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Motivation & Aim

Motivation:

 To predict wear damage 
from high cycle fatigue in jet 
engines or other cyclically 
loaded friction interfaces

 Transient simulations of 
frictional contact are 
computationally intensive

Aim:

 Develop efficient methods 
for predicting steady state 
behavior
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Methodology

 Many components are 
loaded quasi-statically

 Neglect inertial effects

 Use to develop a model 
reduction technique

 Quasi-Static Reduction

 Eliminates all “internal” 
degrees of freedom

 Reduces dimensionality 
by orders of magnitude
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The Shakedown Limit

Shakedown limit:

 Load above which only 
dissipative solutions exist

 Can calculate from reduced 
stiffness matrix
 Frame as an optimization 

 Computes ≈ as fast as one 
transient simulation
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Unconditional Shakedown Limit

Unconditional shakedown 
limit:

 Load below which only non-
dissipative solutions exist

 Analytical calculation too 
computationally expensive 
(N*2N equations for N 
interface nodes)

Hypothesized unconditional 
shakedown limit
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Coupling Metric

 Hypothesized to predict the 
relative difference between 
the Shakedown and 
Unconditional limits

 An a priori calculation

 Result converges quickly

C

T

A B
K

B C

 
  
 

,C C Cf K u

( )
,

( )
eig

eig B

eig A
 

( )

( )
norm

norm B

norm A
 

Hypothesis: coupling 
metric predicts this
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Coupling Metric



Coupling Metric

 Elastically identical 
materials 

 Geometrically 
mismatched at 
interface



Coupling Metric



Effect of Material Dissimilarity
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Effect of Material Dissimilarity
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 All models converge to the same coupling metric value for sufficiently large 
dissimilarity

 “Sufficiently large dissimilarity” is non-representative of engineering materials
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Determination of Shakedown Limits
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Non-Dissipative Solutions

 For a specific geometry and coefficient of friction



Determination of Shakedown Limits
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 1: Unconditional shakedown limit
 2: Shakedown limit



Determination of Unconditional 
Shakedown Limit
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 Guided search method using efficient transient solutions

Initially undeformed interface



Determination of Unconditional 
Shakedown Limit
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 First step is a bisection method



Determination of Unconditional 
Shakedown Limit
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 The unconditional shakedown limit for a given interfacial displacement 
shape is found (using both a bisection and Newton iteration)



Determination of Unconditional 
Shakedown Limit
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 The unconditional shakedown limit for a given interfacial displacement 
shape is found (using both a bisection and Newton iteration)

N
o

 C
o

n
ve

rg
e

d
 S

o
lu

ti
o

n
s

N
o

 C
o

n
ve

rg
e

d
 S

o
lu

ti
o

n
s

New guess for interfacial displacement



Determination of Unconditional 
Shakedown Limit
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 The interfacial displacement shape is modified and the process is repeated



Determination of Unconditional 
Shakedown Limit
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 The interfacial displacement is expressed as a modified Fourier series
 The analytical solution for verification is too computationally expensive to solve

The approximate unconditional 
shakedown limit



Determination of Shakedown Limit
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 Similar process as for the unconditional shakedown limit
 Starts with results from first step of unconditional shakedown limit search



Determination of Shakedown Limit
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 The method of determining the new guess is changed though

New guess for interfacial 
displacement
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Determination of Shakedown Limit
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 The interfacial displacement shape is modified and the process is repeated



Determination of Shakedown Limit
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 An exact solution is available for verification of the shakedown limit

The approximate 
shakedown limit
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Relation Between Shakedown Limits 
and Coupling

Coupling

 Preliminary result for an 8 node interface 
 Results for more nodes show similar trends



Summary and Conclusions

 A reduced order model is formulated using quasi-static 
reduction -> Very efficient transient simulations

 A scalar coupling metric is proposed to determine properties 
of shakedown a priori for the first time

 An approximate method for determining shakedown limits is 
demonstrated

 As material or domain dissimilarity is increased, coupling 
approaches an asymptote equal to the elastic-rigid case

 The coupling metric indicates the relative magnitude of the 
difference between the shakedown limits

 The coupling metric is hypothesized to indicate adequate 
mesh convergence of the full order system a priori


