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1 INTRODUCTION é(v):/ Vet dry, 3)
Jry

Itis well known that the mechanical properties of soft bgtal

tissue are closely related to pathology. Thus, the ideatifio  In the above equations, the test function spdcend the trial
of viscoelastic material properties has shown significantpse ~ solution spacé) are defined as

for disease diagnosis. For instance, viscoelastic prigsecain

significantly increase specificity in differentiating nggliant and V={v:v|ve Hl(Q),V =0only} (4)
benign tumors [4]. Yet, the direct measurement of viscdiglas

material properties in-vivo is very difficult, if not impasge. U={u:u|ueH(Q),u=ugonry}. (5)
However, indirect measurements in the form of solutions to . ] N
inverse problems have been promising. The asterisk denotes complex conjugate and bold quantities

are used to represent vectors and second-order tensors. The

In this work, we present an inverse problem methodolo@pacml(g) is defined as the collection of functions that along
based on an error in constitutive equations (ECE) for tydth their first derivatives are square integrable. In thewab
identification of viscoelastic properties from dynamictses €duationsQ represents the interior of a body whose boundary

The basic premise in the ECE approach is that, givéhl =uUTt, 'tis the portion of the boundary where external
an over-determined set of boundary or internal data (epctions are specified,, is the portion of the boundary where

displacements and tractions), and a set of kinematicaffisPlacements are specified,denotes angular frequenay,is
admissible displacements and statically admissible stesa the stress tensop, is the mass density (assumed constant in this

cost functional is defined based on the error in the conistitut WOTK), U is the displacement field, ardlenotes tractions.
equations that connect these sets of stresses and strdims. T . o ] .

cost functional has the important property of being zero for The solution to the variational problem defined in Eq. (1)
the exact constitutive equations and strictly positivecottise. Was approximated in this work using the finite element method
For example, ECE-based identification strategies for teas The details for the discretization of the problem can be tbimn
and materially nonlinear situations have been recentlp@sed conventional finite glement textbooks and are not shownitere
in [2], while other aspects of ECE are surveyed in [1]. FdPr the sake of brevity.

viscoelasticity, we will present an ECE approach for frerme

domain formulations. . o )
2.2 TheError in Congtitutive Equations Approach

2 FORMULATION The inverse viscoelasticity problem can be described asng
2.1 The Forward Problem set of displacement fieldsi}_;, corresponding to frequencies
wl}',, find the complex moduliG and K as functions

quency. The part of the domain where displacements are
measured is denoted 8, C Q =QUT.

The variational form of the forward steady-state dynamig
problem can be stated as find= U such that

a(u,v) =£v)Vv eV 1) The basic premise in the ECE approach is to define a cost
functional based on the error in the constitutive equatibias
connect a set of kinematically admissible displacementisaan
set of dynamically admissible stresses. The inverse pnoble
is solved by finding material properties along with admikesib

where

a(u,v):/ Dv*:on—pwz/v*-udQ 2)
Q JQ



displacement and stress fields such that the ECE functisnalWe refer to the above forward problem as the Neumann problem
minimized. The ECE functional used in this work is defined aand, hence, denote fields associated with it with a subgdript

J(on,up,K,G) = %/ |on — 2GEq4(up) —Keyl[?dQ  (6)  The kinematically admissible field is found analogously by
Q solving the following problem. Findp € U such that

wheree, = E(Up ),y is the volumetric strainEq(up) = E(up) —
Zeyl is the deviatoric strain tensoE(up) is the strain tensor, a(up,v)—£(v)=0VveV (11)
andl is the second-order identity tensor. The subsadifn the .
stress field an® in the strain field are used to highlight the factVe refer to the above problem as the Dirichlet problem and
that these fields are constructed from different forwardjems denote fields associated with it with a subscBptt is important
as explained below. Since the fields for different frequesaire 10 Point out that the main difference between the variationa

independent of each other, we can concentrate on the derigat Problemin (9) and the one given in (11) is that the latter erée
of the basic equations for a single frequency. the measurement field™ as part of the Dirichlet or essential

boundary conditions. In other words, its solution belorm§ 't

The goal is to find the fieldgn, Up, G, andK that minimize instead oU.
the ECE functional (6) under the constraints that the stes
are dynamically admissible and the strains are kineméica
admissible. The dynamically admissible set is composed lgfthe alternating directions approach, once the admiséidlds

stresses that satisfy the variational form of the equatioins On andup are obtained, a new estimate of the complex moduli
motion and is defined formally as G andK can be obtained by minimizing the ECE functional with

on andup fixed. First, we define the functional

S _ . * . o 2\ %
S={on:on € La(@). /Q(DV FON WV un) 0 J(G,K) =J(0n(G,K),E(1;G,K),G,K)  (12)

4 Moduli updating

—/ V' (ong)dr =0 eV
It
(7

The variableuy appearing in the above equations is an auxiliary 5

displacement needed to define a well-posed forward problevhereG andK are our new updates of the complex moduli.

from which a dynamically admissible stress field is obtained In the case of the ECE functional (6), we can obtain analltica

expressions for the updated moduli by setting the first tiana

The kinematically admissible set is composed of displacef the functional to zero and solving for the new complex

ment fields that are in the appropriate functional space aeduli. That is,

required by the variational problem and satisfy Dirichlet

conditions and the measurements. That is,

Then, a new update of the complex moduli is obtained as

(G,K) = argminJ(G,K) (13)

. Di-éG:—zm/ ON — 2GEq(Up)) : E5(Up)3G* dQ (14
U ={up: up e H(Q), up =uponly, up =u™in Q™} (8) N Q( N d(Up)) : Eg(uo) (14)

An alternating directions approach, as decribed in [1], waPxJ 0K = —U /Q(UN —Kayl) 1 1€,0K™ dQ (15)
used in the present work for the identification of the complex
moduli. The approach consists in breaking the optimizatio#herell denotes the real part of the complex number. Setting
process into two steps. In the first step, given a curreifie above equations to zero leads to the following simple
best guess for the complex relaxation modul,K), we materials updating formulas
find a dynamically admissible stress field and a kinematicall

admissible displacement field by solving two forward protde G= Joon :Eg(up) dQ (16)
for each frequency. Then, fixing these admissible fields va ne Jo|Ed(up)[2dQ

update for the complex moduli is obtained by minimizing the _ Jqpe;dQ (17)
ECE functional (6). " Jo leu2dQ

It is important to notice that if the complex moduli are
2.3 Obtaining the Admissible Fields taken as piecewise constants in each element, the intégrals
A dynamically admissible stress field that is consistenbwiie Equations (16) and (17) are then taken over the element somai
most current guess of the material properties can be olatbipe Hence, these simple updating formulas can be used for both
solving the following variational problem. Fingy € U such Nnomogeneous and heterogeneous materials.

that 2.5 TheECE Algorithm

The minimization of the ECE functional (6) can be carried out
flgllowing this straightforward algorithm.

a(un,v)—4(v)=0VveV 9

which is essentially the same as the forward problem given
(1) with the stress tensor defined as

oN = ZGEd(UN) + Key,l (10)
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- Figure 2.  The magnitude of the shear modulus for the
e viscoelastic cube problem with zero noise.

Figure 1. The geometry of the viscoelastic cube problem.
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O _inverse solution

1. Set initial guesses for the complex mod¢G} , and

{K}{_, corresponding to frequencig¢so}! ;

2. Do until a convergence criterion is reached 0al

i. Obtain the dynamically admissible fielden}[_; by solving

(9) for all frequencies.

ii. Obtain the kinematically admissible fiefdip }{! ; by solving

(11) for all frequencies.

iii. Update the complex modufiG}' ; and{K}{ ; using (16)

and (17), respectively, for all frequencies. 8
In this work, the algorithm was stopped after the ECE error

(6) reached a certain tolerance or a predefined number of

iterations was exceeded.
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3 EXAMPLES AND RESULTS : . .
Figure 3. Thean(d) of the shear modulus for the viscoelastic

In this section, we give numerical examples to demonsttete t cube problem with zero noise.
capabilities described in the previous sections. The fuatrgle
consists of cube made of a viscoelastic material. The rel an
imaginary parts of the complex moduli are sought, given affixe
boundary condition at the base and a pressure loading oofhe t v ‘ ‘ ‘ ‘ ‘ ‘ ‘ e
of the plate. Figure 1 shows the geometry of the model. The ©Ingse souion
measurements were generated by running the forward problem
with known material properties, and then recording the ghre 15}
components of displacement at the nodes on the top surfége on
(where the pressure loading was applied). This data catestit
the truth model that the inverse problem attempted to rafsic
Figures 2 and 3 show the comparison of the exact magnitude
andtan(d) for the shear modulus against those predicted by  *?f
the inverse method. Excellent agreement is observed in the
comparisons. Figures 4 and 5 show the same comparison for the
bulk modulus. The agreement is not as good for the magnitude, i}
but thetan(d) comparisons are about as good as those for the N
shear modulus. % 2 0 %0 % Frequéégy . Do w0 160 180 200
Figures 6 and 7 show the comparison of the exact magnitude
andtan(d) for the shear modulus against those predicted by thégure 4. The magnitude of the bulk modulus for the
inverse method, inthe case that 5 percent noise is adde@to th Vviscoelastic cube problem with zero noise.
measurement data. Excellent agreement is still observtkin
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Figure 5. Thean(d) of the bulk modulus for the viscoelastic
cube problem with zero noise. Figure 7. Thean(9d) of the shear modulus for the viscoelastic

cube problem with 5 percent noise.
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Figure 6. The magnitude of the shear modulus for the 062 \ \ \ \ \ \ ‘ ‘
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viscoelastic cube problem with 5 percent noise.

Frequency (Hz)

Figure 8. The magnitude of the bulk modulus for the

. ] ) viscoelastic cube problem with 5 percent noise.
comparisons. Figures 8 and 9 show the same comparison for the

bulk modulus, again with 5 percent noise in the measurements
The agreement is not as good for the magnitude, but the
tan(d) comparisons are about as good as those for the shear °*
modulus. The introduction of noise does degrade the bulk
modulus predictions compared with those with no noise. o
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4 CONCLUSIONS

o
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In this paper, we presented an error in constitutive eqoatio
(ECE) approach for inverse identification of viscoelastic
material properties. The standard cost functional in terms
of the error in the measured data was augmented with an
additional functional that measured the error in the comnisie
equation. The formulation led to a forward problem and an o 1
adjoint problem, and an iterative outer loop that solved one

forward problem and one adjoint problem at each iteration. "o ® @ @ w_ w @ w0 w0 w

An exact muduli updating procedure was also presented that

eliminated the need for solving an optimization problem tbigure 9. Thetan(d) of the bulk modulus for the viscoelastic
determine the moduli. Finally, a numerical example was Ccube problem with 5 percent noise.

presented that demonstrated the capabilities of the mdtirod
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resolving complex moduli and loss factors over a wide rarfge o
frequencies.
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