

Large Scale Inversion using a Discontinuous Galerkin Method for Geophysics

**Bart G. van Bloemen Waanders, S. Scott Collis,
Curtis C. Ober, James Overfelt,
Thomas M. Smith, Joseph G. Young**

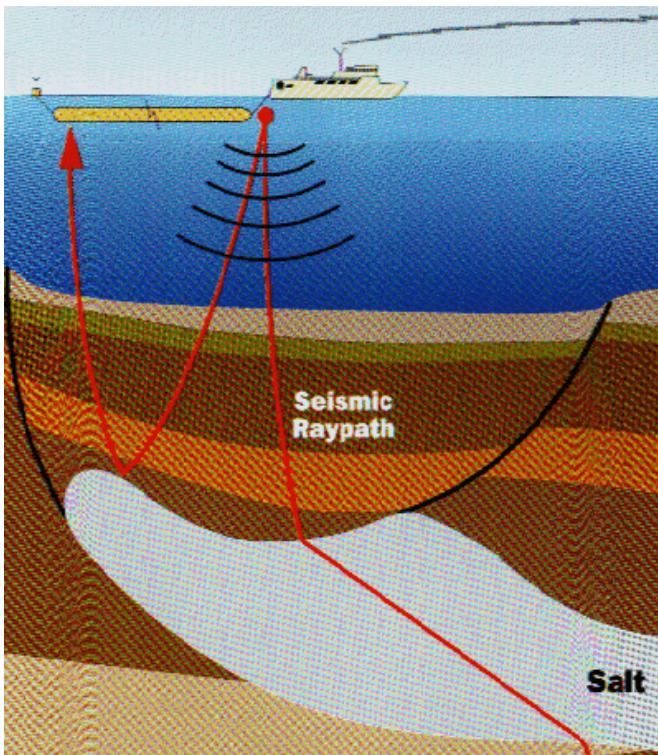
Sandia National Laboratories

Albuquerque, New Mexico

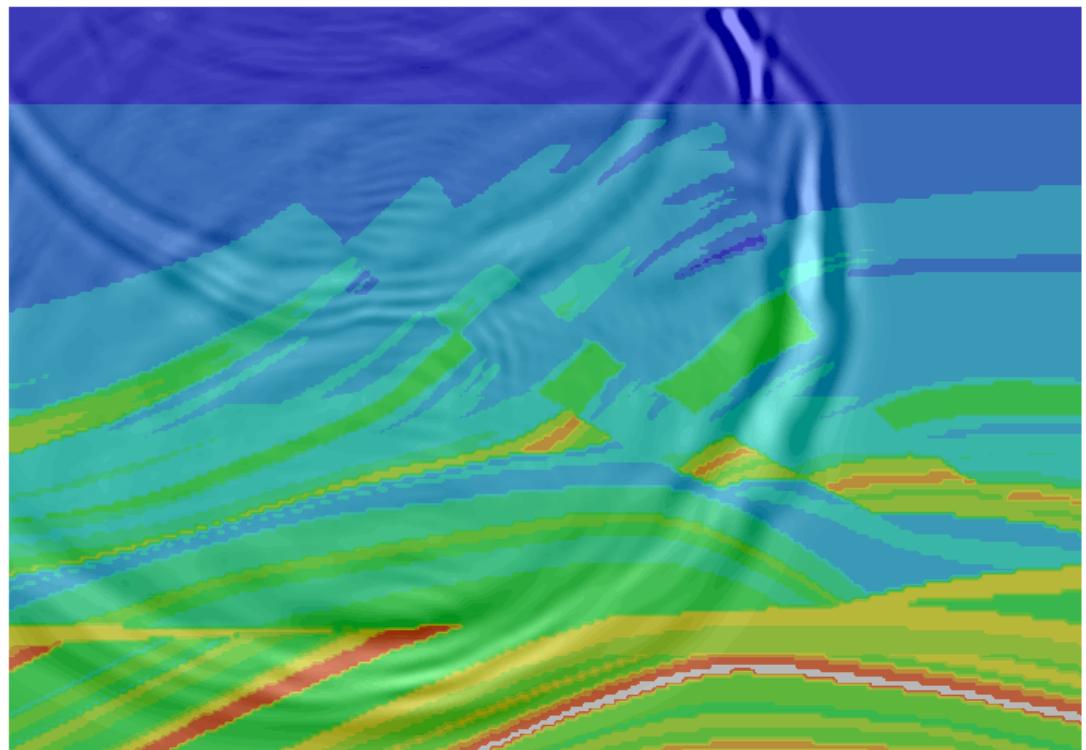
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Geophysical Inversion

Seismic Experiment



Marmousi2 - Acoustic



Goal: determine material properties of the subsurface

Challenges and Strategies

Challenges

- complex media
- large inversion space
- multi-experiments
- Ill-posedness
- multiple minima
- non-linear
- computationally expensive
- modeling approximations
- measurement noise

Strategies

- discontinuous Galerkin
- variable media representation
- phase encoding
- trust region and line search
- second order algorithm
- different parameterizations
- parallel
- Griewank restart

Outline

- **Discontinuous Galerkin discretization**
 - formulation
 - fluxes
 - numerical examples
- **Inversion**
 - optimization formulation
 - phase encoding
 - parameterization
 - numerical examples
- **Conclusions and Future Work**

Discontinuous Galerkin Method

Start with strong form of acoustic equations:

$$\mathbf{U}_{,t} + \mathbf{A}_i \mathbf{U}_{,i} = \mathbf{S}$$

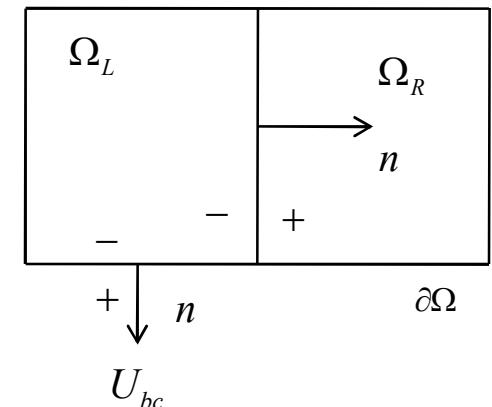
$$\mathbf{U}(\mathbf{x}, 0) = \mathbf{U}_0(\mathbf{x}), \text{ at } t=0$$

defined on Ω with appropriate boundary conditions on $\partial\Omega$.

Define the following in 3D:

$$U = \begin{bmatrix} p \\ u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad A_i = \begin{bmatrix} 0 & \kappa\delta_{1i} & \kappa\delta_{2i} & \kappa\delta_{3i} \\ v\delta_{1i} & 0 & 0 & 0 \\ v\delta_{2i} & 0 & 0 & 0 \\ v\delta_{3i} & 0 & 0 & 0 \end{bmatrix} \quad S = \begin{pmatrix} m_{,t}^s \\ f + m_{,j}^a \end{pmatrix}$$

$$\Omega = \Omega_L \cup \Omega_R$$



p - pressure

u_i - velocity component

κ - ρc^2

ρ - density

c - wave speed

v - $1/\rho$

S - source term

m - moment tensor

f - force vector

Discontinuous Galerkin Method

$$\sum_{e=1}^{e=N_{el}} \int_{\Omega_e} \mathbf{W}^T (\mathbf{U}_{,t} + \mathbf{A}_i \mathbf{U}_{,i}) d\Omega + \sum_{e=1}^{e=N_{el}} \int_{\partial\Omega_e} \mathbf{W}^T (\hat{\mathbf{F}}_n(\mathbf{U}^-, \mathbf{U}^+) - \mathbf{F}_n(\mathbf{U}^-)) d\partial\Omega = \sum_{e=1}^{e=N_{el}} \int_{\partial\Omega_e} \mathbf{W}^T \mathbf{S} d\Omega \quad \forall \mathbf{W} \in V$$

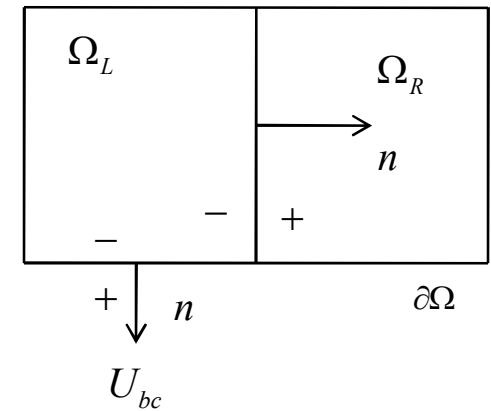
where $\mathbf{F}_n(\mathbf{U}^-)$ is the real flux and $\hat{\mathbf{F}}_n(\mathbf{U}^-, \mathbf{U}^+)$ is the numerical flux function which is designed to add stability for under-resolved wave fields.

Lax Friedrich flux:

$$\mathbf{F}_i = \frac{1}{2} (\mathbf{A}^L \mathbf{U}^L \mathbf{n}^l + \mathbf{A}^R \mathbf{U}^R \mathbf{n}^l + \lambda (U^l + U^R))$$

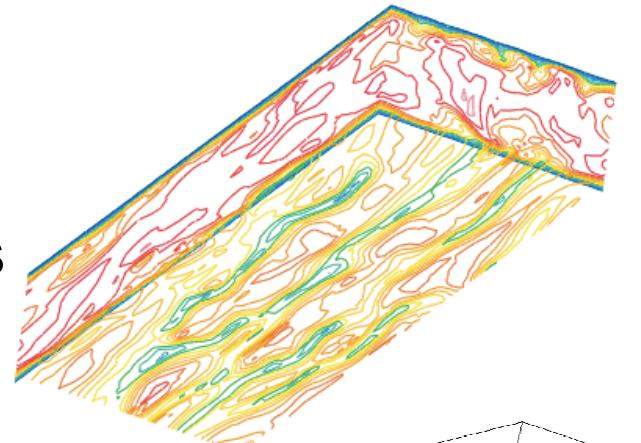
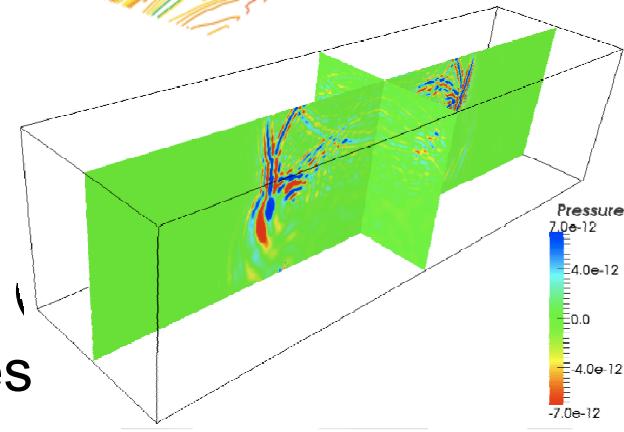
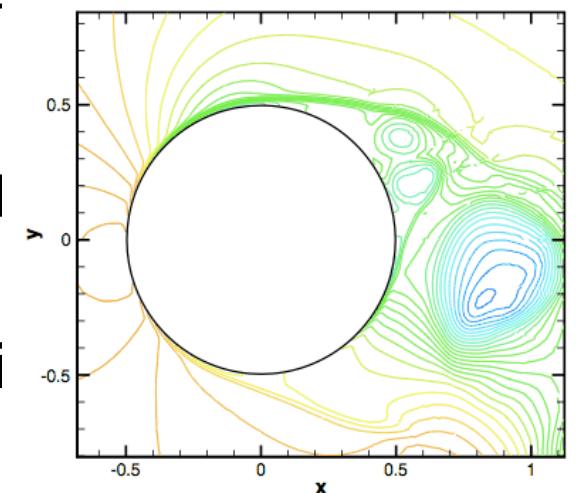
where λ represents the maximum eigenvalue of A

$$\Omega = \Omega_L \cup \Omega_R$$



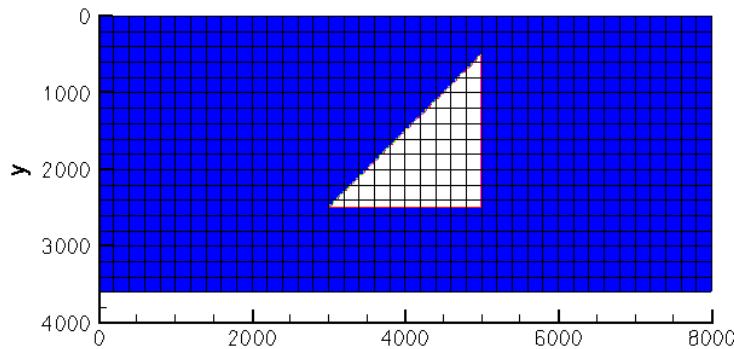
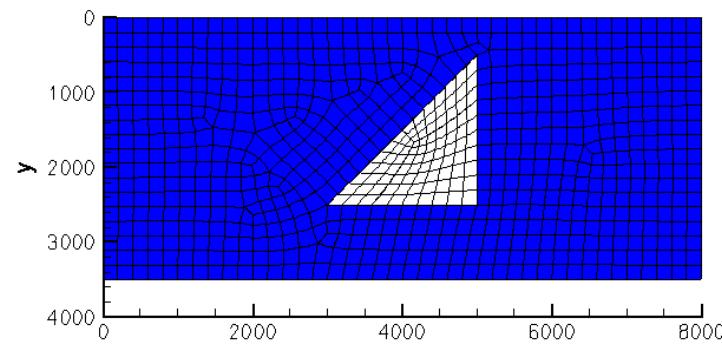
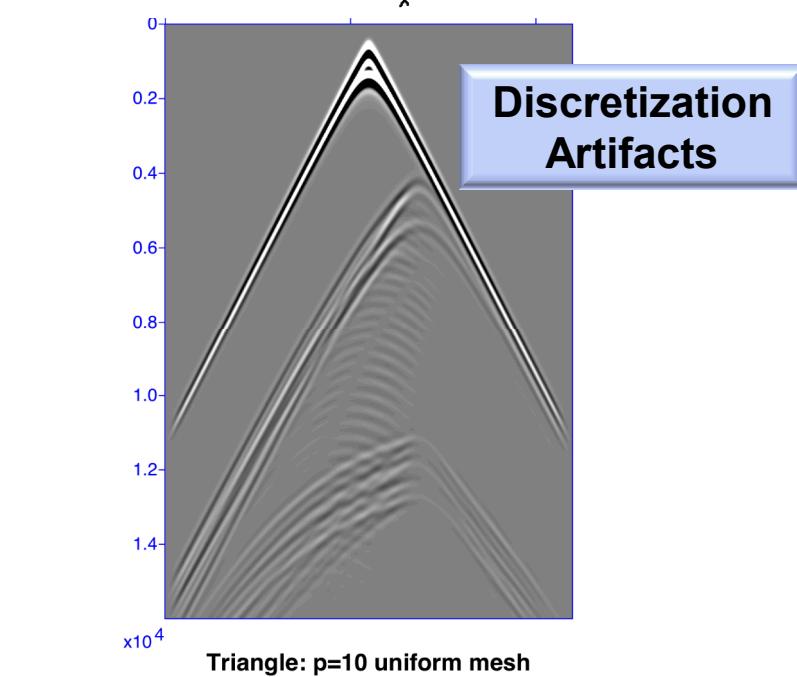
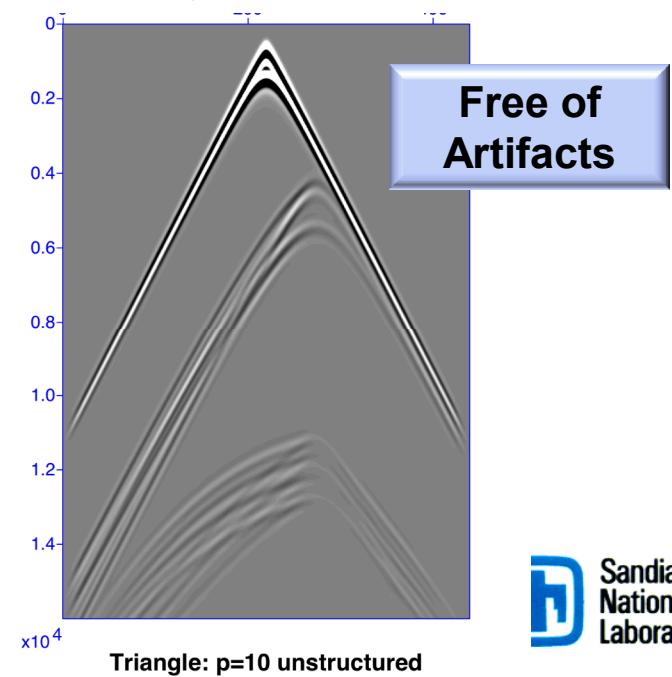
DGM Toolkit

- High-order on unstructured meshes
 - Line, Quad, Tri, Hex elements
- Supports local, p -refinement
- Object-oriented software design
- Physics independent: examples for
 - Compressible Euler & Navier-Stokes
 - Incompressible Euler & Navier-Stokes
 - Advection-diffusion, Burgers, Darcy, F
- Designed for adjoint-based optimization
 - Steady-state and transient with checkpointing
- MPI with MPI-IO
- Version 0.0 released open-source (Ricardo Gómez)
- Version 1.0 on the way...

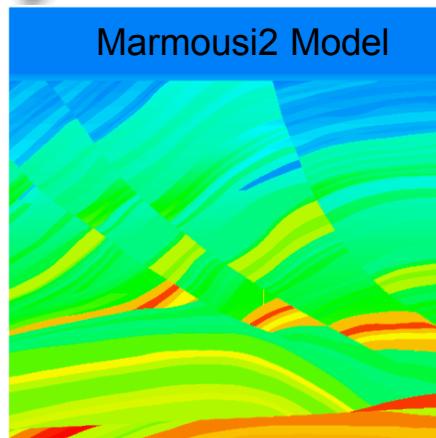
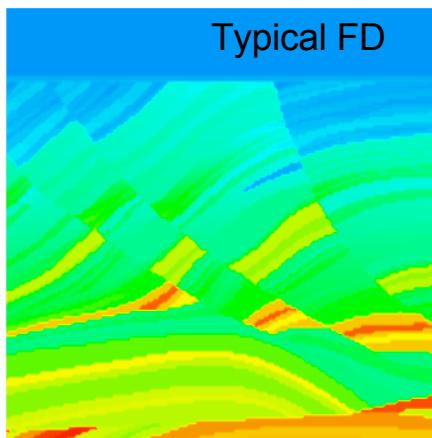
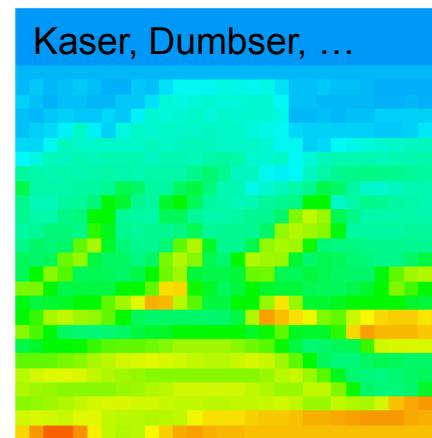
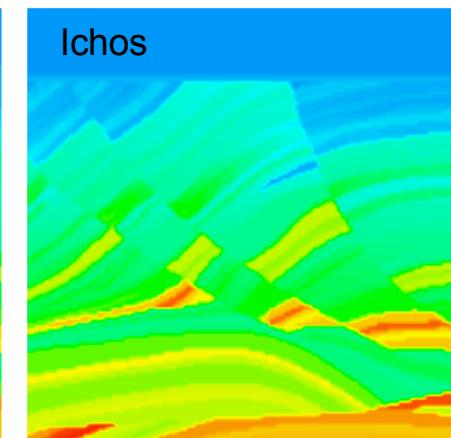
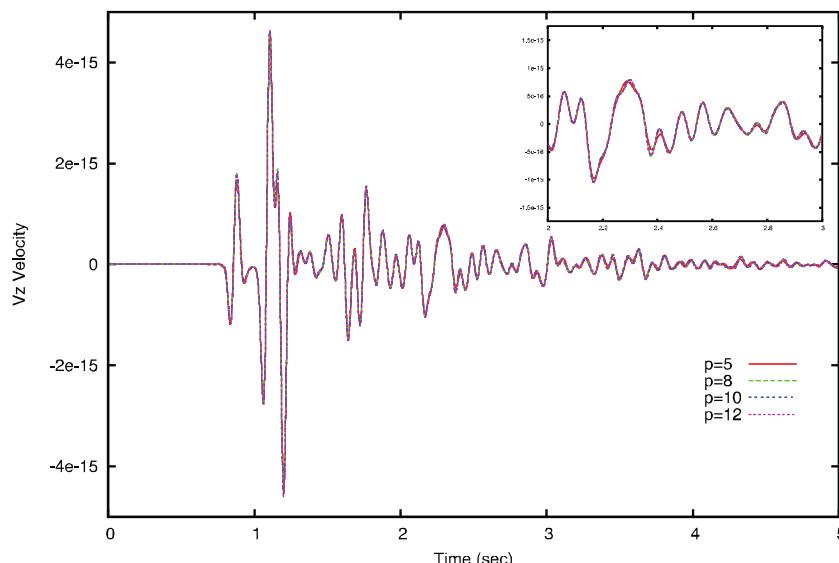
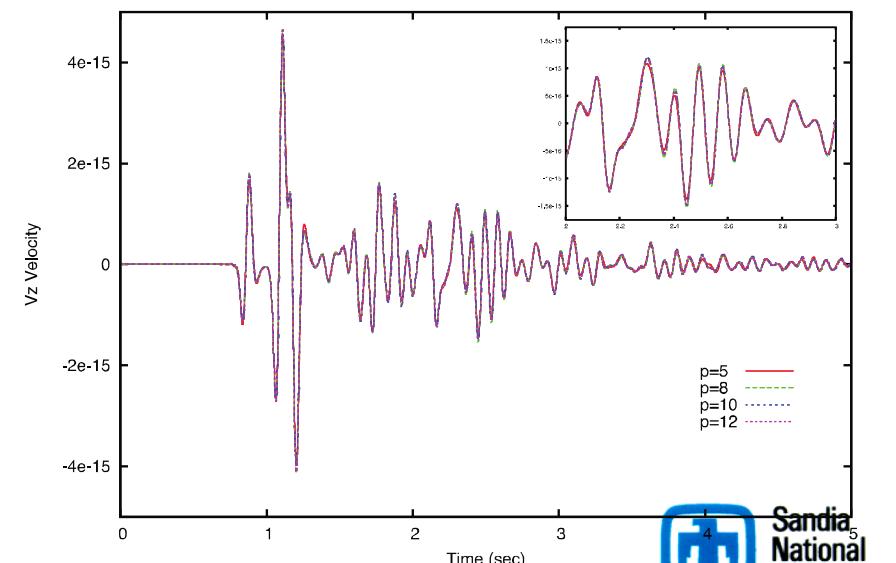


Discretization Challenges

Traditional structured meshes have difficulty capturing geological features accurately

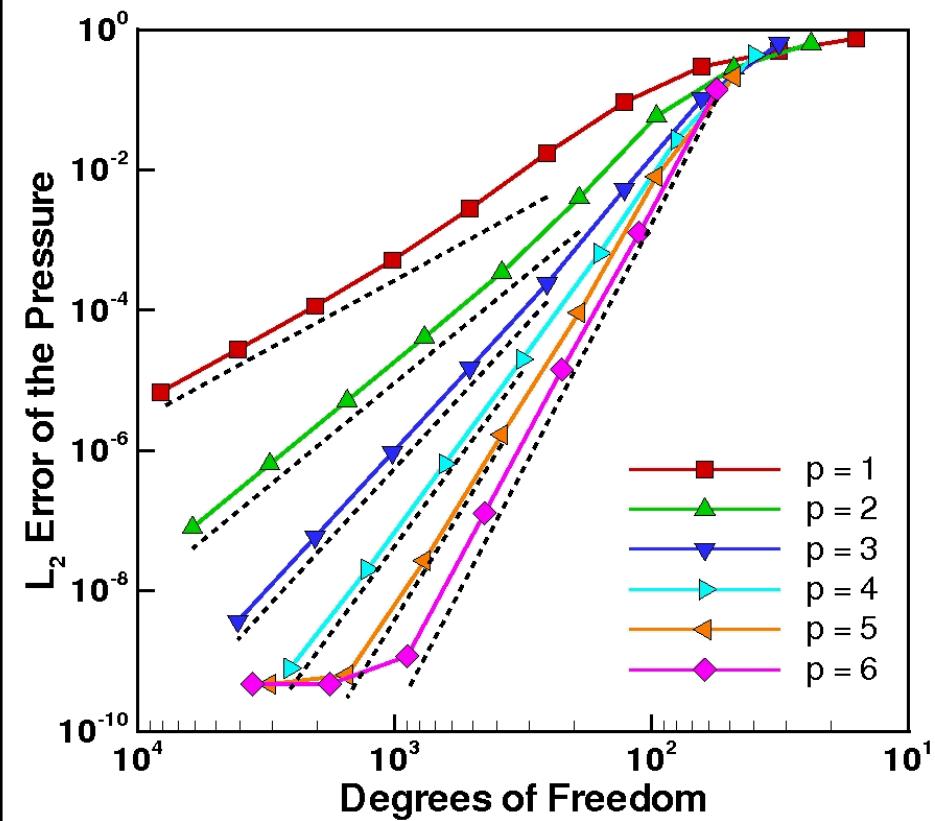


Better Media Representation

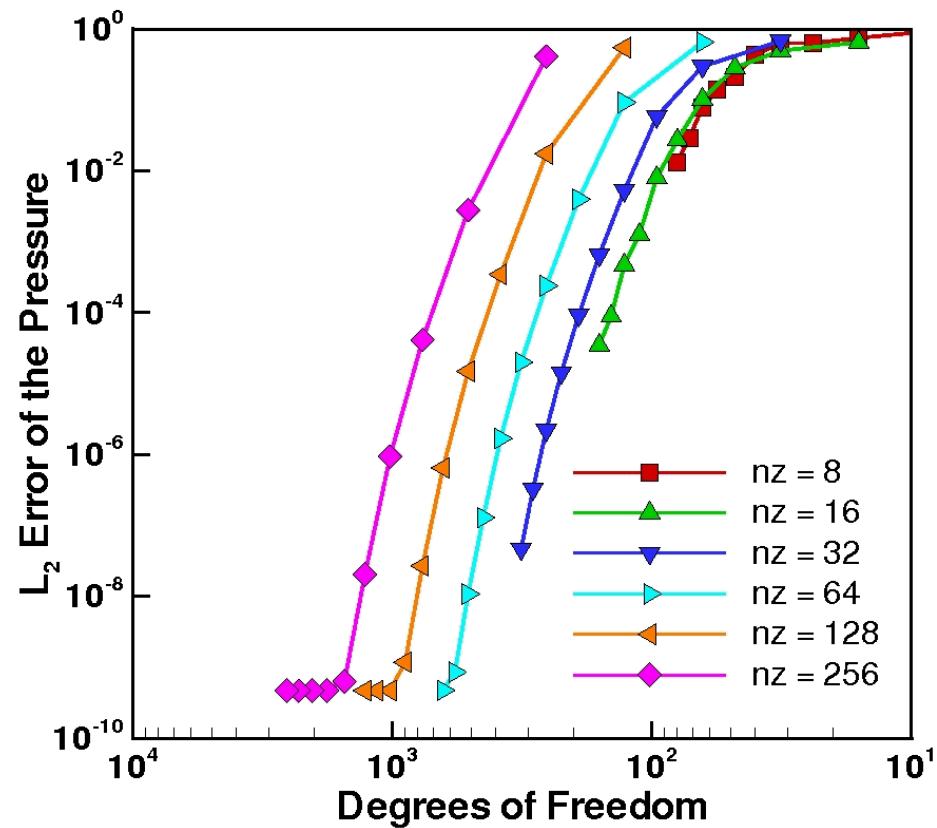


Code Verification

Mesh Refinement



Polynomial Refinement

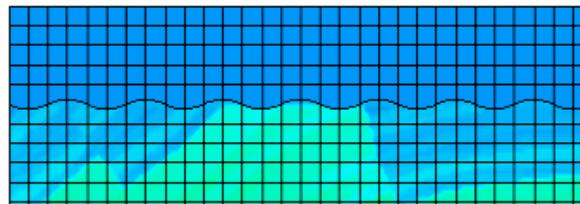


See: Ober, Collis, van Bloemen Waanders, Marcinkovich, SEG 2009.

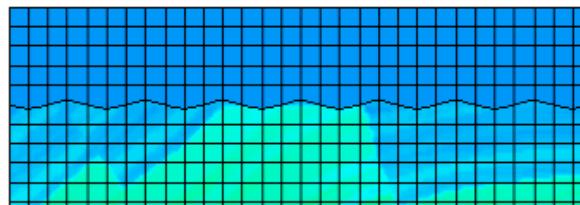
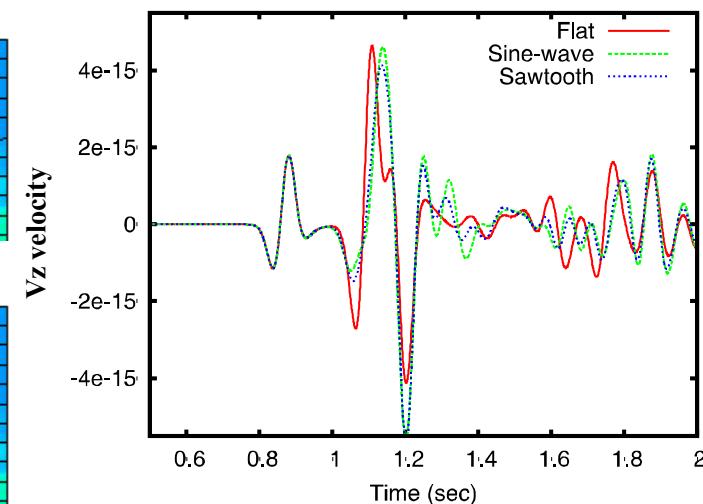
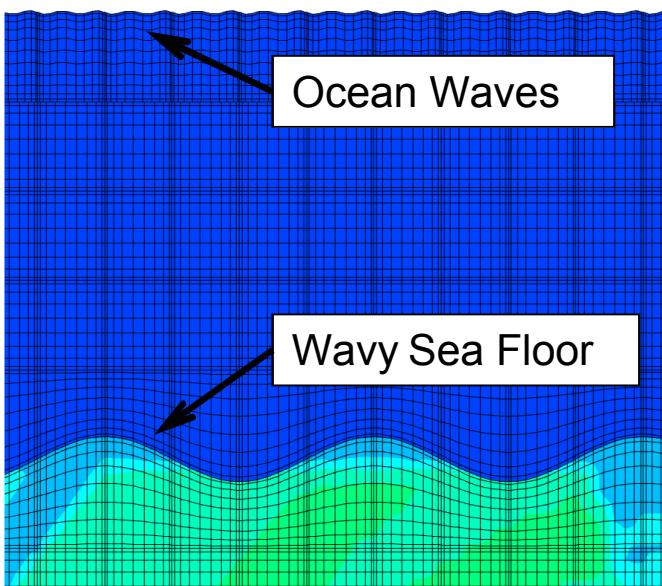
Topology Capturing

- For example:
 - Ocean floor
 - Faults
 - Salt structures
 - Even ocean waves...
- Elastic and Acoustic

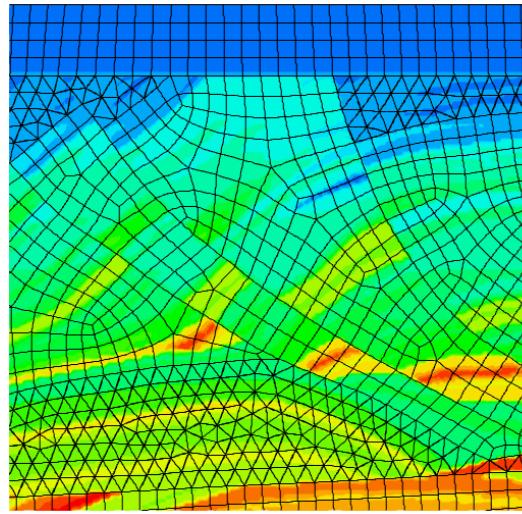
Sinusoidal Ocean Bottom



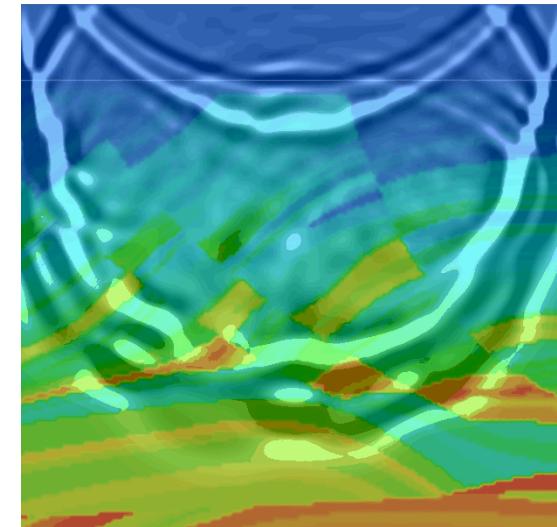
Sawtooth Ocean Bottom



Hybrid Mesh, $h = 100$ m

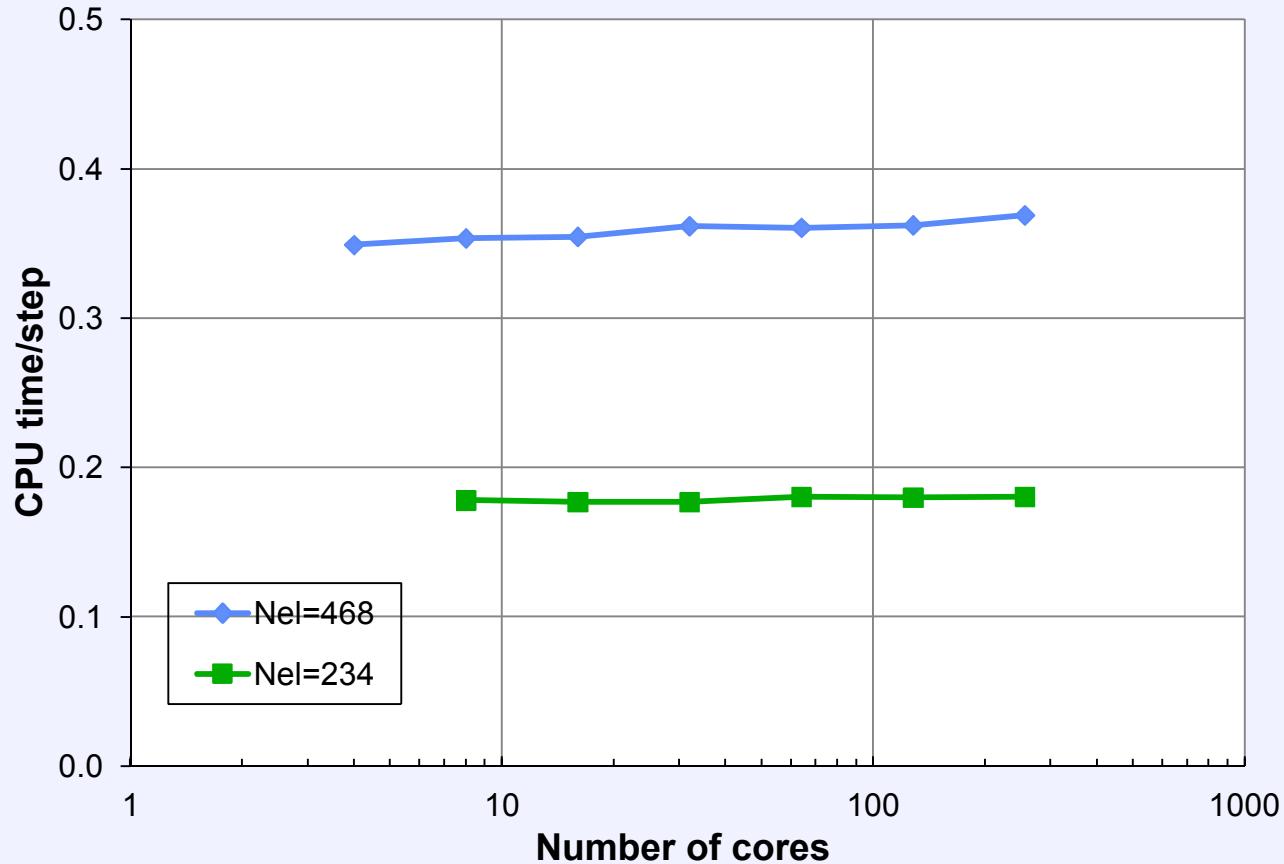


Pressure Wavefield, $t=1.25$ s



Ichos Performance

Weak Parallel Scaling on RedSky



Parallel efficiency = 84%

Inversion Formulation Sequential

$$\min_{\kappa} \frac{1}{2} \int_0^T \int_{\Omega} (U(x,t) - \tilde{U}(x,t))^2 \delta(x - x^*) dx dt + \frac{1}{2} \int_{\Omega} R^2 d\Omega$$

s.t. $U_{,t} + A_i U_{,i} = S \quad \text{in } \Omega \times (0, T]$

$$U(x, 0) = 0 \quad \text{for } x \in \Omega$$

where

$$U = \begin{bmatrix} p \\ u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad A_i = \begin{bmatrix} 0 & \kappa \delta_{1i} & \kappa \delta_{2i} & \kappa \delta_{3i} \\ v \delta_{1i} & 0 & 0 & 0 \\ v \delta_{2i} & 0 & 0 & 0 \\ v \delta_{3i} & 0 & 0 & 0 \end{bmatrix} \quad S = \begin{pmatrix} m_{,t}^s \\ f + m_{,j}^a \end{pmatrix}$$

p - simulated pressure

\tilde{p} - measured pressure

δ - Dirac Delta function

R - regularization

Solution Strategy

- **Forward**

$$U_{,t} + A_i U_{,i} = S \quad \text{in } \Omega \times (0, T]$$

- **Adjoint**

$$-\lambda_{,t} - A_i \lambda_{,i} + (U - U^*) \delta(x - \tilde{x}) = 0 \quad \text{in } \Omega \times (T, 0]$$

- **Gradient**

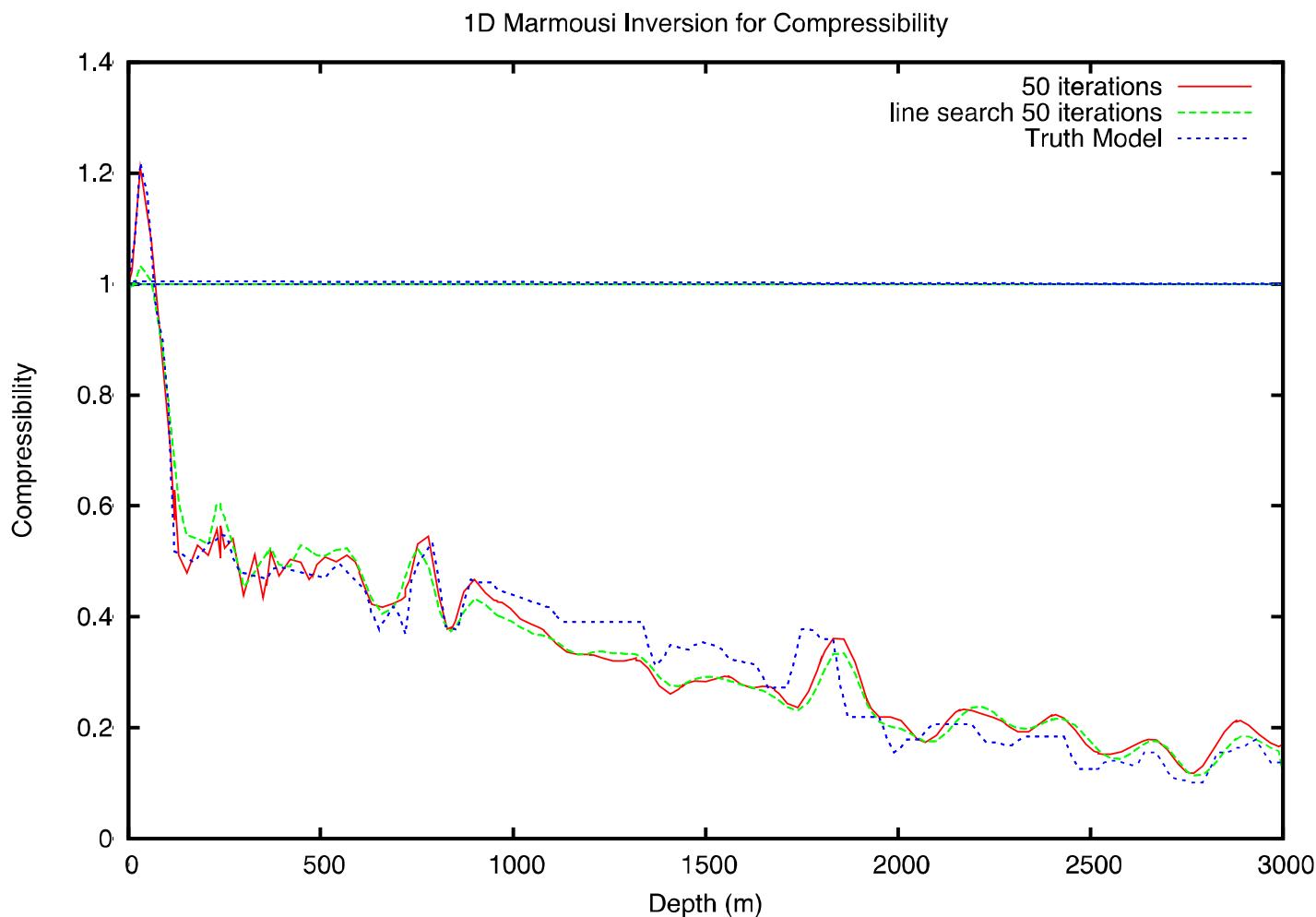
$$R + U_{,i} \lambda = 0 \quad \text{in } \Omega \times (0, T]$$

Implementation Details

- Adjoint time integration - RK4
- NonLinear Conjugate Gradient
- Brent Line search
- Trust Region with SR1, BFGS
- Phase encoding
- Griewank restart
- Different parameterizations
- Bounding
- Physics: acoustic, elastic

Sequential Numerical Result 1D

Trust region versus line search



Inversion Formulation

Multi-Experiment

$$\min_{\kappa} \frac{1}{2} \sum_{r=1}^{N_r} \int_0^T \int_{\Omega} \xi_r(x) \left(p(x,t) - \sum_{s=1}^{N_s} \omega_s \tilde{p}(x,t) \right)^2 dx dt + \int_{\Omega} R d\Omega$$

$$s.t. \quad U_{,t} + A_{,i} U_{,i} = S_s \quad \text{in } \Omega \times (0, T]$$

$$U(x, 0) = 0 \quad \text{for } x \in \Omega$$

where

N_r - number of receivers

p - simulated pressure

\tilde{p} - measured pressure

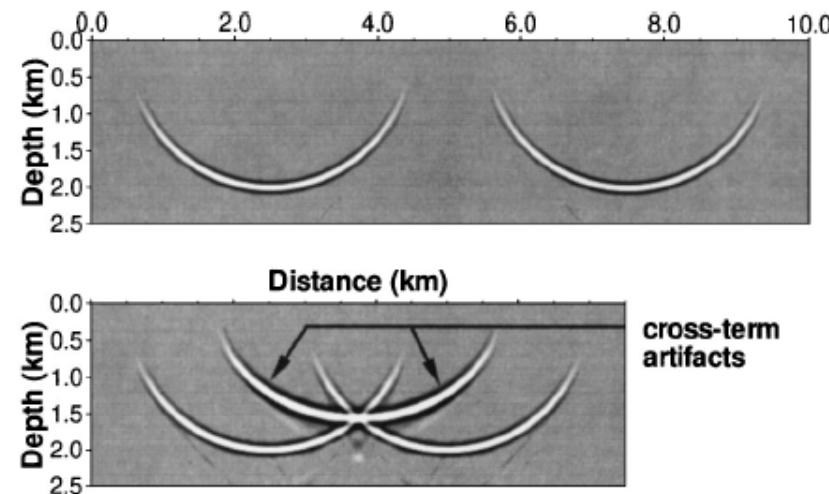
ω_s - encoding operator

R - regularization

ξ_r, ξ_s - spatial kernel

Phase Encoding

- Romero et al. “Phase encoding of shot records in prestack migration”, Geophysics 2000
- Krebs et al. “Fast full-wavefield seismic inversion using encoded sources”, Geophysics, 2009
- Haber et al. “An effective method for parameter estimation with PDE constraints with multiple right hand sides”, tech report 2010.



Phase Encoding as a Stochastic Formulation (Haber et al.)

$$\min_u J(u) = \| PA(u)^{-1} Q - D \|_F^2 + R(u)$$

where $Q = (q_1, \dots, q_N)$, $D = (d_1, \dots, d_N)$, P is a projection rewrite deterministic problem as a stochastic one using:

$$E_w(w^T S(u)^T S(u) w) = \text{trace}(S(u)^T S(u)) = \| S(u) \|_F^2$$

then obtain:

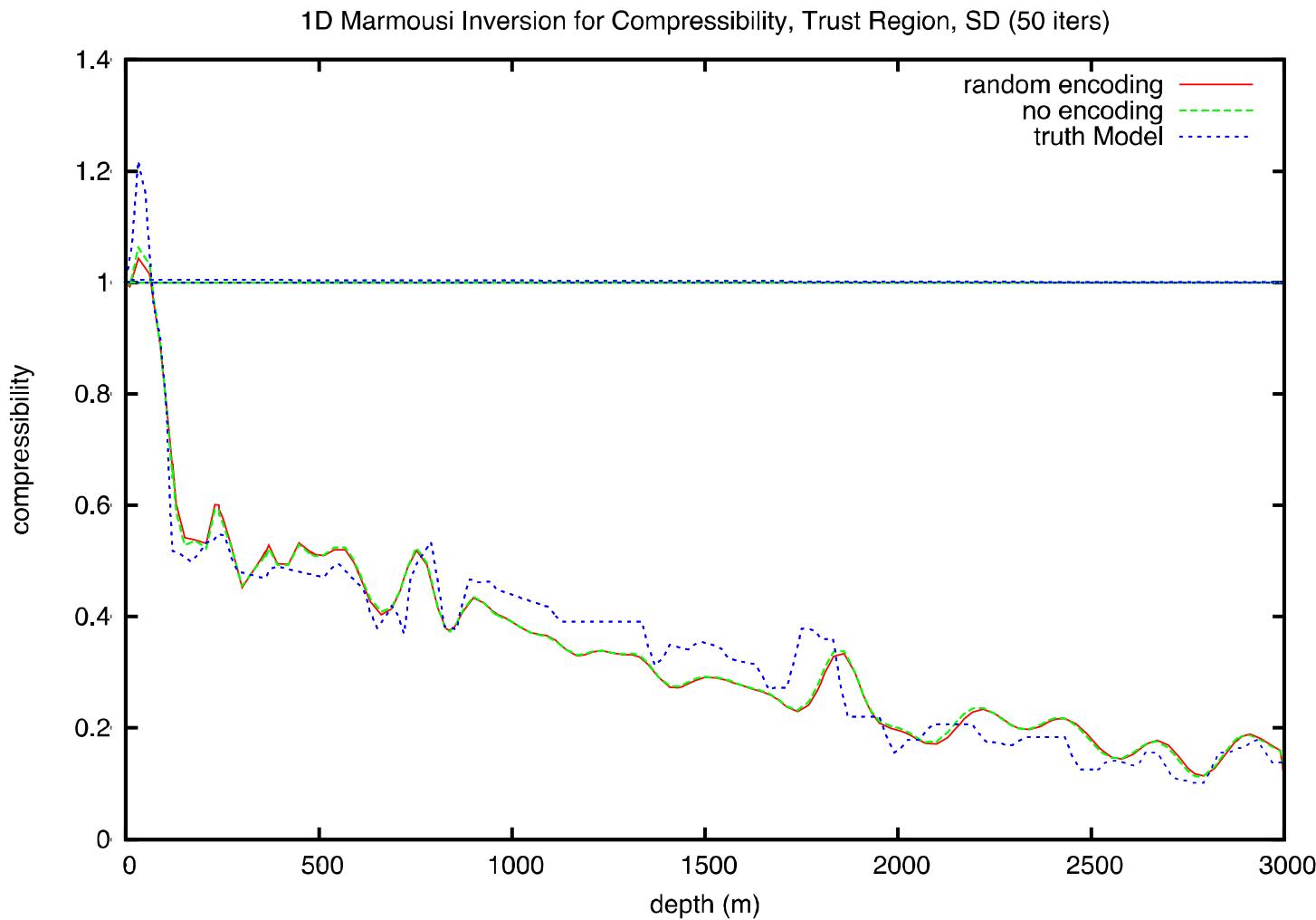
$$\min_u E_w J(u, w) = \frac{1}{2} \| (PA(u)^{-1} Q - S)w \|_F^2$$

w is a random vector with 0 mean and cov matric = I. This problem is solved using SAA:

$$E_w J(u, w) \approx \frac{1}{K} \sum_{j=1}^K J(u, w_j)$$

and by choosing w from a distribution of ± 1 , the variance is minimized

Multi-Experiment Numerical Results 1D comparison to sequential

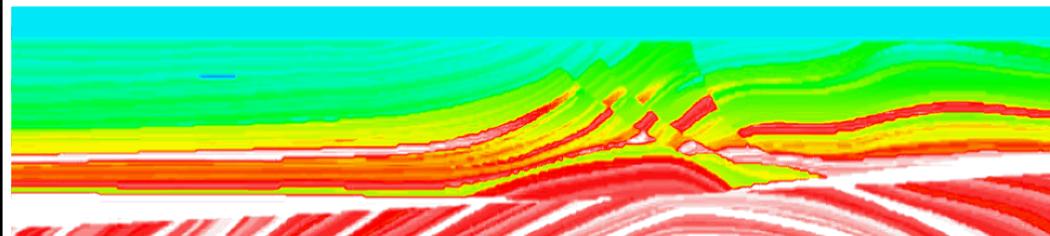


Numerical Results Comparison

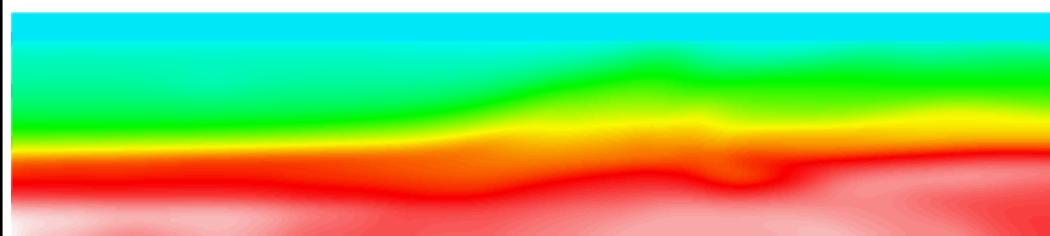
1D, 50 iterations

Method	global	Wall clock	Obj fcn	encode
SD	line	0.77	0.269	no
SD	trust	0.43	0.159	no
SR1	trust	0.46	0.015	no
BFGS	trust	0.42	0.0085	no
SD	line	0.25	0.62	yes
SD	trust	0.17	0.59	yes

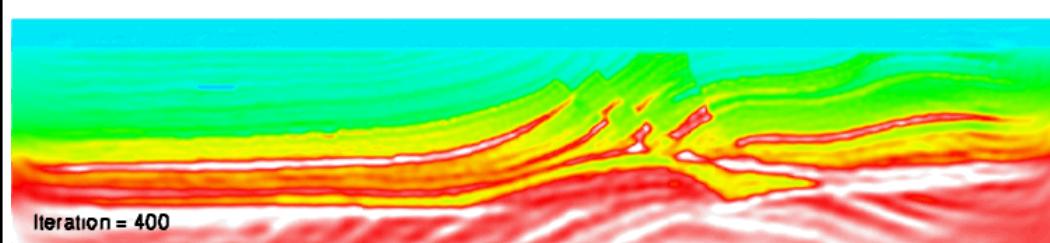
2D Numerical Results – Marmousi



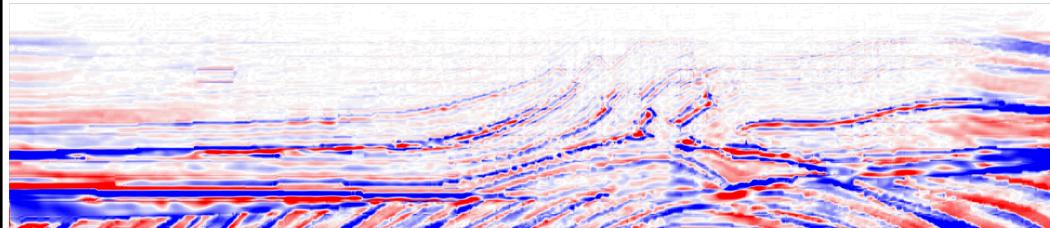
Truth Model



Smoothed Initial Model



Inverted Model



Inverted - True

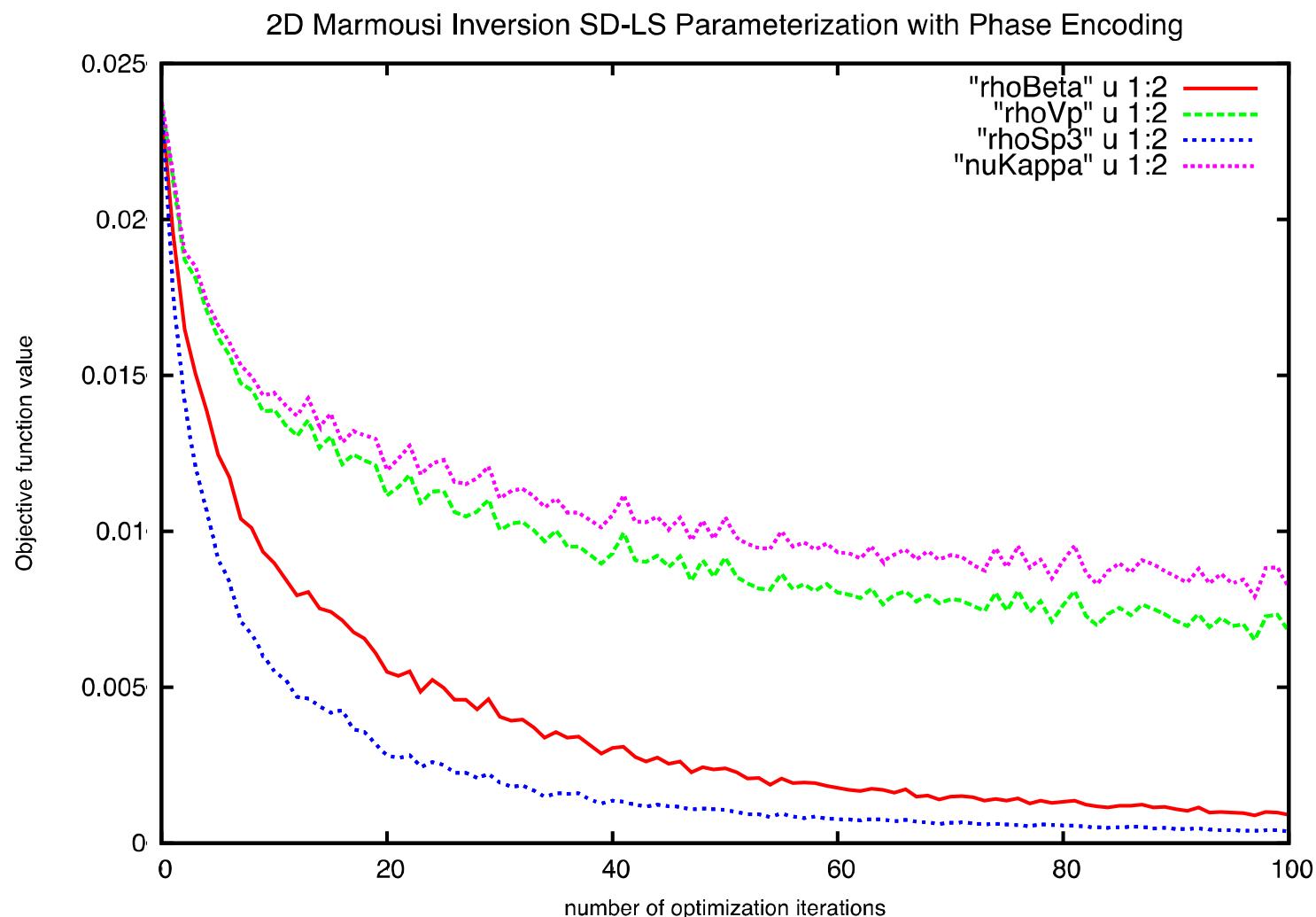
Details:

- 500 m sponge
- 76 receivers
- 15 sources
- 1600 elmts
- $p = 5$
- 200 m cells
- RhoSp^3

Sandia
National
Laboratories

Parameterization Study

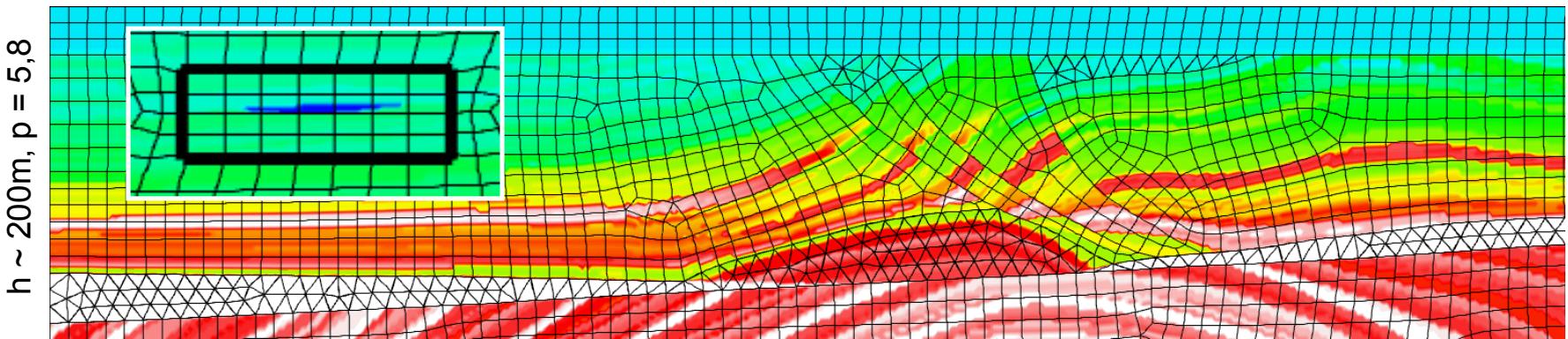
(Redsky 96 cores)



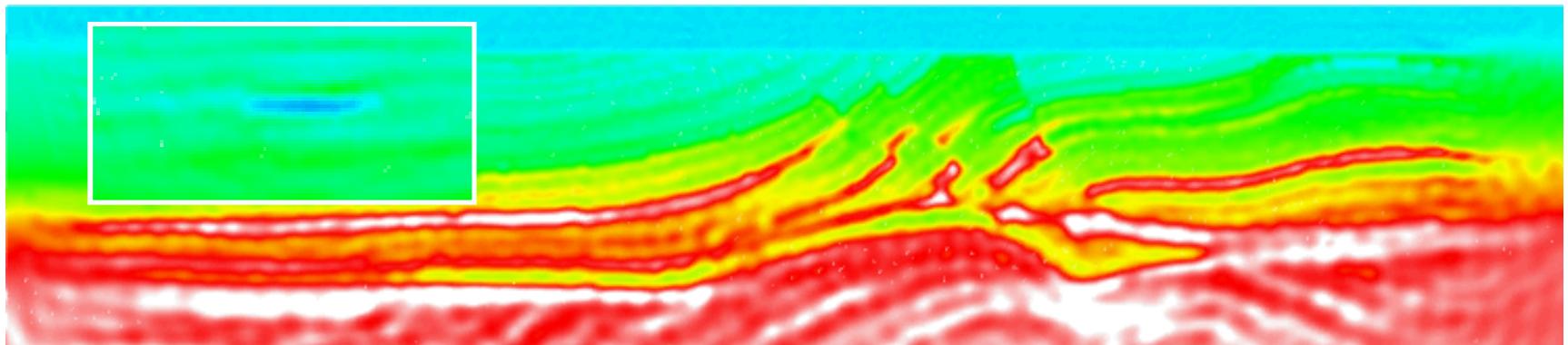
Acoustic Inversion

Unstructured Hybrid Mesh

Mesh



Inverted



Conclusions

- Discontinuous Galerkin discretization has been applied to solve the wave equations, providing high resolution and unstructured capabilities.
- Full wave form inversion using DG has been demonstrated on complex 2D datasets.
- Computational accelerations are realized through phase encoding, parallelism, parameterizations, trust region, and second order algorithms.