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Geophysical Inversion

Marmousi2 - Acoustic

Seismic
Raypath

Goal: determine material properties of the subsurface
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Challenges and Strategies

Challenges Strategies

complex media discontinuous Galerkin

large inversion space variable media representation
multi-experiments phase encoding

lll-posedness trust region and line search
multiple minima second order algorithm
non-linear different parameterizations
computationally expensive parallel

modeling approximations Griewank restart
measurement noise
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Outline

* Discontinuous Galerkin discretization
— formulation
— fluxes
— numerical examples

* Inversion

— optimization formulation
— phase encoding
— parameterization

— numerical examples

 Conclusions and Future Work

Sandia
National
Laboratories




Discontinuous Galerkin Method

Q=0,UQ,

Start with strong form of acoustic equations:

U,+AU, =S
U(X,O) =U, (x), at t=0

defined on Q) with appropriate boundary

conditions on 0Q.

Define the following in 3D:

- pressure

B . - velocity component
P 0 6, «J, KO, ’ Y

- pcz
V81i 0 0 0 - density
vO,, 0 0 0 J - wave speed
v, 0 0 0 “l/e

L - source term

- moment tensor

- force vector
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Discontinuous Galerkin Method

e:Nel e:Nel e:Nel

Z J.Qe w (U»f +AiU»l’)dQ+ ; J.GQE w (F” (U_’U+)_FH (U‘))a’@Q: ; J.GQE WiSdQ YW eV

e=1

where F, (U_) is the real flux and l:“n (U_,U+) is the numerical
flux function which is designed to add stability

for under-resolved wave fields.

Q=0,UQ,

Lax Friedrich flux:

1
F = E(ALULEhZ + AMURH + MU' +URY)

where A represents the maximum eigenvalue of 4
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DGM Toolkit

- High-order on unstructured meshes 7+

P
§

Sy

— Line, Quad, Tri, Hex elements
« Supports local, p-refinement
 Object-oriented software design
* Physics independent:. examples for
— Compressible Euler & Navier-Stokes |

— Incompressible Euler & Navier-Stokes
— Advection-diffusion, Burgers, Darcy, -

» Designed for adjoint-based optimizati
— Steady-state and transient with check| |

* MPI with MPI-IO

* Version 0.0 released open-source (Ri

* Version 1.0 on the way...
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Discretization Challenges

Traditional structured meshes have difficulty
capturing geological features accurately

0

Discretization - , Free of
Artifacts | Artifacts

x104 x104
Triangle: p=10 uniform mesh Triangle: p=10 unstructured




Better Media Representation

h =100m, Mp =8

Time (sec) Time (sec)

h=100m, Mp =0 h=100m, Mp =8




Code Verification

Mesh Refinement Polynomial Refinement

nz=8

nz=16
nz =32
nz =64
nz=128
nz = 256

| I 10'10 | I | | I |
10° 10° 10* 10° 10° 10’
Degrees of Freedom Degrees of Freedom

L, Error of the Pressure
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Topology Capturing

Sinusoidal Ocean Bottom —_— ———
* For example:

“Santoot
Ocean floor
Faults
Salt structures
Even ocean waves...
 Elastic and Acoustic

Vz velocity

Sawtooth Ocean Bottom

Time (sec)

Hybrid Mesh, h = 100 m Pressure Wavefield, t=1.25 s
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See: Smith, Collis, Ober, Overfelt, Schwaiger, SEG 2010.




Ichos Performance

Weak Parallel Scaling on RedSky
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Parallel efficiency = 84%

1000
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Inversion Formulation
Sequential

min % ! i U(x,t) - U(x,1)) 8(x — x*)dxdt+% i R dO

st. U,+4U;=§ mQ x (0,T]
U(x,0)=0 forx (2

where )
0 x9,
vd, O
V9,

Vo,

- simulated pressure
- measured pressure
- Direc Delta function

- regularization
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Solution Strategy

 Forward

U ,+4U,=S inQ x (0,T)
- Adjoint

A, =AML, +U-US(x-x)=0 inQ x (T,0]

e Gradient

R+UL=0 inQx (0,T]

G
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Implementation Details

Adjoint time integration - RK4
NonLinear Conjugate Gradient
Brent Line search

Trust Region with SR1, BFGS
Phase encoding

Griewank restart

Different parameterizations
Bounding

Physics: acoustic, elastic

)
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Sequential Numerical Result 1D
Trust region versus line search
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1D Marmousi Inversion for Compressibility

50 ite;ations
line search 50 iterations
Truth Model

1500
Depth (m)
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Inversion Formulation
Multi-Experiment

2

J& (X)Lp(x 1)- Zsloosﬁ(x,t)} dxdi+[ RAQ

U,t+A,iU,i:SS inQ x (0,T]

U(x,0)=0 forx eQ

where

N, - number of receivers
p - simulated pressure
p - measured pressure
o, - encoding operator
R - regularization

g, €, -spatial kernel
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Phase Encoding

« Romero et al. “Phase encoding of shot records
in prestack migration”, Geophysics 2000

 Krebs et al. “Fast full-wavefield seismic

0.
’gn.s

=10
=
S15

inversion using encoded sources”, Geophysics, g

2009

» Haber et al. “An effective method for parameter
estimation with PDE constraints with multiple
right hand sides”, tech report 2010.
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Phase Encoding as a Stochastic Formulation
(Haber et al.)

min J(u) =|| PA(u) "' Q- D |[> +R(u)

where O =(q,,....,qy),D =(d,,...,d, ), P 1s a projection rewrite deterministic problem

as a stochastic one using:

E, (W' S(u)" Suyw) = trace(S(u)" S(u)) =I| S(u) |I;

then obtain:

min £,/ e, w) = - [|(PAG) ' Q= Syw

w 1s a random vector with 0 mean and cov matric = 1. This problem is solved using SAA:

1 K
E Ju,w)= —ZJ(u,wj)

and by choosing w from a distribtion of * 1, the variance is minimized
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ulti-Experiment Numerical Results 1D
comparison to sequential

1D Marmousi Inversion for Compressibility, Trust Region, SD (50 iters)

T T T T | I—
random encoding ———

no encoding
truth Model
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Numerical Results Comparison
1D, 50 iterations

line 0.77 0.269
SD trust 0.43 0.159
trust 0.46 0.015
trust 0.42 0.0085
line 0.25 0.62
trust 0.17 0.59




2D Numerical Results — Marmousi

Truth Model

Smoothed Initial Model

Inverted Model

Details:

* 500 m sponge

« 76 receivers

* 15 sources

* 1600 elmts
p=295
200 m cells
RhoSp3




Parameterization Study
(Redsky 96 cores)

2D Marmousi Inversion SD-LS Parameterization with Phase Encoding
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Acoustic Inversion

Unstructured Hybrid Mesh
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Conclusions

 Discontinuous Galerkin discretization has been
applied to solve the wave equations, providing high
resolution and unstructured capabilities.

* Full wave form inversion using DG has been
demonstrated on complex 2D datasets.

« Computational accelerations are realized through
phase encoding, parallelism, parameterizations, trust
region, and second order algorithms.
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