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Abstract— Formal verification has been used widely in digital 
system designs and has been demonstrated as an effective and 
reliable way to ensure functional correctness and hardware 
reliability. Formal verification has enabled designers to (1) 
reduce the time and effort allocated to generate vast number of 
simulation test benches; (2) reduce the time-to-market for 
designs on critical path; (3) gain high confidence of the design 
with reasonable verification effort; (4) accomplish increased 
design densities with emergent silicon process technology, such 
as 28-nm FPGA devices. 

           Based on mathematical theorem proving and model 
checking, formal verification has shown success in a wide 
range of industrial products. A few examples include memory 
controllers, microprocessor, network equipment, medical 
devices, and embedded software.  We survey different formal 
verification methodologies, including both static and dynamic 
formal verification methodologies in the context of the design 
space on which they focus.

            This work discusses automated verification strategies of 
mission-critical, high-consequence FPGA or ASIC designs, as 
well as embedded software systems. Application areas include 
aerospace applications, automotive applications, and 
cryptographic devices and software. These systems have 
stringent hardware requirement, often involving harsh 
environment (e.g. radiation). Because of the high-consequence 
of a fault, such systems must be verified more thoroughly than 
a pedestrian consumer product. Challenges include highly 
complex logic and circuit design along with high concurrency, 
which is an active area of. As a part of this work, we present a 
collection of various formal verification technologies and 
attendant case studies.

Keywords- formal verification, formal methods, hardware 
verification, software verification, model checking, mission-
critical, tools, FPGA, ASIC, VHDL, Verilog

I. INTRODUCTION

Design and verification of highly complex, trustworthy
hardware and software systems have always been a 
challenge. There is no doubt that extremely high assurance 
is expected for mission-critical systems. The use of formal 
verification technique in such systems has been increasing 

in recent years. This paper presents a survey on the applied 
methodology and applications that are targeted.

Mission-critical designs are those that have to work, 
otherwise a catastrophe could occur. Examples of such 
systems include: nuclear reactor control systems, 
automotive safety and control systems, aerospace control 
systems, spacecraft controllers, military communication 
systems, etc. [23]. Any fault in a mission-critical system 
leads to high consequence, and should be avoided with 
extreme effort. Other safety-critical systems, such as 
railroad/subway control systems and medical devices, also 
have very high requirements for reliability and stability. A 
fault in safety-critical systems could lead to the loss of 
human life or dramatic damage to the environment. Thus 
there are some similarities when applying formal 
verification techniques to mission-critical and safety-critical 
systems. Most of the time, these systems are required to go 
through stringent certification and assurance process, which 
is not required for pedestrian consumer products. Table I
lists some of the widely followed safety standards for 
hardware and software systems.

The complexity of mission-critical systems is continually 
increasing. In order to meet new challenges the systems 
need to be very robust and reliable. With the emergent 
technology in Integrated Circuit (IC) process, Field 
Programmable Gate Arrays (FPGAs) are becoming more 
and more popular, both in traditional digital systems 
designs, and in mission-critical system components 
[11][24]. Currently FPGAs can be delivered in 28nm node, 
with programmable logic blocks, configurable memory 
blocks, complex peripherals, and even embedded hardware 
Intellectual Property (IP) blocks. FPGAs are attractive 
because they are flexible, reconfigurable, and easy to design 
with vendor provided tool software. 

To ensure security of mission-critical systems, sensitive 
Intellectual Properties (IPs) can be protected better with 
FPGAs compared to custom hardware. It is harder for 
attackers to target a specific IP or design, if the IP or design 
is not loaded onto the device until after it is manufactured.
One challenge for ensuring system security with FPGA 
designs is the introduction of vulnerabilities. Often there are 
design “hooks” which are intended for future enhancement 
and possible optimization. But they can be used to introduce 
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unintended functionalities, sometimes could be malicious. 
Other possibilities include design-tool subversion, 
trustworthiness of foundries, and at the final physical netlist 
protection.

Standard
Application

Industry Created By
HW SW

DO-178B √
Aerospace & 

Defense
Radio Technical 
Commission for 

Aeronautics (RTCA)

DO-254 √
Aerospace & 

Defense
RTCA

EN 50128 √

Railway 
Transportation

European Committee 
for Electrotechnical 

Standardization
(CENELEC)

FSDA √
Cryptographic 

Equipment
National Security 
Agency (NSA)

IEC 60601 √
Medical 

Equipment
International 

Electrotechnical 
Commission (IEC)

IEC 60880 √
Nuclear 
Power

IEC

IEC 61508 √ √
Heavy 

Equipment 
and Energy

IEC

ISO 26262 √ √
Automotive 
Electronics

International 
Organization for 

Standardization (ISO)

Table I
Safety-related hardware/software design standards

Mission-critical systems often need to operate in harsh 
environment involving extreme temperature and radiation. 
Such hostile environment makes it infeasible to do a 
dynamic test of the design. At the same time when silicon 
becomes denser with smaller transistors, they are more 
sensitive to lower level of radiation. This trend has lead to 
the need of more robust radiation-hard and radiation-tolerant 
designs. Technologies such as Triple Modular Redundancy 
(TMR) are introduced to mitigate radiation-induced errors. 
Being able to formally verify designs facing such 
environment is still a challenge.

In addition to be rad-had or rad-tolerant, mission-critical 
systems also need to be fault-tolerant under various 
circumstances. Most of the time the faults are non-
deterministic, making exhaustive testing infeasible and 
verification task harder.

Traditionally, hardware designs are validated through 
simulation and emulation, while software systems are 
validated through code reviews and dynamic testing. As a 
mature technology, a good simulation test bench could 
demonstrate the presence of a design bug (i.e. assure the 
design does what it is supposed to do), but can never ensure 
the absence of a design bug (i.e. assure the design does not 
do what it is not supposed to do).

Formal verification for both hardware and software 
systems provides high level of confidence, automation, and 
efficiency. As an example, NASA [20] highly recommend 
applying formal methods for safety-critical software 
development and verification.

II. DESIGN AND VERIFICATION

A typical design flow that involves formal verification is 
shown in Figure 1. Specifications (system, functional, 
property) are normally described in plain text along with 
block diagrams.  Implementation is done in two general 
ways: hardware description language such as Verilog and 
VHDL, software programming language such as C/C++. 
Property modeling can be done with formal semantics. The 
verification framework then generates the result, which can 
be used to modify the implementation or specification. 
Mission-critical and safety-critical systems have much 
rigorous requirement to be satisfiable [1][10][19].

Figure 1. A typical design process with formal verification

Formal 
Language

Description Application

Cryptol [2]
Domain Specific 
Language (DSL)

Cryptography

Esterel [6]
Synchronous language 
with formal semantics

Aerospace

LOTOS [4]
Language of temporal 
ordering specification

Communication 
Protocols

Promela [4][6] Process meta language
Aerospace, 

Medical Devices, 
Spacecraft

SIGNAL [5]
Block-diagram based 
synchronous language

Real-time System
Design

SMV [4][17] Synchronous language
Rail 

Transportation

Table II



Surveyed formal language 

Formal 
Framework

Description Supported Language

Cadence SMV Deterministic SMV, Verilog

CADP Probabilistic LOTOS

Cryptol Tool Deterministic Cryptol language

SCADE Deterministic Esterel

NuSMV Deterministic SMV

ROMEO Deterministic Time Petri Nets

SPIN Deterministic Promela

Table III
Surveyed formal framework 

III. CASE STUDIES

This section presents several case studies to demonstrate 
the application of formal method and formal verification for 
mission-critical and safety-critical systems. There are both
hardware and software applications and each one is 
summarized for their modeling language, formal framework, 
unique contribution, and the impact on the applications.

A. FPGA-based Aerospace hydraulic Monitoring System

Hammarberg and Nadjm-Tehrani [6] published an 
application of formal verification in an aerospace hydraulic 
monitoring system. The system detects hydraulic leakage 
inside a JAS 39 Gripen multi-role aircraft. This is a high-
consequence system, because an electrical fault could lead 
to the complete loss of control of the aircraft in worst case.
The co-designed system contains one software component 
and two FPGA-based hardware components. The purpose of 
using two separate FPGA devices is to increase redundancy 
in the system, making it more fault-tolerant. 

Traditional Fault Tree Analysis (FTA) was not able to 
describe such complex system, a formal verification based 
design model was implemented as shown in Figure **. 
Esterel Studio provides two model checkers, one based on 
Binary Decision Diagrams (BDD) and another one based on 
propositional Satisfiability (SAT). The SAT based solver 
was chosen for this particular design. The main goals of this 
verification are (1) verify single fault tolerance of the 
system, and (2) identify potential double fault combinations.
In order to achieve co-design and co-verification, all three 
components and nets that connect them are modeled in 
Esterel. The top level structure of a developed verification 
bench is shown in Figure 2. The highlighted verification 
bench is written as plug-in modules. These modules are 

solely for verification purposes, and are ignored during 
design code generation and system implementation. The 
output from the verification bench (“Alarm Signal”) 
indicates whether there is a fault detected or not.

Possible hardware faults, such as bit flipping on silicon 
(FPGA or processor) can be caused by environmental 
factors, such as radiation, extreme temperature, and sudden 
power change. A fault switch is inserted to serve as a fault
injector. The objective of such fault switch is to indicate 
whether a formally verified safety-related property would 
hold if an environment fault presents. An example of 
environmental fault modeled in this application is the 
arbitrary malfunction in either of the FPGA devices.

Esterel’s built-in model checker does a good job in this 
application, especially with the support of user-provided 
constraints. The verification results are impressive by 
proving: (1) the components do not contain design faults 
causing violation of the safety property; (2) no combination 
of the potential faults can cause violation of the property; 
(3) no single random fault can cause violation of the 
property; and (4) the only double fault violating the property 
is when the software component and one of the FPGA 
component are faulty.

Figure 2. Hardware/Software co-verification model

Another advantage of this approach is the short run time. 
The model checking takes a few second to run, while a 
simulation test bench with descent coverage can easily run 
in hours, even days for such a complex system.

The authors also demonstrated a comparison between 
manually created and automatically generated VHDL design 
for another smaller safety-critical application. The example 



is the PID controller used in a brake control system for an 
aircraft arrester system. The same design is implemented in
two ways: (1) manually created a VHDL design, and (2) 
automatically generated VHDL code from Esterel model. 
Both designs are then run through the FPGA design flow 
(synthesis, place & route, timing analysis). The manual 
design wins in both area (logic usage on device) and speed 
(Fmax of the design). However, Esterel generated VHDL 
design has smaller size (lines of code) in general.

This is a case study that demonstrates a practical design 
process for mission-critical system. The design is specified 
at a high abstraction level, which is implementation 
independent. With the built-in verification bench, it 
successfully detected random faults that are of high-
consequence. The tradeoff is the implementation efficiency, 
which could lead to the need of a bigger and faster FPGA 
device. This tradeoff, however, can be easily justified for 
such applications.

B. Multi-thread Control Module for Space Craft

Havelund, Lowry and Penix [8] published a formal 
analysis case study of a space craft controller. The software 
to be verified is a component of NASA’s Remote Agent 
(RA), an artificial intelligence (AI) based space craft control 
system architecture. The module is developed in LISP 
programming language and is multi-threaded. The Remote 
Agent itself is a mission-critical application as it is the first 
AI based software that demonstrated the complete control of 
a space craft.

SPIN is chosen to be the model checker for this 
application, as it supports verification of finite state 
asynchronous process systems. A domain specific language 
(DSL) named Executive Support language (ESL) is used to 
specify the bottom layer of the module. The verification 
scheme is shown in Figure 3. By abstraction, the original 
LISP program is reduced to a finite state system described in 
Promela, which is a C-like programming language used by 
SPIN. This abstraction is a critical step for efficient 
verification, as it makes feasible to create bounded state 
space. Two properties are fed into SPIN, described either as 
Promela assertion or Linear Temporal Logic (LTL) 
formulae. SPIN is then run to verify if both properties are 
satisfied.

Figure 3. Verification scheme of control module (red stars 
indicate identified violations)

Outputs from SPIN indicate both properties are not 
satisfied, with four software errors being identified 
immediately. With the error trace provided by SPIN for the 
four bugs, a design flaw (duplicated execution) is also 
identified. The result is the discovery of five hard-to-find 
errors, which would manifest themselves only under very 
particular circumstances involving precise timing. However, 
these errors are also of very high consequence. A real 
incident happened during an operation of RA in space, where 
the thrusting did not turn off as requested, resulting in an 
immediate action to put the space craft in stand-by mode. 
This happened when RA was onboard the DEEP_SPACE 1 
space craft. It turned out the cause of the failure was an 
identical error identified by SPIN, but it existed in another 
module that was not formally analyzed.

This work focused on the development of Promela
model. The longest run time of SPIN is less than 1 minute. 
The result from this work had a major impact on the RA 
design team, with increased confidence of the delivered 
software.

This case study demonstrates a very successful 
application of SPIN’s partial order reduction algorithm and 
state compression.

A related work is reported in [9] that formally analyzes 
the concurrent software system before and after flight. 

C. Model Checking for Fault Tolerant Systems

Schneider, Easterbrook, Callahan, and Holzmann [22] 
published a model checking case study to verify a fault-
tolerant embedded space craft controller, which is a real-time 
control system handling critical control sequences. The key 
contribution of their work is the effective verification based 
on partial specification. The higher abstraction level is 
achieved by ignoring unnecessary details, while keeping 
main properties. Due to the complexity of this application, 
reducing the state space is crucial to ensure the feasibility of 
model checking for critical system requirements.



The implementation of this verification scheme is shown 
in Figure 4. A critical sequence is executed on a 
deterministic model, with non-deterministic faults injected. 
Three unrecoverable faults, each indicating a design 
problem, were identified by this verification scheme.

Figure 4. Fault injection model (red stars indicate identified 
faults)

With proper modeling, selection of reliable model 
checker (SPIN), and effective state space reduction, this case 
study delivered good results in very short run time. The 
exhaustive examination of selected partial specification runs 
for about 3 minutes, where as the run time for full 
specification is estimated to be 10 12 years. The three design 
problems identified could lead to potential fault control 
sequence. Another notable contribution of this case study is 
the parallel design-verification process, which allows prompt 
feedback and dynamic modification of both design and
specification, as shown in Figure 5.

Figure 5. Co-design and verification process

D. Cryptographic Applications

Cryptographic applications require very high level of 
assurance, performance, reliability, and security. Historically 
programmable logic has not been widely used because of the 
challenge to support multiple levels of security and handle 
isolated redundancy. FPGAs are suitable for implementing 
cryptographic algorithms because there are a lot of bit-level 
operations, such as shifting and permutation. With the 
growing logic density and performance of FPGA devices and 
development tools [2][7][16], it is now feasible to implement 
a cryptographic system (even Type I) on a single FPGA chip. 
However, such designs have to be partitioned in a way that 
isolated subsystems do not leak information to each other. 
For example, strong isolation is expected to segregate plain 
text (red text) and cipher text (black text). The 
communication between these partitions has to be tightly 
controlled to meet the National Security Agency’s (NSA) 
Fail Safe Design Assurance (FSDA) requirements.

The primary goal of verifying a cryptographic system is 
to ensure the risk of compromising its integrity caused by a 
hardware fault is minimized. Lewis, Hoffman, and Browning 
[14] published a design and verification flow for 
implementing a single FPGA-based cryptographic system. 
This flow leverages a Domain Specific Language (DSL) 
named Cryptol and tools to support it. Cryptol is a functional 
description language designed for the NSA as a public 
standard for cryptographic algorithm specification. It allows 
the user to create specifications at a much higher level of 
abstraction compared to structural or behavioral description 
of digital systems. Even the final implementation is 
physically on a FPGA, the design process is independent of 
hardware features and detailed configuration. Compared to 
any hardware design language (HDL) such as Verilog or 
VHDL, Cryptol enables the designers to focus on the 
functional level. 

The formal verification feature provided by Cryptol tools 
focus on equivalence checking. Based on SAT and 
Satisfiability Modulo Theories (SMT), equivalence checking 
can be done at various design stages throughout the design 
process. Similar to Esterel used in an earlier cast study, 
Cryptol can also generate lower level VHDL designs, which 
can then be synthesized, placed and routed on a FPGA
device. One attractive feature of Cryptol is that the generated 
VHDL code comes with a formal proof to ensure the 
functional equivalence. Results have shown that the auto-
generated implementations are comparable or better 
compared to manually written Verilog/VHDL 
implementation, in terms of area and speed. With the 
introduction of Signal-Processing Intermediate 
Representation (SPIR) model, Cryptol provides a nice 
mixture of easy development at higher level and easy access 
to lower detailed implementation information. An overview 
of the design and verification flow for Cryptol is shown in 
Figure 6.
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Figure 6. Design/verification flow provided by Cryptol

This case study demonstrates an effective co-
design/verification flow for systems with very high-
assurance and high-reliability.

E. Control Software for B-2Test Program

Chang et al. [3] published a case study in which formal 
method has made significant contribution to the verification 
of a mission-critical software system. The targeted 
application is the Tape Copy and Management System 
(TCAMS) built for United States Air Force. TCAMS is an 
important part of the B-2 bomber testing program, which 
handles enormous amount of flight data during testing. Due 
to the complexity and extreme requirements of B-2, TCAMS 
has to be exceptionally reliable.

The overall process of this application is shown in Figure 
7. Continuous software verification was made possible 
through a matrix development model [Tomayko96]. At the 
requirement analysis stage, formal method was combined 
with object-oriented analysis to model system specification. 
At the high level design stage, formal method was used to 
describe data flow, serial processing ordering, and process 
parallelization. At the integrated test stage, formal method 
was used to create test procedures and validation criteria.

Without giving the details of applied formal method and 
formal verification technique, the authors confirmed that 
verification of the system was enhanced. The final delivered 
system achieved exceptional quality and reliability, proven 
by continuous successful operation upon deployment.

Figure 7. TCAMS design process coupled with formal methods

F. Formal Modeling and Analysis Military Avionics 
Systems

A collaborative research project between the University 
of South Australia and Australia’s Defense Science and 
Technology Organization aiming at modeling and analyzing 
avionics mission systems is another success story [21]. The 
application is an avionics mission system (AMS) for AP-3C 
Orion maritime surveillance aircraft. The complexity of such 
systems comes from the large number of hardware and 
software components, and their integration.

The key contribution of this work is to combine state 
space methods and Colored Petri Nets (CPN) to reason 
system properties. Due to the vast number of subsystems and 
components, complexity can only be managed by higher 
level of abstraction. CPN was chosen because (1) it provides 
primitives for modeling concurrency and synchronization; 
(2) it provides primitives for modeling data manipulation; (3) 
it is parameterized and can easily be shared for different 
systems; (4) it supports hierarchical design specification; and 
(5) it is executable thus can be simulated. In this case study, 
CPN was used to model different levels of abstraction, 
allowing formal specification of communications between 
various subsystems and the avionics bus.

The most challenging tasks for AMS is task scheduling 
and data transfer management. Task scheduling problem was 
handled by a state space search approach in this application. 
If a path from an initial state to a final state is found, then a 
schedule has been successfully identified. Compared to 



traditional scheduling algorithms, this approach creates a 
single model that can be used for both task scheduling and 
property specification.

All data transfer in this case study happen on a shared 
data bus, making it critical to ensure the safety and accuracy 
of data. In this system, data can be transferred between 
sensors, central control unit, display and storage. The CPN 
model allows a high level description of the entire data 
management network.

A remaining challenge for this cast study was the state 
space explosion problem. As the number of system tasks 
increase, the state space of the CPN model grows 
significantly. In the original publication, the author proposed 
to investigate more advanced methods for reducing the state 
space in similar models.

Overall, this case study represents an effective formal 
modeling and analysis approach for a real mission-critical 
application. The result of this work was the high confidence 
level of the AP-3C aircraft mission system, which 
contributes to the aircraft’s major missions,, including anti-
subsurface/surface warfare, surveillance, search/rescue, and 
maritime strike.

G. Aircraft Safety-critical Software 

A recent publication by Yin, Liu, and Su [25] reported a 
formal verification technique for an aircraft safety-critical 
software (ASCS) – an aircraft inertia/satellite navigation 
system. Realizing the general effectiveness of extended finite 
state machine (EFSM) in formal verification of embedded 
software systems and its incapability to meet real-time 
requirements of the ASCS, this work introduced a real-time 
extension of EFSM, named RT-EFSM.

The developed RT-EFSM model is used to describe the 
following properties of ASCS: (1) behavior (static and 
dynamic); (2) real-time characteristics; (3) complex state 
transition. The same model is also used to solve the state 
explosion problem and ensure the consistency of ASCS 
models.

The validation of RT-EFSM involves checking of several 
critical properties of the model, as shown in Figure 8. Once 
validated, the model can be used to generate valuable test 
sequence. A time extended unique input/output (UIO) 
sequence was introduced to accommodate the real time 
system. During the test sequence generation, depth-first 
search tree is constructed for easy traversing and improving 
test coverage.

The developed formal approach was applied to an aircraft 
inertia/satellite navigation system. It is reported that the 
verification methodology is very effective for this 
application.  

ASCS schematic

RT-EFSM model

Optimized & 
validated RT-EFSM 

model

Generated test 
sequence

Determinacy?

Reachability?

Consistency?

Figure 8. RT-EFSM based verification for ASCS 

IV. CONCLUSION

Formal verification has been used in many applications 
as an alternative to traditional testing approaches –
simulation for hardware designs and dynamic testing for 
software systems. With the extreme requirement of reliability 
of mission-critical and safety-critical systems, being able to 
effectively verify the design throughout the design cycle is 
highly desirable. There is increasing number of published 
work in applying formal verification to mission-critical and 
safety-critical systems in recent years.

This paper surveys the recent research and development 
of formal verification in high-consequence applications. 
Several case studies are analyzed for their unique application 
and challenge, applied formal approach, and delivered 
results. The cases studied include both hardware systems and 
software systems. For hardware systems, the survey focuses 
on designs implemented with FPGA, because of its 
flexibility, reconfigurability, and growing popularity in the 
targeted applications. The surveyed cases applied various 
formal methodologies to accommodate different 
applications, including both equivalence checking and 
formal model checking.

Additional application of formal verification in safety-
critical system include railway interlocking system [15], 
hybrid emergency control component [13], medical device 
software system [12] etc.

With the advancing research in formal methods and 
formal verification technology, more and more successful 
applications are expected to be published. More advanced 
formal tools are also expected from the Electronic Design 
Automation (EDA) industry to further enhance verification. 
A recent success story is the joint effort between Northrop 
Grumman Italia and Mentor Graphics to achieve DO-254 
compliance [18].



Followed by this survey, innovative mission-critical 
applications of formal verification will be identified and 
appropriate technology will be investigated and developed. 
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