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Abstract—This paper will investigate energy-efficiency
for various real-world industrial computed-tomography
reconstruction algorithms, both CPU- and GPU-based
implementations. We show that the energy required for a
given reconstruction is based on performance and problem
size. There are many ways to describe performance and
energy efficiency, thus we will investigate multiple metrics
including performance-per-watt, energy-delay product, and
energy consumption. We found that irregular GPU-based
approaches [1] realized tremendous savings in energy
consumption when compared to CPU implementations
while also significantly improving the performance-per-
watt and energy-delay product metrics. Additional energy
savings and other metric improvement was realized on the
GPU-based reconstructions by improving storage I/O by
implementing a parallel MIMD-like modularization of the
compute and I/O tasks.

I. I NTRODUCTION

Industrial Computed Tomography (CT) is an indirect
imaging Technique similar to medical applications ex-
cept frequently on a larger scale with respect to dose,
energy, and resolution [2], [3]. The system consists of
an x-ray source and detector with a rotary stage located
somewhere in between the two (dependent on the desired
magnification and system limitations) along with a post-
processing machine, usually a high-end laptop, worksta-
tion, or supercomputer. The x-ray source and detector
are typically stationary while the measurement object
is rotated on the rotary stage. Multiple X-ray images
(projections) are acquired about the axis of rotation,
usually measured with just one revolution [4]. For this
paper, large-scale CT can mean that numerous projec-
tions are acquires (greater than 1000), the projections
have a large pixel count (greater than 10 megapixels), or
any combination thereof.

CT reconstructions are very computationally and
bandwidth intensive and thus requires significant com-

puting resources such as a high-end workstation or
cluster. For many industrial CT applications, the recon-
struction algorithm used has complexity ofO(n4) [5],
with some special CPU-based algorithms that reduce the
complexity toO(n3 log(n)) [6], [7]

Due to the enormous input datasets (usually between
1 gigabyte and 20 gigabytes) and the computational
complexity, reconstruction of industrial datasets can eas-
ily consume a significant amount of energy. Therefore,
consideration should be taken in choosing an appropriate
computing platform.

This work will evaluate multiple implementations
of the standard Feldkamp-David-Kress (FDK) recon-
struction algorithm [8] that is routinely used for non-
destructive testing and industrial scale applications. The
evaluation will include multiple energy-efficiency met-
rics, including energy consumption, performance-per-
watt, and the energy-delay product to obtain a broad
understanding of the energy-efficiency characteristics of
this real-world application.

II. ENERGY EFFICIENCY

A very simple way of looking at energy efficiency is to
measure the total energy used by each system. The less
energy used by one system in comparison to another,
the better. However, this misses the very important
dimension of performance. Two systems may expend the
same amount of energy for a given computation, but the
total time required may be very different. Thus, other
metrics are needed in order to include the notions of
power and performance.

One such common measure that incorporates the speed
of computation is performance per watt, often MIPS/W
or million instructions per second per watt. This incorpo-
rates the power of the system into the energy efficiency
metric. However, this measure is more appropriate for
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laptops or mobile devices, where reducing energy con-
sumption is vital to save the battery. For many integrated
circuit designs, power consumption is proportional to
the square of the voltage, and reducing voltage by half
reduces the frequency of the circuit by much less because
of this quadratic term [9]. Thus one could easily sacrifice
speed to get a better value for performance per watt.
When speed of computation is a more vital factor, a
different metric is warranted.

Gonzalez and Horowitz [10] propose a metric with
a greater emphasis on performance, namelyenergy×
delay, in other words, the total energy used times the
amount of time for the computation, with the lower
the number the better. Brooks et al. [11] propose even
squaring or cubing the delay, to give an even greater
emphasis on performance.

We will use all three of these metrics to compare
energy efficiency of the various implementations of the
FDK reconstruction algorithm we examine in this paper.

III. I RREGULAR COMPUTED TOMOGRAPHY

CT reconstruction algorithms frequently consist of
some variation of a back projection. The back projection
operation in a CPU-based environment is typically coa-
lesced with respect to the x-ray image or sinogram data.
Neighboring voxels in the reconstruction volume will
usually access image data from a small neighborhood
of pixels of a given x-ray image. In a multi-threaded
CPU-based implementation where the number of threads
is on the order of 16 and each thread is updating its
individually assigned voxel simultaneously, the memory
access pattern can still be made relatively small (i.e.
small enough so that CPU L1 and L2 cache hit-rates
are still acceptable) by assigning neighboring voxels to
CPU threads on the same multiprocessor. Regardless of
the position of this neighborhood in the volume, the
magnified projected neighborhood on the x-ray image is
still reasonably small for almost any volume of interest
and thus performance is not significantly degraded due
to the memory access pattern.

In a GPU-based environment, hundreds to thousands
of threads could potentially update hundreds to thou-
sands of voxels simultaneously. The magnified projection
data footprint could be potentially enormous (at least
larger than the on-chip cache structure can handle).
Additionally, these thousands of threads do not run in
lock-step; the consequence is neighboring threads poten-
tially accessing entirely different x-ray images, or worse,
updating entirely different image planes from a disjoint
subset of images. In the CUDA environment, lock-step
execution only occurs at the warp level (32 threads), with
no control on warp execution ordering [12]. Therefore,
the memory access pattern could easily become irregular
over the large projection data neighborhood and through-

out the entire reconstruction, thus severely hindering
performance. This problem is exacerbated by the intro-
duction of large-scale data; this include more projections,
large magnifications, large images, large voxel counts, or
any combination thereof. Although GPUs have worked
very well on reconstruction algorithms on smaller scale
datasets (medical datasets for example); for large-scale
data, the algorithm would still require hours to days to
reconstruct a 64 billion voxel volume.

IV. I MPLEMENTATION

The implementation of this work revolves around the
kernel design presented in the work by Jimenez et. al.
[1] in order to achieve a majority of the energy metric
improvement. The kernel design focuses on the general
architecture of a graphics processor and exploits various
features of the hardware such as:

1) Fast Device Memory:Data access can be faster
and in parallel fetches on Graphics processors,
this allows for faster evaluation of the bilinear
interpolation step required of most back projection
algorithms.

2) Massive Multi-threading:This is the most well
known feature and appeal of GPGPU applications.
For reconstruction, each thread is assigned a set of
voxels to update, arranged such that no more than
one voxel per image plane is assigned to a given
thread.

3) Texture Memory:Fast read-only memory that has
its own dedicated on-chip cache. Reading x-ray
subimages through texture memory frees up L1-
cache for voxel information and thus increasing
computational (and ultimately energy) efficiency.

4) Hardware Interpolation: An additional benefit
of utilizing texture memory is the exploitation
of hardware-based interpolation. Although GPU-
based interpolation is usually done in a lower
precision, it has been shown to not affect numerical
stability noticeably [13].

5) Constant Memory:To further reduce L1-cache
pressure, all geometry parameters defining the
arrangement of the CT system are stored in this
user customizable on-chip cache.

The work by Jimenez et. al. also showed that in order to
maximize voxel processing throughput by a GPU, one
must mostly dedicate the device memory to voxel storage
and upload small sets of x-ray projection data.

Implementing the irregular kernel is only half the the
task. Energy efficient optimizations made on the kernel
will be moot if the host cannot provide the device with
data fast enough in order to minimize device idling. To
address the host side implementation, the method devel-
oped by Orr and Jimenez [14]. This approach attempts



to minimize the GPU downtime by implementing an
MIMD-like environment on the host.

Many traditional reconstruction algorithms, both CPU
and GPU-based, execute tasks serially in a SIMD ap-
proach where a single thread on a CPU is tasked with
storage I/O and compute/GPU kernel launch tasks. The
consequence is that when a CPU thread is performing
I/O tasks, the GPU is idling and not contributing towards
the completion of any tasks while still consuming energy
(albeit in a potentially lower power state).

The MIMD-like approach modularizes the read,
launch and write tasks. Prior to reconstruction, threads
are assigned a duty; either read/launch or read/write.
Once assignments are made, the algorithm dynamically
determines the amount of system memory available and
calculates the number of image planes in the volume to
reconstruct simultaneously; allowing for volatile memory
storage of the relevant x-ray subimages necessary for
the given subvolume and the subvolume itself. Next, all
CPU threads perform the reading and pre-processing of
the relevant x-ray data. Once reading has completed,
a subset of threads (equal to the number of GPUs on
the host) each determine its proportion of image planes
to process at once, dependent on the GPU’s hardware
specifications and launches the required kernels while
feeding necessary input data to the GPU. Once the
reconstruction of the set of image planes is completed, it
downloads the image planes to host memory and fetches
the next set of image planes to reconstruct and repeats
the process until all image planes of the subvolume
are processed. The complement of host threads each
iteratively check if any image planes are ready to be
written. When the thread encounters an image plane that
is ready to be written, it fetches the image plane, per-
forms any required post-processing and writes the image
plane to storage media. This process is repeated until all
image planes of the subvolume are written to storage
media. The entire process is repeated until the entire
volume is reconstructed. The benefit of the approach is
that the storage bottleneck is ameliorated by allowing
writing tasks to occur during kernel computation while
simultaneously reducing GPU downtime. The drawbacks
to this approach is the additional load required on the
CPUs while the write threads are iteratively checking
for image planes to write and the additional memory
required to temporarily store the image planes.

This work will present two implementations of ir-
regular computed tomography; The first is a serialized
approach based on the work of Jimenez et. al. and
Jimenez and Orr [1], [15], the second is the modularized
approach of Orr and Jimenez [14] which expands on
the serialized approach by allowing overlapping compute
and write tasks. Both implementations were written in
C++ and Nvidia’s CUDA programming environment

(Ver. 5.0). For multiple GPU control, as well as the
CPU thread assignment in the modularized approach,
OpenMP 2.0 was utilized to implement CPU parallel
tasking.

V. EVALUATION

Three metrics will be measured:

1) Energy Consumption:This will be measured in
kilowatt-hours (kWh).

2) Performance-per-Watt:Presented as average vox-
els reconstructed (and stored) per second per
watt. Other more well-known performance-per-
watt metrics, such as MFLOPs per watt, were not
used as reconstruction is limited by the computa-
tion, the irregular memory access pattern, and the
storage media I/O.

3) Energy-Delay Product:This metric is measured to
ensure that the algorithm is not trading off energy
savings for a slower reconstruction. As a delay in
reconstruction is more detrimental and efficiency,
we use a square weighting of delay as suggested
by Laros III et. al. [16].

Metrics will be measured for four implementations
of CT reconstruction. The first is a CPU-based mul-
tithreaded approach that uses both MPI and OpenMP
to implement parallel processing. The CPU-based im-
plementation is currently used in industrial radiography
applications and will be used for comparison. Addition-
ally, to serve as a GPU-based baseline, a naı̈ve GPU-
based approach is developed which consists of a brute
force GPU-porting of CPU code which reconstructs one
image plane per GPU iteratively and does not exploit the
irregular nature of GPU-based reconstruction [1], [15].
The other two implementations are the serialized and
modular approach described in the previous section.

The experiments were performed on a high-end Su-
permicro workstation that consists of dual octo-core Intel
Xeon E-2687W processors clocked at 3.1 GHz with
hyperthreading, 512 GB of system memory, 8 Nvidia
Tesla M2090 GPUs (”Fermi”-class) in two Next I/O
S2090 units connected via 4 PCI-E 2.0 x16 host interface
cards, the storage media made up of 8 x 3GB SATA 6
Gb/s drives in a RAID 0 array controlled by an Intel
Controller with 1 GB of DDR3 cache.

Energy metrics were obtained using several P3 Inter-
national P4460 Kill-A-Watt EZ Electricity Usage Mon-
itors directly connected to the workstation and each
S2090 device. For the CPU-based implementation mea-
surements, all GPUs were disconnected from the system
before measurements are started to ensure GPU energy
consumption was eliminated from the measurements.
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Fig. 1. Energy Consumption in kWh for the 64 gigavoxel reconstruction.

VI. RESULTS

A. Energy Consumption

Figure 1 shows energy consumption for all imple-
mentations when reconstructing the 64 gigavoxel dataset
with respect to the number of GPUs. It is observed
that the GPU-port actually consumes more energy than
the CPU-based method when executed using 8 GPUs
while both irregular approaches require approximately
1 kWh. For the GPU-port method, the GPUs are never
fully utilized and as a result, a majority of the time is
spent idling. Figure 2 shows energy consumption for the
teravoxel dataset. For both irregular approaches, energy
consumption improves with respect to GPUs as the
reconstruction is completed in less time; it is noted that
the improvement seems to level off towards 8 GPUs and
is most likely due to PCI-E bus bandwidth limitations.
Figures 1 and 1 show that overlapping compute and stor-
age tasks does indeed improve the energy consumption.

B. Performance Per Watt

Figures 3 and 4 show performance per watt with
respect to the number of GPUs on the 64 gigavoxel
and teravoxel datasets respectively. It is observed that
while both irregular approaches significantly outperform
the naı̈ve and CPU-based approaches, the metrics do

not improve with respect to GPUs, and in the se-
rialized approach performance actually degrades. The
leveled/degraded performance may be due to the fact
that while 64 gigavoxels is indeed considered a large-
scale dataset, the dataset may not properly push the
limitations of the GPUs as is observed in the measurable
improvement with respect to GPUs in the teravoxel
dataset.

C. Energy-Delay Product

Figures 5 and 6 show the energy-delay product with
respect to GPUs on the 64 gigavoxel and teravoxel
dataset respectively. These figures validate that the ir-
regular approaches do not trade off efficiency for delay.
In fact, for the 64 gigavoxel dataset, the energy-delay
product increases by over an order of magnitude for the
non-irregular GPU-based approach. Figure 5 shows that
while the energy-delay product for the modular approach
slightly increases for 8 GPUs, it is still an improvement
over all other approaches.

For the teravoxel dataset, the reconstruction pushes all
approaches to their limits and thus we see a continued
improvement in the irregular approaches with respect to
GPU count. In both methods, we see that both irregular
approaches achieve an improved energy-delay product
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Fig. 2. Energy Consumption in kWh for the teravoxel reconstruction. Note: vertical axis is presented in a log-scale

by 3 orders of magnitude compared to the CPU-based
approach.

VII. C ONCLUSION

It has been well documented that computed tomogra-
phy reconstruction algorithms can greatly benefit from
the utilization of GPGPU technology. This has been
observed by the remarkable increase in computational
performance and reduction in time required to execute
the reconstruction task. We have shown that GPU-
based approaches also benefit from energy efficiency
performance; not just in overall energy consumption, but
other energy efficiency metrics as well. As the computing
community approaches energy limitations, intelligent
algorithm design will be crucial for the exploitation of
optimal performance from the hardware. The community
needs to explore other approaches outside of recon-
struction and investigate whether some algorithms can
be further improved by implementing energy efficient
methods.
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Fig. 3. Performance per watt for the 64 gigavoxel reconstruction
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Fig. 4. Performance per watt for the teravoxel reconstruction
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Fig. 5. Energy-Delay Product for the 64 gigavoxel reconstruction



2 3 4 5 6 7 8

10
3

10
4

10
5

10
6

10
7

Number of GPUs

E
ne

rg
y 

D
el

ay
 P

ro
du

ct
 (

K
W

H
)*

H

TVD: Energy Delay Product

 

 

Modular
Serial
Naive
Hybrid−CPU

Fig. 6. Energy-Delay Product for the teravoxel reconstruction


