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Shakedown Limits for a Contact Interface




Motivation & Aim

Motivation:

= To predict wear damage
from high cycle fatigue in jet
engines or other cyclically
loaded friction interfaces

= Transient simulations of
frictional contact are
computationally intensive

Aim:
= Develop efficient methods Shaft D’rive
for predicting steady state Splines
behavior Turbine
Fan Blade to Disc Joint Blade

to Disc Joint




Methodology

= Many components are
loaded quasi-statically

= Neglectinertial effects

= Use to develop a model
reduction technique

= Quasi-Static Reduction

= Eliminates all “internal”
degrees of freedom

= Reduces dimensionality
by orders of magnitude




The Shakedown Limit

Shakedown limit:
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Unconditional Shakedown Limit

Unconditional shakedown
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Coupling Metric —
Hypothesis: coupling
metric predicts this
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Coupling Metric Convergence
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Coupling Metric

Comparison of two Metrics of Frictional Coupling
Ratio of Norms (Red)

Ratio of Eigenvalues (Blue) |||
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Coupling Metric

Comparison of two Metrics of Frictional Coupling

Ratio of Eigenvalues (Blue) ||| Ratio of Norms (Red)
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Coupling Metric

Comparison of two Metrics of Frictional Coupling
Il Ratio of Norms (Red)

Ratio of Eigenvalues (Blue)

0.35 -
< € >
03k O Punch-Halfplane Common-Edge
. Elastic-Elastic Elastic-Elastic

Coupling Metric

v -

_ >
Elastic-Rigid
| ] ] | ] | ] | /'*.? @ /ﬂ;\ f“.‘: ’B'
E120 E90 E60 Ei100 C120 @ C60 Ci100

p120 p90 p60 pi100 hp
Contact Geometries




Effect of Material Dissimilarity
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Effect of Material Dissimilarity
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= All models converge to the same coupling metric value for sufficiently large
dissimilarity
» “Sufficiently large dissimilarity” is non-representative of engineering materials
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Determination of Shakedown Limits

uonedissiq

Load Factor, A

For a specific geometry and coefficient of friction




Determination of Shakedown Limits

Dissipation

Load Factor, A

= ;. Unconditional shakedown limit
= A,: Shakedown limit




Determination of Unconditional
Shakedown Limit

A

Dissipation

Initially undeformed interface
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Load Factor, A
» Guided search method using efficient transient solutions




Determination of Unconditional
Shakedown Limit
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Dissipation
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Load Factor, A
» First step is a bisection method




Determination of Unconditional
Shakedown Limit
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Dissipation
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» The unconditional shakedown limit for a given interfacial displacement
shape is found (using both a bisection and Newton iteration)




Determination of Unconditional
Shakedown Limit

New guess for interfacial displacement
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Interfacial Displacement Shape Amplitude

» The unconditional shakedown limit for a given interfacial displacement
shape is found (using both a bisection and Newton iteration)




Determination of Unconditional
Shakedown Limit

A

Dissipation

Load Factor, A
= The interfacial displacement shape is modified and the process is repeated




Determination of Unconditional
Shakedown Limit

A

The approximate unconditignal
shakedown limit

Dissipation

Load Factor, A

= The interfacial displacement is expressed as a modified Fourier series
» The analytical solution for verification is too computationally expensive to solve




Determination of Shakedown Limit

Dissipation
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Load Factor, A

= Similar process as for the unconditional shakedown limit
= Starts with results from first step of unconditional shakedown limit search




Determination of Shakedown Limit
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Interfacial Displacement Shape Amplitude

(7)) I A 1 (7))

c I I c

2 I : e

E | # E

o) ! % | o

7)) I I (7))

o : l 1)

O j c : O

3 .- | S
1 © I

g 2 ! g

@) I 0 1 @)

O ! 2 ! O

) ' ' )

Z I o Z
| |
New guess for interfacial : I
. | 1
displacement | % :
1 1
1

» The method of determining the new guess is changed though




Determination of Shakedown Limit

Dissipation

>

Load Factor, A
= The interfacial displacement shape is modified and the process is repeated




Determination of Shakedown Limit

Dissipation

The approximate
shakedown limit

Load Factor, A
=  An exact solution is available for verification of the shakedown limit




Relation Between Shakedown Limits
and Coupling
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» Preliminary result for an 8 node interface
= Results for more nodes show similar trends




Summary and Conclusions

= Areduced order model is formulated using quasi-static
reduction -> Very efficient transient simulations

= A scalar coupling metric is proposed to determine properties
of shakedown a priori for the first time

= An approximate method for determining shakedown limits is
demonstrated

= As material or domain dissimilarity is increased, coupling
approaches an asymptote equal to the elastic-rigid case

= The coupling metric indicates the relative magnitude of the
difference between the shakedown limits

= The coupling metric is hypothesized to indicate adequate
mesh convergence of the full order system a priori



