
# Deep Borehole Radionuclide Sequestration

**American Nuclear Society  
Albuquerque, NM  
April 13, 2011**

**J.L. Krumhansl\*, P. V. Brady, Howard L. Anderson,  
Sandia National Laboratories  
Albuquerque, NM**

**\* Corresponding Author:**  
**Email: [Jlkrumh@sandia.gov](mailto:Jlkrumh@sandia.gov)**  
**Phone (505) 844-9093**

# Deep Borehole Disposal Concept



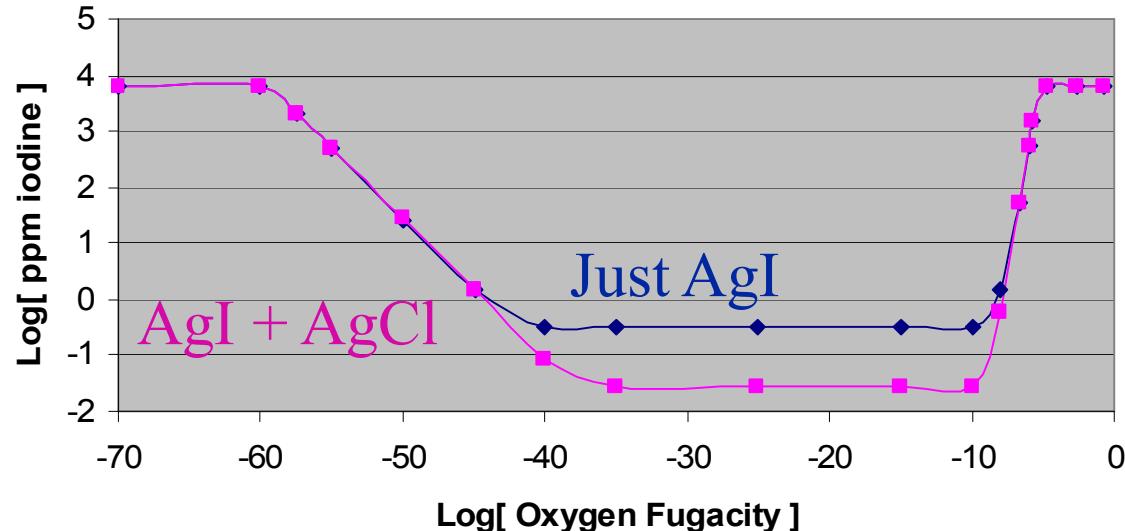
Deep Borehole  $k_d$ s (ml/g).

| Element                                   | $k_d$ basement | $k_d$ sediment | $k_d$ bentonite |
|-------------------------------------------|----------------|----------------|-----------------|
| Am, $^{240}\text{Ac}$ , $^{243}\text{Cm}$ | 50-5000        | 100-100,000    | 300-29,400      |
| C                                         | 0-6            | 0-2000         | 5               |
| Cs                                        | 50-400         | 10-10,000      | 120-1000        |
| Np, $^{239}\text{Pa}$                     | 10-5000        | 10-1000        | 30-1000         |
| Pu                                        | 10-5000        | 300-100,000    | 150-16,800      |
| $^{226}\text{Ra}$                         | 4-30           | 5-3000         | 50-3000         |
| Sr                                        | 4-30           | 5-3000         | 50-3000         |
| $^{90}\text{Tc}$                          | 0-250          | 0-1000         | 0-250           |
| Th                                        | 30-5000        | 800-60,000     | 63-23,500       |
| U                                         | 4-5000         | 20-1700        | 90-1000         |
| I                                         | 0-1            | 0-100          | 0-13            |

**Mildly reducing conditions will persist so solubility of redox-sensitive U, Pu and Np is negligible, and most other radionuclides will sorb strongly.**

$^{129}\text{I}$ , therefore, becomes the long-term ( $T > 10^6$  years) dose driver.



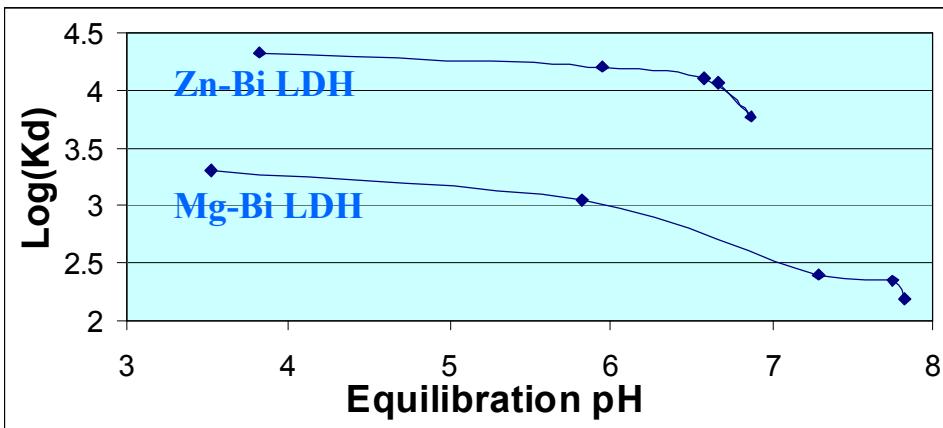

# A seemingly obvious choice, AgI, will not actually restrict iodine mobility

---


**AgI is nominally very, very insoluble:  $K_{sp} \approx 10^{-16.1}$ , but it is also redox sensitive:  $2\text{AgI} + \text{Fe} \leftrightarrow 2\text{Ag} + \text{Fe}^{++} + 2\text{I}^-$ .**

| O <sub>2</sub> Buffer                                                 | <i>f</i> O <sub>2</sub> (at pH 7) |
|-----------------------------------------------------------------------|-----------------------------------|
| AgIO <sub>3</sub> - AgI                                               | $10^{-3.17}$                      |
| Ag metal - AgI                                                        | $10^{-40.62}$                     |
| UO <sub>2</sub> (OH) <sub>2</sub> .H <sub>2</sub> O - UO <sub>2</sub> | $10^{-44.7}$                      |
| Fe <sub>3</sub> O <sub>4</sub> - Fe <sub>2</sub> O <sub>3</sub>       | $10^{-72.3}$                      |

Multiple oxygen buffers present in a deep borehole disposal concept will reduce AgI to silver metal and release iodide ions.




←(Highest concentrations reflect amount of AgI in the model, not an upper solubility limit.)



# YMP and Hanford (LLW) related work suggests alternate materials can scavenge iodide (Kd values in low ionic strength YMP- simulated groundwater)

Bi-O-I related materials are one choice.



Although different metals in the synthesis change the Kd (and crystallinity), they do not enter into the crystal structures.

( $Kd\ I^- = 10^{2-4.2}$ ,  $Kd\ IO_3^- = 10^{2.3-4.9}$ ,  
 $Kd\ ReO_4^- = 10^{1.4-3.8}$ ,  $Kd\ TcO_4^- = 10^0-10^{2.5}$ )

Unusual hydrotalcites are a second choice.

|                     | Log Kd $I^-$ | Log Kd $IO_3^-$ | Log Kd $ReO_4^-$ | Log Kd $TcO_4^-$ |
|---------------------|--------------|-----------------|------------------|------------------|
| $Mg_6Al_2(OH)_{18}$ | 1.60         | 0.52            | 0.887            | -                |
| $Co_6Al_2(OH)_{18}$ | 2.36         | 4.00            | 2.18             | -                |
| $Ni_6Al_2(OH)_{18}$ | 2.51         | 4.70            | 2.55             | 3.40             |
| $Cu_6Al_2(OH)_{18}$ | 3.98         | > 4.66          | 2.44             | 3.05             |
| $Zn_6Al_2(OH)_{18}$ | 2.26         | 3.82            | 2.00             | -                |
| $Co_6Cr_2(OH)_{18}$ | 1.99         | 4.51            | 2.13             | -                |
| $Ni_6Cr_2(OH)_{18}$ | 2.63         | > 4.66          | 2.55             | 3.22             |
| $Cu_6Cr_2(OH)_{18}$ | 3.62         | > 4.66          | 2.69             | 3.32             |

Bi-O-I is marginally better for  $I^-$  than hydrotalcites.



## Definition of Getter Test Conditions:

---

1. Ratio of total I to  $^{129}\text{I}$  in spent fuel is about 1.3.
2. 82.4g  $^{129}\text{I}$  in a PWR fuel assembly (YMP reference package).
3. 228 liters of fluid in the hole per PWR fuel assembly.
4. ~7% of the iodine is released without extensive oxidation of the fuel - which will not occur under reducing conditions.
5.  $(82.4\text{g}) \times 1.3 \times 10^6 \times 0.07 / (228 \times 10^3) = 32.9 \text{ ppm I}$   
(actual testing done with 20 ppm I to facilitate sample preparation)
6. Unlike the YMP environment tested historically, fluids in deep boreholes may be rather saline so interferences from common groundwater anions requires evaluation.
7. Because of the geothermal gradient the environment will stay warm ( $60^\circ - 95^\circ \text{ C}$ ) after radiogenic heat has dissipated.

Step 1 is to evaluate the performance envelope of Bi-O-I getters in this environment.

# Bi-O-I getters selected for initial study

I<sup>-</sup> K<sub>d</sub> values - 5 getters in 3 solutions.

| Synthesis                            | 0.05 M | 0.05 M                          | 0.05 M              |
|--------------------------------------|--------|---------------------------------|---------------------|
| Salt ↓                               | NaCl   | Na <sub>2</sub> SO <sub>4</sub> | Na HCO <sub>3</sub> |
| #5 Catechol                          | 35     | 42                              | 46                  |
| #4 Na-Benzoate                       | 28     | 2780                            | 356                 |
| #3 Zn(NO <sub>3</sub> ) <sub>2</sub> | 27.1   | 18                              | 74                  |
| #2 KNO <sub>3</sub>                  | 220    | 982                             | 202                 |
| #1 NaNO <sub>3</sub>                 | 158    | 185                             | 124                 |



1. Adding various salts during synthesis gives differing affinities for I<sup>-</sup>; KNO<sub>3</sub> has the best overall response.

2. SO<sub>4</sub><sup>=</sup> interferes less than Cl<sup>-</sup> or HCO<sub>3</sub><sup>-</sup> with I<sup>-</sup> uptake.

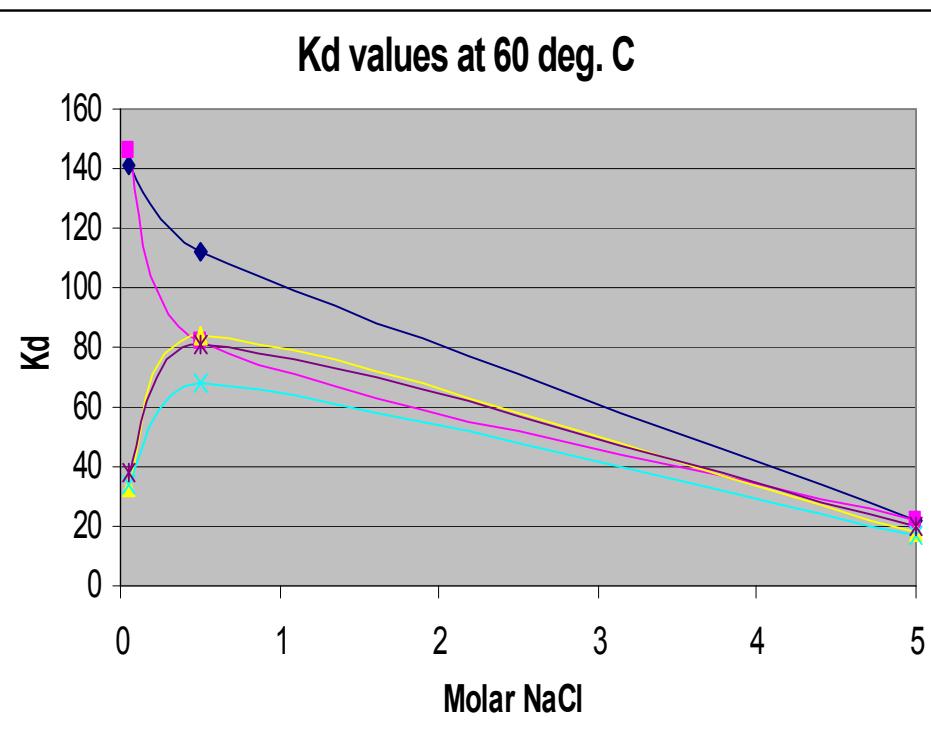
3. XRD Peaks between 5° and 10° indicate that all materials have a layered crystal structure.



# Temperature Increases with Depth

## 25°C Kd (60° C Kd)

---


| Synthesis<br>Salt↓                   | 0.05 M<br>NaCl | 0.05 M<br>Na <sub>2</sub> SO <sub>4</sub> | 0.05 M<br>Na HCO <sub>3</sub> |
|--------------------------------------|----------------|-------------------------------------------|-------------------------------|
| #5 Catechol                          | 35 (38)        | 42 (42)                                   | 46 (704)                      |
| #4 Na-Benzene                        | 28 (34)        | 2780 (691)                                | 356 (203)                     |
| #3 Zn(NO <sub>3</sub> ) <sub>2</sub> | 27.1 (33)      | 18 (42)                                   | 74 (319)                      |
| #2 KNO <sub>3</sub>                  | 220 (146)      | 982 (601)                                 | 202 (374)                     |
| #1 NaNO <sub>3</sub>                 | 158 (141)      | 185 (216)                                 | 124 (272)                     |

For the best performing materials increasing the temperature to 60° C decreases Kd values somewhat where sulfate and chloride are concerned, but results in an increased Kd values in bicarbonate solutions.

# Realistically temperature increases are correlated with salinity increases:

## Kd values at 60° C in various NaCl solutions

| NaCl   | Na-Nitrate | K-Nitrate | Zn-Nitrate | Na Benzoate | Catechol |
|--------|------------|-----------|------------|-------------|----------|
| 0.05 M | 141        | 146       | 33         | 34          | 38       |
| 0.5 M  | 112        | 82        | 84         | 68          | 81       |
| 5.0 M  | 22         | 22        | 18         | 17          | 20       |



Small Cl<sup>-</sup> concentrations may improve poor performers but are detrimental to better ones.

Above 0.5 M NaCl materials all perform similarly, and performance decreases as Cl<sup>-</sup> increases.

Some I-retention still occurs in 5M NaCl solutions

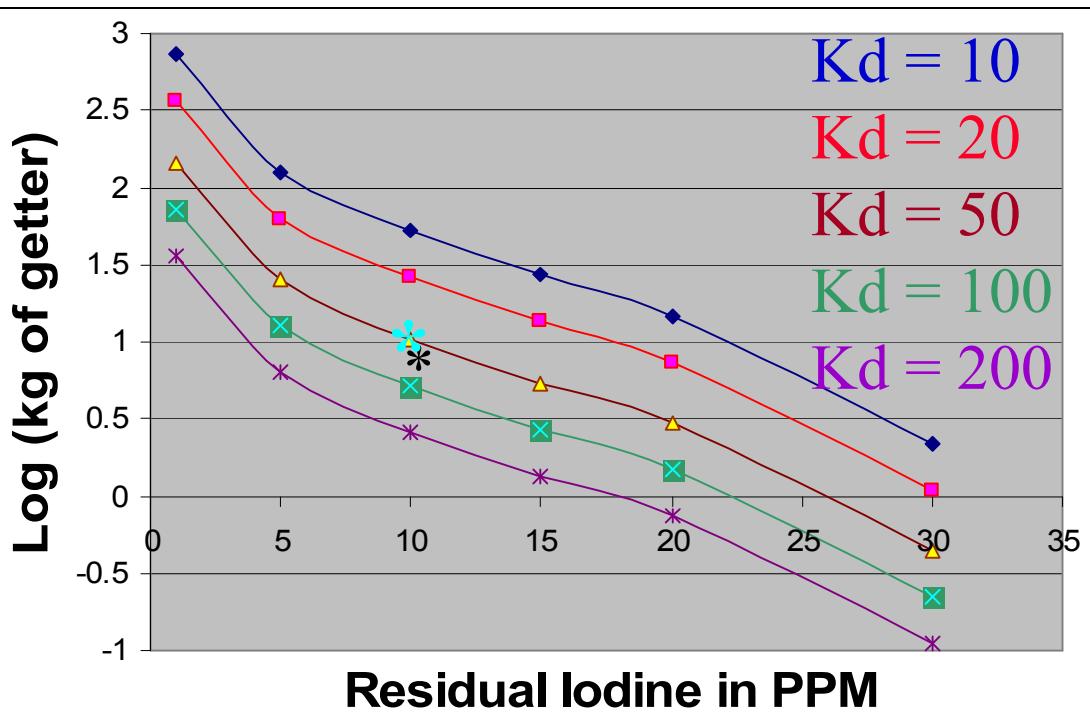
# Effect of Further Temperature Increases

**Kd @ 90° C / Kd @ 60° C**

| Synthesis                            | 5.0 M | 0.5 M | 0.5 M                           | 0.5 M               |
|--------------------------------------|-------|-------|---------------------------------|---------------------|
| Salt ↓                               | NaCl  | NaCl  | Na <sub>2</sub> SO <sub>4</sub> | Na HCO <sub>3</sub> |
| #5 Catechol                          | 0.9   | 1.7   | 7.4                             | 0.1                 |
| #4 Na-Benzene                        | 1.3   | 1.7   | 1.4                             | 0.3                 |
| #3 Zn(NO <sub>3</sub> ) <sub>2</sub> | 1.5   | 1.8   | 8.3                             | 0.4                 |
| #2 KNO <sub>3</sub>                  | 0.6   | 1.8   | 3.4                             | 0.2                 |
| #1 NaNO <sub>3</sub>                 | 1.4   | 1.7   | 7.4                             | 0.4                 |

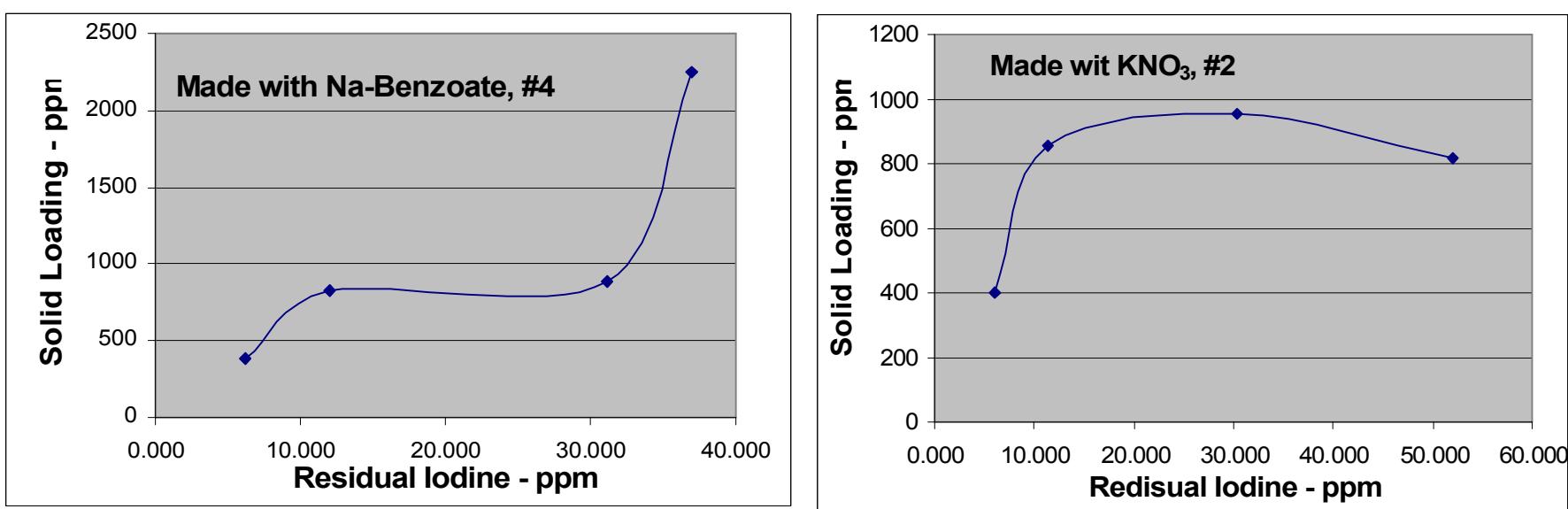
At higher concentrations the impacts of reaching 90° C are opposite what was observed in dilute (0.05 M) brines going from 25° to 60°. HCO<sub>3</sub><sup>-</sup> interferences could become particularly problematic.




# Kd's can also be used to estimate getter loadings as a function of residual I- levels

---

**Kd = (Solid Concentration)/(Liquid Concentration), or**  
*Solid Concentration = Kd x (Liquid Concentration).*

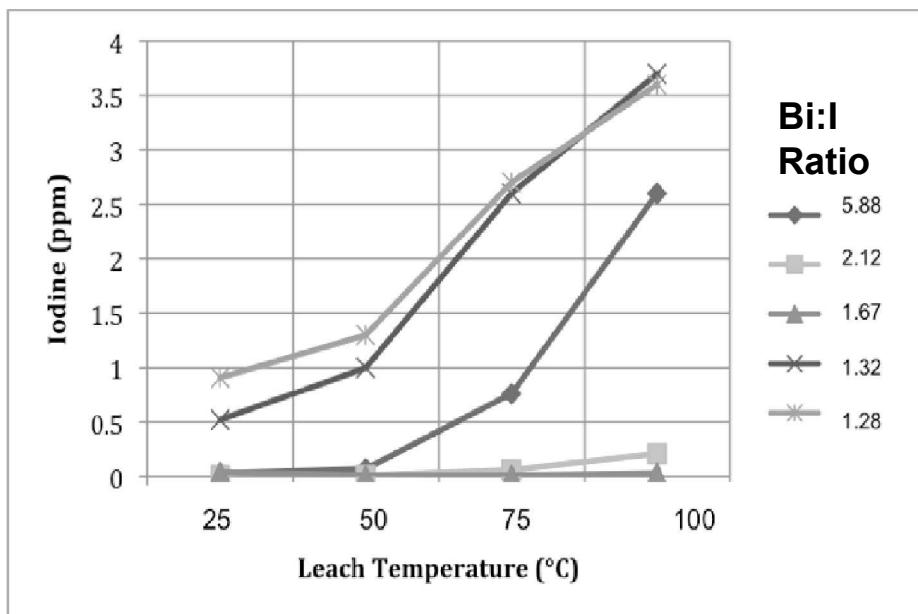

## Kg of getter per PWR Fuel Assembly

(107.1x 0.07 g iodine in 228 liters of fluid)




Significant masses of getter are needed if the Kd is less than 50 or residual iodine is less than 10 ppm (\*) is needed.

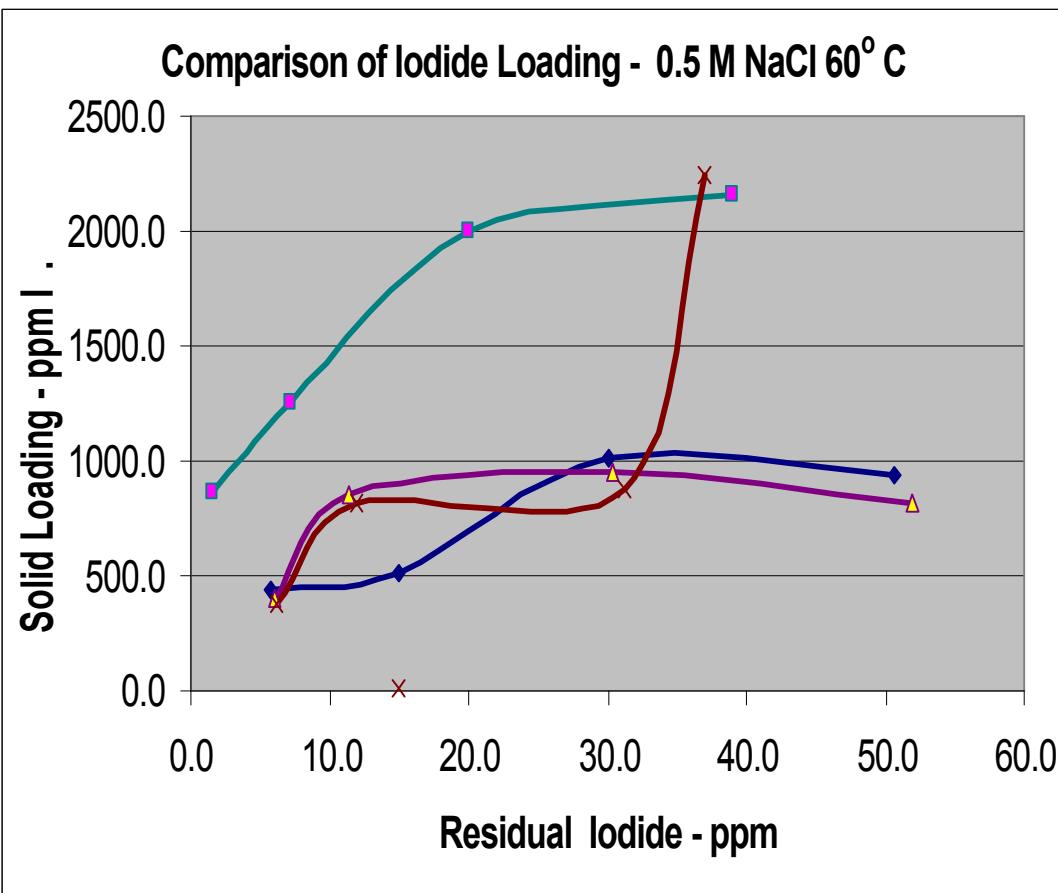
## Actual Getter Loading Curves in 0.5 M NaCl at 60° C




At around 12 ppm residual I<sup>-</sup> both getters “saturate” after picking up about 800 ppm I on the solid. This corresponds to a Kd of  $\approx 66$ , and would require about 6 kg of getter per PWR assembly to achieve.



# The odd behavior of the Na-benzoate-getter at high I suggests additional possibilities for iodine sequestration


- Na-Benzoate getter (#4) was very poorly crystallized initially.
- It is likely that the large step in sequestered iodine reflects crystallization of discrete iodine-containing compounds.
- Depending on Bi:I ratios discrete Bi-O-I phases have low solubilities over large temperature ranges, and may incorporate much more iodine that is sorbed on getters.



Such materials may also reflect the long-term fate of iodine initially scavenged by the getters.

# The Overall Deep Borehole Disposal Concept Also Employs Bentonite Seals

An alternate to synthesizing pure getters is to precipitate the Bi-O getter phases in the presence of bentonite.



Blue lines are clay-getter mixes, rust and purple are the previously shown loading curves for pure getters.

Again, synthesis makes a large difference in the result, and may markedly Improve performance!



# Kd Values in Acid Solutions for Various Radionuclides (0.05 g of getter in 20 ml of 20 ppm solutions of 0.5 M NaCl)

| Type of Clay     | g Bi-Nitrate per g Clay                                                                                  | pH  | Log( Kd) I | Log( Kd) Re | Log( Kd) Cs | Log( Kd) Nd |
|------------------|----------------------------------------------------------------------------------------------------------|-----|------------|-------------|-------------|-------------|
| <b>Bentonite</b> | 0.13*&                                                                                                   | 3.1 | 1.5        | 1.2         | 1.4         | 1.8         |
| <b>Bentonite</b> | 0.13*                                                                                                    | 2.7 | 2.9        | 0.6         | 1.5         | 1.8         |
| <b>Bentonite</b> | 0.14                                                                                                     | 2.6 | 2.5        | 0.5         | 1.5         | 1.8         |
| <b>Bentonite</b> | 0.42                                                                                                     | 2.6 | 2.2        | 0.3         | 1.4         | 1.7         |
| <b>Kaolinite</b> | 0.13                                                                                                     | 2.6 | -0.2       | NS          | NS          | NS          |
| <b>Kaolinite</b> | 0.41                                                                                                     | 2.4 | 0.8        | NS          | NS          | NS          |
| NS               | No Soprption                                                                                             |     |            |             |             |             |
| *                | Bi-nitrate completely dissolved in dilute acetic acid prior to mixing with the clay                      |     |            |             |             |             |
| &                | Excess MgO added prior to adding Bi-nitrate solution                                                     |     |            |             |             |             |
| #                | ReO <sub>4</sub> <sup>-</sup> is used as a non-radioactive surrogate for TcO <sub>4</sub> <sup>-</sup> . |     |            |             |             |             |

Fabrication on a bentonite is much better than using kaolinite, thus the interlayer spaces of the clay participate in removal processed.

A bismuth oxide getter with clay will also retard Cs and Nd effectively, but does not work well for TcO<sub>4</sub><sup>-</sup> (e.g. ReO<sub>4</sub><sup>-</sup>).



# Kd Values in Basic Solutions for Various Radionuclides (0.05 g of getter in 20 ml of 20 ppm solutions of 0.5 M NaCl)

| Type of Clay | g Bi-Nitrate per g Clay | pH  | Log( Kd) I | Log( Kd) Re | Log( Kd) Cs | Log( Kd) Nd |
|--------------|-------------------------|-----|------------|-------------|-------------|-------------|
| Bentonite    | 0.13*&                  | 6.8 | 0.1        | 1.1         | 1.8         | 3.9         |
| Bentonite    | 0.13*                   | 8.4 | 2.3        | 0.8         | 1.6         | 4.6         |
| Bentonite    | 0.14                    | 7.1 | 2.5        | 1.0         | 1.6         | 4.6         |
| Bentonite    | 0.42                    | 7.0 | 2.0        | 0.6         | 1.6         | 3.8         |
| Kaolinite    | 0.13                    | 7.2 | -0.2       | 0.5         | 0.0         | 3.8         |
| Kaolinite    | 0.41                    | 7.2 | -0.1       | 0.6         | 0.4         | 3.6         |
| NS           | No Soprtion             |     |            |             |             |             |

\* Bi-nitrate completely dissolved in dilute acetic acid prior to mixing with the clay

& Excess MgO added prior to adding Bi-nitrate solution

#  $\text{ReO}_4^-$  is used as a non-radioactive surrogate for  $\text{TcO}_4^-$ .

Fabrication on bentonite substrate is still better than using kaolinite.

As expected, when sorption is involved in removing radionuclides Kd values for anions ( $\text{I}^-$ ,  $\text{ReO}_4^-$ ) decrease with increasing pH while Kd values for cations ( $\text{Cs}^+$  and  $\text{Nd}^{+3}$ ) increase.



## Summary and Conclusions

---

- **Bismuth Oxide-based getters will retard iodine mobility over the range of temperatures and groundwater chemistries expected at Deep Borehole Disposal Sites – chloride levels below 0.5 molar, and low bicarbonate waters, are preferable.**
- **The mass of material required seems prohibitive in some cases but many opportunities still remain to be explored for materials optimization.**
- **Placement of the getter in bentonite seals, rather next to waste packages, appears to be viable.**