns)dΓt = 0 ∀v ∈V
}

(7)

The variableuN appearing in the above equations is an auxiliary
displacement needed to define a well-posed forward problem
from which a dynamically admissible stress field is obtained.

The kinematically admissible set is composed of displace-
ment fields that are in the appropriate functional space as
required by the variational problem and satisfy Dirichlet
conditions and the measurements. That is,

Û = {uD : uD ∈ H1 (Ω) , uD = u0 onΓu, uD = um in Ωm} (8)

An alternating directions approach, as decribed in [1], was
used in the present work for the identification of the complex
moduli. The approach consists in breaking the optimization
process into two steps. In the first step, given a current
best guess for the complex relaxation moduli,(G,K), we
find a dynamically admissible stress field and a kinematically
admissible displacement field by solving two forward problems
for each frequency. Then, fixing these admissible fields, a new
update for the complex moduli is obtained by minimizing the
ECE functional (6).

2.3 Obtaining the Admissible Fields

A dynamically admissible stress field that is consistent with the
most current guess of the material properties can be obtained by
solving the following variational problem. FinduN ∈ U such
that

a(uN ,v)− ℓ(v) = 0 ∀ v ∈V (9)

which is essentially the same as the forward problem given in
(1) with the stress tensor defined as

σN = 2GEd(uN)+ KeuN I (10)

We refer to the above forward problem as the Neumann problem
and, hence, denote fields associated with it with a subscriptN.

The kinematically admissible field is found analogously by
solving the following problem. FinduD ∈ Û such that

a(uD,v)− ℓ(v) = 0 ∀ v ∈V (11)

We refer to the above problem as the Dirichlet problem and
denote fields associated with it with a subscriptD. It is important
to point out that the main difference between the variational
problem in (9) and the one given in (11) is that the latter enforces
the measurement fieldum as part of the Dirichlet or essential
boundary conditions. In other words, its solution belongs to Û
instead ofU .

2.4 Moduli updating

In the alternating directions approach, once the admissible fields
σN anduD are obtained, a new estimate of the complex moduli
G andK can be obtained by minimizing the ECE functional with
σN anduD fixed. First, we define the functional

Ĵ(G,K) = J(σN(G,K),E(u;G,K),G,K) (12)

Then, a new update of the complex moduli is obtained as

(Ǧ, Ǩ) = argminĴ(G,K) (13)

whereǦ and Ǩ are our new updates of the complex moduli.
In the case of the ECE functional (6), we can obtain analytical
expressions for the updated moduli by setting the first variation
of the functional to zero and solving for the new complex
moduli. That is,

DGĴ ·δG = −2ℜ
∫

Ω
(σN −2GEd(uD)) : E∗

d(uD)δG∗ dΩ (14)

DK Ĵ ·δK = −ℜ
∫

Ω
(σN −KeuI) : Ie∗uδK∗ dΩ (15)

whereℜ denotes the real part of the complex number. Setting
the above equations to zero leads to the following simple
materials updating formulas

G =

∫

Ω σN : E∗
d(uD) dΩ

∫

Ω |Ed(uD)|2dΩ
(16)

K =

∫

Ω pe∗u dΩ
∫

Ω |eu|2dΩ
(17)

It is important to notice that if the complex moduli are
taken as piecewise constants in each element, the integralsin
Equations (16) and (17) are then taken over the element domain.
Hence, these simple updating formulas can be used for both
homogeneous and heterogeneous materials.

2.5 The ECE Algorithm

The minimization of the ECE functional (6) can be carried out
following this straightforward algorithm.



Figure 1. The geometry of the viscoelastic cube problem.

1. Set initial guesses for the complex moduli{G}n
i=1 and

{K}n
i=1 corresponding to frequencies{ω}n

i=1
2. Do until a convergence criterion is reached
i. Obtain the dynamically admissible fields{σN}

n
i=1 by solving

(9) for all frequencies.
ii. Obtain the kinematically admissible field{uD}

n
i=1 by solving

(11) for all frequencies.
iii. Update the complex moduli{G}n

i=1 and{K}n
i=1 using (16)

and (17), respectively, for all frequencies.
In this work, the algorithm was stopped after the ECE error

(6) reached a certain tolerance or a predefined number of
iterations was exceeded.

3 EXAMPLES AND RESULTS

In this section, we give numerical examples to demonstrate the
capabilities described in the previous sections. The first example
consists of cube made of a viscoelastic material. The real and
imaginary parts of the complex moduli are sought, given a fixed
boundary condition at the base and a pressure loading on the top
of the plate. Figure 1 shows the geometry of the model. The
measurements were generated by running the forward problem
with known material properties, and then recording the three
components of displacement at the nodes on the top surface only
(where the pressure loading was applied). This data constituted
the truth model that the inverse problem attempted to replicate.

Figures 2 and 3 show the comparison of the exact magnitude
and tan(δ ) for the shear modulus against those predicted by
the inverse method. Excellent agreement is observed in the
comparisons. Figures 4 and 5 show the same comparison for the
bulk modulus. The agreement is not as good for the magnitude,
but thetan(δ ) comparisons are about as good as those for the
shear modulus.

Figures 6 and 7 show the comparison of the exact magnitude
andtan(δ ) for the shear modulus against those predicted by the
inverse method, inthe case that 5 percent noise is added to the
measurement data. Excellent agreement is still observed inthe
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Figure 2. The magnitude of the shear modulus for the
viscoelastic cube problem with zero noise.
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Figure 3. Thetan(δ ) of the shear modulus for the viscoelastic
cube problem with zero noise.
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Figure 4. The magnitude of the bulk modulus for the
viscoelastic cube problem with zero noise.
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Figure 5. Thetan(δ ) of the bulk modulus for the viscoelastic
cube problem with zero noise.
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Figure 6. The magnitude of the shear modulus for the
viscoelastic cube problem with 5 percent noise.

comparisons. Figures 8 and 9 show the same comparison for the
bulk modulus, again with 5 percent noise in the measurements.
The agreement is not as good for the magnitude, but the
tan(δ ) comparisons are about as good as those for the shear
modulus. The introduction of noise does degrade the bulk
modulus predictions compared with those with no noise.

4 CONCLUSIONS

In this paper, we presented an error in constitutive equations
(ECE) approach for inverse identification of viscoelastic
material properties. The standard cost functional in terms
of the error in the measured data was augmented with an
additional functional that measured the error in the constitutive
equation. The formulation led to a forward problem and an
adjoint problem, and an iterative outer loop that solved one
forward problem and one adjoint problem at each iteration.
An exact muduli updating procedure was also presented that
eliminated the need for solving an optimization problem to
determine the moduli. Finally, a numerical example was
presented that demonstrated the capabilities of the methodfor
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Figure 7. Thetan(δ ) of the shear modulus for the viscoelastic
cube problem with 5 percent noise.
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Figure 8. The magnitude of the bulk modulus for the
viscoelastic cube problem with 5 percent noise.
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Figure 9. Thetan(δ ) of the bulk modulus for the viscoelastic
cube problem with 5 percent noise.



resolving complex moduli and loss factors over a wide range of
frequencies.
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