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Abstract— Formal verification has been used widely in digital
system designs and has been demonstrated as an effective and
reliable way to ensure functional correctness and hardware
reliability. Formal verification has enabled designers to (1)
reduce the time and effort allocated to generate vast number of
simulation test benches; (2) reduce the time-to-market for
designs on critical path; (3) gain high confidence of the design
with reasonable verification effort; (4) accomplish increased
design densities with emergent silicon process technology, such
as 28-nm FPGA devices.

Based on mathematical theorem proving and model
checking, formal verification has shown success in a wide
range of industrial products. A few examples include memory
controllers, microprocessor, network equipment, medical
devices, and embedded software. We survey different formal
verification methodologies, including both static and dynamic
formal verification methodologies in the context of the design
space on which they focus.

This work discusses automated verification strategies of
mission-critical, high-consequence FPGA or ASIC designs, as
well as embedded software systems. Application areas include
aerospace applications, automotive applications, and
cryptographic devices and software. These systems have
stringent hardware requirement, often involving harsh
environment (e.g. radiation). Because of the high-consequence
of a fault, such systems must be verified more thoroughly than
a pedestrian consumer product. Challenges include highly
complex logic and circuit design along with high concurrency,
which is an active area of. As a part of this work, we present a
collection of various formal verification technologies and
attendant case studies.

Keywords- formal verification, formal methods, hardware
verification, software verification, model checking, mission-
critical, tools, FPGA, ASIC, VHDL, Verilog

1. INTRODUCTION

Design and verification of highly complex, trustworthy
hardware and software systems have always been a
challenge. There is no doubt that extremely high assurance
is expected for mission-critical systems. The use of formal
verification technique in such systems has been increasing

in recent years. This paper presents a survey on the applied
methodology and applications that are targeted.

Mission-critical designs are those that have to work,
otherwise a catastrophe could occur. Examples of such
systems include: nuclear reactor control systems,
automotive safety and control systems, aerospace control
systems, spacecraft controllers, military communication
systems, etc. [23]. Any fault in a mission-critical system
leads to high consequence, and should be avoided with
extreme effort. Other safety-critical systems, such as
railroad/subway control systems and medical devices, also
have very high requirements for reliability and stability. A
fault in safety-critical systems could lead to the loss of
human life or dramatic damage to the environment. Thus
there are some similarities when applying formal
verification techniques to mission-critical and safety-critical
systems. Most of the time, these systems are required to go
through stringent certification and assurance process, which
is not required for pedestrian consumer products. Table I
lists some of the widely followed safety standards for
hardware and software systems.

The complexity of mission-critical systems is continually
increasing. In order to meet new challenges the systems
need to be very robust and reliable. With the emergent
technology in Integrated Circuit (IC) process, Field
Programmable Gate Arrays (FPGAs) are becoming more
and more popular, both in traditional digital systems
designs, and in mission-critical system components
[11][24]. Currently FPGAs can be delivered in 28nm node,
with programmable logic blocks, configurable memory
blocks, complex peripherals, and even embedded hardware
Intellectual Property (IP) blocks. FPGAs are attractive
because they are flexible, reconfigurable, and easy to design
with vendor provided tool software.

To ensure security of mission-critical systems, sensitive
Intellectual Properties (IPs) can be protected better with
FPGAs compared to custom hardware. It is harder for
attackers to target a specific IP or design, if the IP or design
is not loaded onto the device until after it is manufactured.
One challenge for ensuring system security with FPGA
designs is the introduction of vulnerabilities. Often there are
design “hooks” which are intended for future enhancement
and possible optimization. But they can be used to introduce
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unintended functionalities, sometimes could be malicious.
Other possibilities include design-tool subversion,
trustworthiness of foundries, and at the final physical netlist
protection.

Application
Standard Industry Created By
HW SwW
Aerospace & Radio Technical
DO-178B \/ Defense Commission for
Aecronautics (RTCA)
DO-254 v Aerospace & RTCA
Defense
Railway European Committee
EN 50128 N Transportation for Electrot‘ech.mcal
Standardization
(CENELEC)
Cryptographic National Security
FSDA v Equipment Agency (NSA)
Medical International
IEC 60601 \/ Equipment Electrotechnical
Commission (IEC)
IEC 60880 v Nuclear IEC
Power
Heavy
IEC 61508 v v Equipment IEC
and Energy
Automotive International
ISO 26262 \/ \/ Electronics Organization for
Standardization (ISO)
Table I

Safety-related hardware/software design standards

Mission-critical systems often need to operate in harsh
environment involving extreme temperature and radiation.
Such hostile environment makes it infeasible to do a
dynamic test of the design. At the same time when silicon
becomes denser with smaller transistors, they are more
sensitive to lower level of radiation. This trend has lead to
the need of more robust radiation-hard and radiation-tolerant
designs. Technologies such as Triple Modular Redundancy
(TMR) are introduced to mitigate radiation-induced errors.
Being able to formally verify designs facing such
environment is still a challenge.

In addition to be rad-had or rad-tolerant, mission-critical
systems also need to be fault-tolerant under various
circumstances. Most of the time the faults are non-
deterministic, making exhaustive testing infeasible and
verification task harder.

Traditionally, hardware designs are validated through
simulation and emulation, while software systems are
validated through code reviews and dynamic testing. As a
mature technology, a good simulation test bench could
demonstrate the presence of a design bug (i.e. assure the
design does what it is supposed to do), but can never ensure
the absence of a design bug (i.e. assure the design does not
do what it is not supposed to do).

Formal verification for both hardware and software
systems provides high level of confidence, automation, and
efficiency. As an example, NASA [20] highly recommend
applying formal methods for safety-critical software
development and verification.

II. DESIGN AND VERIFICATION

A typical design flow that involves formal verification is
shown in Figure 1. Specifications (system, functional,
property) are normally described in plain text along with
block diagrams. Implementation is done in two general
ways: hardware description language such as Verilog and
VHDL, software programming language such as C/C++.
Property modeling can be done with formal semantics. The
verification framework then generates the result, which can
be used to modify the implementation or specification.
Mission-critical and safety-critical systems have much
rigorous requirement to be satisfiable [1][10][19].

System Specification

v v

Function Specification

Property Specification

‘ Implementation ‘ ‘ Property Modeling ‘

%E

Satisfiable?

Figure 1. A typical design process with formal verification

Formal . s
Language Description Application
Domain Specific
Cryptol [2] Language (DSL) Cryptography
Synchronous language
Esterel [6] with formal semantics Acrospace
LOTOS [4] Langl}age of t-empqral Communication
ordering specification Protocols
Aerospace,
Promela [4][6] Process meta language Medical Devices,
Spacecraft
SIGNAL [5] Block-diagram based Real-tlmg System
synchronous language Design
Rail
SMV [4][17] Synchronous language Transportation

Table 11



Surveyed formal language

Frzzi‘;lvz:)lrk Description Supported Language
Cadence SMV Deterministic SMV, Verilog
CADP Probabilistic LOTOS
Cryptol Tool Deterministic Cryptol language
SCADE Deterministic Esterel
NuSMV Deterministic SMV
ROMEO Deterministic Time Petri Nets
SPIN Deterministic Promela

Table 111

Surveyed formal framework

III. CASE STUDIES

This section presents several case studies to demonstrate
the application of formal method and formal verification for
mission-critical and safety-critical systems. There are both
hardware and software applications and each one is
summarized for their modeling language, formal framework,
unique contribution, and the impact on the applications.

A. FPGA-based Aerospace hydraulic Monitoring System

Hammarberg and Nadjm-Tehrani [6] published an
application of formal verification in an aerospace hydraulic
monitoring system. The system detects hydraulic leakage
inside a JAS 39 Gripen multi-role aircraft. This is a high-
consequence system, because an electrical fault could lead
to the complete loss of control of the aircraft in worst case.
The co-designed system contains one software component
and two FPGA-based hardware components. The purpose of
using two separate FPGA devices is to increase redundancy
in the system, making it more fault-tolerant.

Traditional Fault Tree Analysis (FTA) was not able to
describe such complex system, a formal verification based
design model was implemented as shown in Figure **.
Esterel Studio provides two model checkers, one based on
Binary Decision Diagrams (BDD) and another one based on
propositional Satisfiability (SAT). The SAT based solver
was chosen for this particular design. The main goals of this
verification are (1) verify single fault tolerance of the
system, and (2) identify potential double fault combinations.
In order to achieve co-design and co-verification, all three
components and nets that connect them are modeled in
Esterel. The top level structure of a developed verification
bench is shown in Figure 2. The highlighted verification
bench is written as plug-in modules. These modules are

solely for verification purposes, and are ignored during
design code generation and system implementation. The
output from the verification bench (“Alarm Signal”)
indicates whether there is a fault detected or not.

Possible hardware faults, such as bit flipping on silicon
(FPGA or processor) can be caused by environmental
factors, such as radiation, extreme temperature, and sudden
power change. A fault switch is inserted to serve as a fault
injector. The objective of such fault switch is to indicate
whether a formally verified safety-related property would
hold if an environment fault presents. An example of
environmental fault modeled in this application is the
arbitrary malfunction in either of the FPGA devices.

Esterel’s built-in model checker does a good job in this
application, especially with the support of user-provided
constraints. The verification results are impressive by
proving: (1) the components do not contain design faults
causing violation of the safety property; (2) no combination
of the potential faults can cause violation of the property;
(3) no single random fault can cause violation of the
property; and (4) the only double fault violating the property
is when the software component and one of the FPGA
component are faulty.

System In System In
Black boxed Black boxed

software component hardware component

Verification Framewo!

System Out

System Out

Figure 2. Hardware/Software co-verification model

Another advantage of this approach is the short run time.
The model checking takes a few second to run, while a
simulation test bench with descent coverage can easily run
in hours, even days for such a complex system.

The authors also demonstrated a comparison between
manually created and automatically generated VHDL design
for another smaller safety-critical application. The example



is the PID controller used in a brake control system for an
aircraft arrester system. The same design is implemented in
two ways: (1) manually created a VHDL design, and (2)
automatically generated VHDL code from Esterel model.
Both designs are then run through the FPGA design flow
(synthesis, place & route, timing analysis). The manual
design wins in both area (logic usage on device) and speed
(Fmax of the design). However, Esterel generated VHDL
design has smaller size (lines of code) in general.

This is a case study that demonstrates a practical design
process for mission-critical system. The design is specified
at a high abstraction level, which is implementation
independent. With the built-in verification bench, it
successfully detected random faults that are of high-
consequence. The tradeoff is the implementation efficiency,
which could lead to the need of a bigger and faster FPGA
device. This tradeoff, however, can be easily justified for
such applications.

B. Multi-thread Control Module for Space Craft

Havelund, Lowry and Penix [8] published a formal
analysis case study of a space craft controller. The software
to be verified is a component of NASA’s Remote Agent
(RA), an artificial intelligence (Al) based space craft control
system architecture. The module is developed in LISP
programming language and is multi-threaded. The Remote
Agent itself is a mission-critical application as it is the first
Al based software that demonstrated the complete control of
a space craft.

SPIN is chosen to be the model checker for this
application, as it supports verification of finite state
asynchronous process systems. A domain specific language
(DSL) named Executive Support language (ESL) is used to
specify the bottom layer of the module. The verification
scheme is shown in Figure 3. By abstraction, the original
LISP program is reduced to a finite state system described in
Promela, which is a C-like programming language used by
SPIN. This abstraction is a critical step for efficient
verification, as it makes feasible to create bounded state
space. Two properties are fed into SPIN, described either as
Promela assertion or Linear Temporal Logic (LTL)
formulae. SPIN is then run to verify if both properties are
satisfied.

ESL Program

Promela model

Property 1
(Assertion)

Figure 3. Verification scheme of control module (red stars
indicate identified violations)

Outputs from SPIN indicate both properties are not
satisfied, with four software errors being identified
immediately. With the error trace provided by SPIN for the
four bugs, a design flaw (duplicated execution) is also
identified. The result is the discovery of five hard-to-find
errors, which would manifest themselves only under very
particular circumstances involving precise timing. However,
these errors are also of very high consequence. A real
incident happened during an operation of RA in space, where
the thrusting did not turn off as requested, resulting in an
immediate action to put the space craft in stand-by mode.
This happened when RA was onboard the DEEP_SPACE 1
space craft. It turned out the cause of the failure was an
identical error identified by SPIN, but it existed in another
module that was not formally analyzed.

This work focused on the development of Promela
model. The longest run time of SPIN is less than 1 minute.
The result from this work had a major impact on the RA
design team, with increased confidence of the delivered
software.

This case study demonstrates a very successful
application of SPIN’s partial order reduction algorithm and
state compression.

A related work is reported in [9] that forgally gl-%%]&fzes
the concurrent software system before and after flight.

C. Model Checking for Fault Tolerant Systems

Schneider, Easterbrook, Callahan, and Holzmann [22]
published a model checking case study to verify a fault-
tolerant embedded space craft controller, which is a real-time
control system handling critical control sequences. The key
contribution of their work is the effective verification based
on partial specification. The higher abstraction level is
achieved by ignoring unnecessary details, while keeping
main properties. Due to the complexity of this application,
reducing the state space is crucial to ensure the feasibility of
model checking for critical system requirements.



The implementation of this verification scheme is shown
in Figure 4. A critical sequence is executed on a
deterministic model, with non-deterministic faults injected.
Three unrecoverable faults, each indicating a design
problem, were identified by this verification scheme.

Non-deterministic fault
Deterministic System Model on-aeremunIsie fa
mjection

Critical Control
Sequence

Figure 4. Fault injection model (red stars indicate identified
faults)

With proper modeling, selection of reliable model
checker (SPIN), and effective state space reduction, this case
study delivered good results in very short run time. The
exhaustive examination of selected partial specification runs
for about 3 minutes, where as the run time for full
specification is estimated to be 10 '*years. The three design
problems identified could lead to potential fault control
sequence. Another notable contribution of this case study is
the parallel design-verification process, which allows prompt
feedback and dynamic modification of both design and
specification, as shown in Figure 5.

-~ Final Specificatioi

Evolving ™,
Specificati

Development Team

Verification & Validation Team

Model Checking Scheme

Figure 5. Co-design and verification process

D. Cryptographic Applications

Cryptographic applications require very high level of
assurance, performiit¥ ¥¥liability, and security. Historically
programmable logic has not been widely used because of the
challenge to support multiple levels of security and handle
isolated redundancy. FPGAs are suitable for implementing
cryptographic algorithms because there are a lot of bit-level
operations, such as shifting and permutation. With the
growing logic density and performance of FPGA devices and
development tools [2][7][16], it is now feasible to implement
a cryptographic system (even Type I) on a single FPGA chip.
However, such designs have to be partitioned in a way that
isolated subsystems do not leak information to each other.
For example, strong isolation is expected to segregate plain
text (red text) and cipher text (black text). The
communication between these partitions has to be tightly
controlled to meet the National Security Agency’s (NSA)
Fail Safe Design Assurance (FSDA) requirements.

The primary goal of verifying a cryptographic system is
to ensure the risk of compromising its integrity caused by a
hardware fault is minimized. Lewis, Hoffman, and Browning
[14] published a design and verification flow for
implementing a single FPGA-based cryptographic system.
This flow leverages a Domain Specific Language (DSL)
named Cryptol and tools to support it. Cryptol is a functional
description language designed for the NSA as a public
standard for cryptographic algorithm specification. It allows
the user to create specifications at a much higher level of
abstraction compared to structural or behavioral description
of digital systems. Even the final implementation is
physically on a FPGA, the design process is independent of
hardware features and detailed configuration. Compared to
any hardware design language (HDL) such as Verilog or
VHDL, Cryptol enables the designers to focus on the
functional level.

The formal verification feature provided by Cryptol tools
focus on equivalence checking. Based on SAT and
Satisfiability Modulo Theories (SMT), equivalence checking
can be done at various design stages throughout the design
process. Similar to Esterel used in an earlier cast study,
Cryptol can also generate lower level VHDL designs, which
can then be synthesized, placed and routed on a FPGA
device. One attractive feature of Cryptol is that the generated
VHDL code comes with a formal proof to ensure the
functional equivalence. Results have shown that the auto-
generated implementations are comparable or better
compared to  manually  written  Verilog/VHDL
implementation, in terms of area and speed. With the
introduction of Signal-Processing Intermediate
Representation (SPIR) model, Cryptol provides a nice
mixture of easy development at higher level and easy access
to lower detailed implementation information. An overview
of the design and verification flow for Cryptol is shown in
Figure 6.
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Figure 6. Design/verification flow provided by Cryptol

This case study demonstrates an effective co-
design/verification flow for systems with very high-
assurance and high-reliability.

E. Control Software for B-2Test Program

Chang et al. [3] published a case study in which formal
method has made significant contribution to the verification
of a mission-critical software system. The targeted
application is the Tape Copy and Management System
(TCAMS) built for United States Air Force. TCAMS is an
important part of the B-2 bomber testing program, which
handles enormous amount of flight data during testing. Due
to the complexity and extreme requirements of B-2, TCAMS
has to be exceptionally reliable.

The overall process of this application is shown in Figure
7. Continuous software verification was made possible
through a matrix development model [Tomayko96]. At the
requirement analysis stage, formal methddNwas combined
with object-oriented analysis to model system specification.
At the high level design stage, formal method was used to
describe data flow, serial processing ordering, and process
parallelization. At the integrated test stage, formal method
was used to create test procedures and validation criteria.

Without giving the details of applied formal method and
formal verification technique, the authors confirmed that
verification of the system was enhanced. The final delivered
system achieved exceptional quality and reliability, proven
by continuous successful operation upon deployment.

Requirement Analysis ‘

A

High Level Design ‘

A

Implementation

A

Integrated Test ‘

Figure 7. TCAMS design process coupled with formal methods

F. Formal Modeling and Analysis Military Avionics
Systems

A collaborative research project between the University
of South Australia and Australia’s Defense Science and
Technology Organization aiming at modeling and analyzing
avionics mission systems is another success story [21]. The
application is an avionics mission system (AMS) for AP-3C
Orion maritime surveillance aircraft. The complexity of such
systems comes from the large number of hardware and
software components, and their integration.

The key contribution of this work is to combine state
space methods and Colored Petri Nets (CPN) to reason
system properties. Due to the vast number of subsystems and
components, complexity can only be managed by higher
level of abstraction. CPN was chosen because (1) it provides
primitives for modeling concurrency and synchronization;
(2) it provides primitives for modeling data manipulation; (3)
it is parameterized and can easily be shared for different
systems; (4) it supports hierarchical design specification; and
(5) it is executable thus can be simulated. In this case study,
CPN was used to model different levels of abstraction,
allowing formal specification of communications between
various subsystems and the avionics bus.

The most challenging tasks for AMS is task scheduling
and data transfer management. Task scheduling problem was
handled by a state space search approach in this application.
If a path from an initial state to a final state is found, then a
schedule has been successfully identified. Compared to



traditional scheduling algorithms, this approach creates a
single model that can be used for both task scheduling and
property specification.

All data transfer in this case study happen on a shared
data bus, making it critical to ensure the safety and accuracy
of data. In this system, data can be transferred between
sensors, central control unit, display and storage. The CPN
model allows a high level description of the entire data
management network.

A remaining challenge for this cast study was the state
space explosion problem. As the number of system tasks
increase, the state space of the CPN model grows
significantly. In the original publication, the author proposed
to investigate more advanced methods for reducing the state
space in similar models.

Overall, this case study represents an effective formal
modeling and analysis approach for a real mission-critical
application. The result of this work was the high confidence
level of the AP-3C aircraft mission system, which
contributes to the aircraft’s major missions,, including anti-
subsurface/surface warfare, surveillance, search/rescue, and
maritime strike.

G. Aircraft Safety-critical Software

A recent publication by Yin, Liu, and Su [25] reported a
formal verification technique for an aircraft safety-critical
software (ASCS) — an aircraft inertia/satellite navigation
system. Realizing the general effectiveness of extended finite
state machine (EFSM) in formal verification of embedded
software systems and its incapability to meet real-time
requirements of the ASCS, this work introduced a real-time
extension of EFSM, named RT-EFSM.

The developed RT-EFSM model is used to describe the
following properties of ASCS: (1) behavior (static and
dynamic); (2) real-time characteristics; (3) complex state
transition. The same model is also used to solve the state
explosion problem and ensure the consistency of ASCS
models.

The validation of RT-EFSM involves checking of several
critical properties of the model, as shown in Figure 8. Once
validated, the model can be used to generate valuable test
sequence. A time extended unique input/output (UIO)
sequence was introduced to accommodate the real time
system. During the test sequence generation, depth-first
search tree is constructed for easy traversing and improving
test coverage.

The developed formal approach was applied to an aircraft
inertia/satellite navigation system. It is reported that the
verification methodology is very effective for this
application.

ASCS schematic

Reachability?

Generated test
sequence

Figure 8. RT-EFSM based verification for ASCS

IV. CONCLUSION

Formal verification has been used in many applications
as an alternative to traditional testing approaches —
simulation for hardware designs and dynamic testing for
software systems. With the extreme requirement of reliability
of mission-critical and safety-critical systems, being able to
effectively verify the design throughout the design cycle is
highly desirable. There is increasing number of published
work in applying formal verification to mission-critical and
safety-critical systems in recent years.

This paper surveys the recent research and development
of formal verification in high-consequence applications.
Several case studies are analyzed for their unique application
and challenge, applied formal approach, and delivered
results. The cases studied include both hardware systems and
software systems. For hardware systems, the survey focuses
on designs implemented with FPGA, because of its
flexibility, reconfigurability, and growing popularity in the
targeted applications. The surveyed cases applied various
formal  methodologies to  accommodate  different
applications, including both equivalence checking and
formal model checking.

Additional application of formal verification in safety-
critical system include railway interlocking system [15],
hybrid emergency control component [13], medical device
software system [12] etc.

With the advancing research in formal methods and
formal verification technology, more and more successful
applications are expected to be published. More advanced
formal tools are also expected from the Electronic Design
Automation (EDA) industry to further enhance verification.
A recent success story is the joint effort between Northrop
Grumman [talia and Mentor Graphics to achieve DO-254
compliance [18].



Followed by this survey, innovative mission-critical

applications of formal verification will be identified and
appropriate technology will be investigated and developed.
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