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Objectives: Basic Research Needs \__

Injection of waste fluids such as CO, into the subsurface modifies the local
state of stress in saline formations and in overlying caprock. We need to
understand the range and scope of potential geomechanical responses
to GCS to 1. minimize subsurface (and surface) damage to formations
and infrastructure and 2. control such damage and associated leakage

before and while/when it occurs.

*Reservoir and caprock mechanical

integrity both pre- and post-injection require an
assessment of geologic heterogeneity and the

attendant ranges in geomechanical response

*Fracture propagation both at and below the

fracture gradient and including geochemical

influences and pore pressure effects is a major

response to fluid injection

*Early detection of damage and potential
seismicity is a main concern for subsurface

engineering

*Solutions to mitigate/avoid consequence
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Fig. 3. Schematic diagram of mechanisms for inducing earthquakes. Earthquakes may be in-
duced by increasing the pore pressure acting on a fault (left) or by changing the shear and normal
stress acting on the fault (right). See (4).

Figure from Ellsworth, 2013
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Motivation \
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Sub-Themes/Research Plan | \,

Develop a comprehensive understanding of the mechanism of
reservoir damage and fracture initiation and propagation in the
subsurface through experiment and constitutive modeling

Translate that understanding into numerical models for fracture
growth and related damage in heterogeneous geomaterials

Develop a model for diffraction and scattering of acoustic waves due
to the propagation of fractures

Use mathematical models and realistic representations of location
uncertainties together with observed data from field sites in order to
make quantitative predictions of the location and extent of reservoir
damage, leakage pathways, and potential for induced seismicity
during CO, sequestration.

Develop monitoring and mitigation strategies (pore pressure plume
guidance, brine withdrawal, nanoparticle injection, water
curtains????)
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Examples from Historical Fluid Ny
Injection Sites

Earthquake cluster associated with Northstar #1 waste water injection well
into Mount Simon, Youngstown, Ohio

*Good quality data with nearby seismic
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Examples from NETL Partnership

Activity

Microseismicity associated with CO, Injection, Aneth Field, Utah
(Southwest Partnership)

» Sandia worked on Aneth site geomechanics

» Excellent subsurface “earth model”’ available

* Detailed injection schedule

+ 3D seismic data with downhole geophone array
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CO, and Water Injection Rates
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Addresses Key GCS Challenges @ .

The experiments, conceptual modeling and simulation capability developed
in this theme will enable better assessment of risks associated with
injection-induced fracturing at wells and in rock masses away from wells.

 Maintaining large injection rates (1 Mt/y/well) - for long times (several
decades) raises likelihood of injection induced fractures in the storage
formation even for injection below nominal frac pressure. Regulators need
guidance as to whether these fractures increase risk of losing CO,
containment.

« Ensuring caprock integrity - Fractures propagating from wells during the
Injection phase of GCS could be primary risk to caprock integrity, if
conditions for “out of zone” propagation are met. Wide-scale perturbation of
the stress state in and above the storage reservoir can cause caprock
fracturing away from wells.

 Minimizing Storage Footprint - Injection-induced fractures from wells can
alter the shape/nature of the CO, plume dramatically.

 Reducing Risk of Induced Seismicity — fluid injection is well known to
trigger seismicity but apart from simple failure criteria, the causal aspects
are not well understood
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Addresses Grand Challenge ~ A\
Science Questions

Injection-induced fracturing from wellbores is emergent phenomena with:

Multiphase fluid flow;
Far-from-equilibrium geo-mechano-chemical interactions at fracture tips;

Heterogeneity in initial stress state and mechanical/petrophysical
properties of storage formation and overlying/underlying formations;

Heat transfer between injected fluid and formation,;
Mechanical and fluid boundary conditions.

Fracture control of (presumed) CO2 leakage at reservoir-caprock
interface from Colorado Plateau (photos by Peter Mozley)

Leakage pathway imaged in seismic cross-section
From Cartwright et al., 2007



Additional Impact

Subsurface Energy Security:

*Tools+understanding useful for wide scale, areally dense, short term fluid
injection for hydraulic fracturing — what will subsurface look like (in terms of
containment of fluids below USDW) after three decades of unconventional oil and
gas development?

*Fluid pressure driven and chemistry driven fractures in nuclear waste
repositories

*Fracture initiation/fault slip associated with large-scale geothermal development.

Pore scale constitutive models....  ...to continuum multiphysics... ...to full scale simulation

Heath et al., 2013 Dewers et al., 2013 Hansen et al., 2011
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Feeds From Previous CFSES Work \._

Mt Simon geomechanics and Kayenta model validation (Dewers et
al., 2013)

Cranfield thermo-mechanical testing (Rinehart et al.)
Shale lithofacies mechanics (Rinehart et al.)

Fracture propagation experiments & modeling (Major et al., Rinehart
and Bishop)

In Salah modeling (Newell, Martinez, Bishop)

New ultrasonics/AE, Multiphase, HPHT, and creep lab facilities
(Rinehart, Dewers et al.)

Seismic inversion methodology (Srinivasan et al.)

Martinez et al., IJGHGC, 2013



Potential discussion talking points

What are we overlooking?
Too broad a focus?

Budget limitations as guide
to narrowing selection?

Skill Sets for Pls & coPIs?

Synergy — how to explain
the synergy from doing this
In context of EFRC, i.e. how
IS this not business as

usual for each of the
researchers involved?
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