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Dynamic stress-strain response associated with damage and failure mechanisms of alloys is desired to
be quantitatively determined. Dynamic tensile characterization has been demonstrated an efficient method for
such an investigation. However, reliable dynamic tensile characterization relies on appropriate experimental
instruments and procedure. In this study, we employed a newly developed Kolsky tension bar to characterize the
tensile properties of alloys [1, 2]. Challenges and remedies in the dynamic tensile characterization with the
Kolsky tension bar are presented.

At 2010 SEM Annual Conference, we presented the Kolsky tension bar developed at Sandia National
Laboratories, California. This new Kolsky tension bar facilitates reliable loading and easy pulse shaping. An
additional laser-beam measurement system is employed to directly measure the displacement of the incident bar
end such that the specimen deformation is able to be accurately measured. However, for a dumbbell specimen
threaded into the bar ends, the specimen strain is measured in terms of average strain over the specimen length
inclusive of the transition portion from the threads to the gage section. The actual strain over the specimen gage
length needs to be corrected. In addition, it is desirable for the specimen to deform uniformly such that the
average strain can represent any point wise strain over the specimen gage section. The uniform deformation,
which is usually associated with stress equilibration, needs to be verified. An abnormal stress peak was also
observed in the stress response of 4340-V steel, as presented at 2010 SEM Annual Conference [1]. The stress
peak needs to be properly addressed in order to obtain reliable tensile stress-strain response of alloys.
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We firstly address the abnormal stress peak. An early stress peak, which occurs around plastic yielding,
has been commonly observed in dynamic tensile characterization of alloys with Kolsky tension bars. However,
different interpretations have been presented in regard to the mechanism of the stress peak [3, 4]. In this study,
we used a 4330-V steel as an example to determine the effects of specimen length and installation on the



amplitude of the stress peak in Kolsky tension bar experiments. Figure 1 shows the stress histories in the
specimens with two different gage lengths (6.35 and 9.53-mm-long) at an identical strain rate of approximately
1100 s™. It is observed that the amplitude of the peak stress was reduced by 12% when the specimen gage
length was reduced from 9.53 mm to 6.35 mm. In order to facilitate the same strain rate on the specimens, the
longer specimen requires higher impact energy by means of higher impact speed of striker. When the contact
between the specimen and the bar ends is not perfect, additional impact, i.e., between the thread teeth on the
specimen and bar ends, may be generated. The higher impact speed amplifies such an effect of imperfect
contact. To confirm this, Teflon tape was applied on the threads of both the specimen and the adaptors. Figure 2
clearly shows that the amplitude of the peak stress was significantly reduced after the Teflon tape was applied.
This also confirms that the stress peak observed in the Kolsky tension bar experiments is pseudo, which should
be eliminated. Applying Teflon tape has been demonstrated an efficient method to minimize the amplitude of the
peak stress.

After the pseudo stress peak is
minimized, the stress histories measured with
the strain gages on the transmission bar
becomes a reliable representative of actual
stress response in the specimen. However,
the stress over the entire specimen gage
length should be equilibrated. In other words, . .
the specimen should deform uniformly. Due Fig. 3. DIC pattern on the specimen surface
to the complication of the tension bar system,
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Fig. 4. Specimen axial deformation (E,) from DIC analysis

the reflected pulse may not be reliable to calculate the stress at the front end of the specimen with classic “2-
wave” method. In this study, we employed digital image correction (DIC) to the specimen to measure the
deformation field over the specimen gage length. Figure 3 shows the DIC pattern on the specimen surface. The
DIC pattern was photographed with a Phantom V12.1 digital camera at the speed of approximately 83,000 frames
per second. Figure 4 shows the DIC results during the tensile loading. Figure 4 clearly indicates that the
specimen has already achieved uniform deformation within the first 12 pys. A significant strain localization was not
observed until t=120 ps (Fig. 4). This strain localization became more and more severe until macroscopic visible
necking is observed. Based on the DIC results, the specimen deformed uniformly before necking occurred.
Therefore, the signal from the strain gages on the transmission bar can be used for calculating the stress history



in the specimen. The DIC results can be used for the strain history in the specimen. However, the limited
number of data points from the DIC results may not yield accurate stress-strain response of the specimen under
investigation.
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The strain gage on the specimen is able to
measure the specimen strain up to 2%. The
specimen strain over 2% can be calculated
with the laser-beam system presented in [1,
2]. However, the displacement on the non-
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total displacement measured with the laser-
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strength of 1400 MPa. This non-gage-section Fig. 6. Dynamic tensile stress-strain curves of
displacement has been deducted from the 4340-V steel

laser-beam measurement for calculating the
plastic strain of the specimen in this study.
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Based on above analysis, dynamic tensile stress-strain curves of 4330-V steel were obtained at two
different strain rates, 1340 and 680 s. Figure 6 shows the mean curves of three identical experiments at each
strain rate. Again, it is noted that the specimen strain was obtained directly from specimen strain gage
measurement when it is smaller than 2%; while the strain larger than 2% was obtained from laser-beam
measurement after proper correction. The pseudo early stress peak was minimized but not fully eliminated, as
shown in Fig. 6. The 4330-V steel shows little difference in tensile stress-strain response at 680 and 1340 s,
However, the flow stress at both dynamic strain rates significantly increases in comparison with that at quasi-
static strain rates.
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