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Abstract—This paper will investigate energy-efficiency puting resources such as a high-end workstation or
for various real-world industrial computed-tomography  cluster. For many industrial CT applications, the recon-
reconstruction algorithms, both CPU- and GPU-based struction algorithm used has complexity 0f(n4) 5]

implementations. We show that the energy required for a . . .
given reconstruction is based on performance and problem with some special CPU-based algorithms that reduce the

size. There are many ways to describe performance and COmplexity toO(n?log(n)) [6], [7]
energy efficiency, thus we will investigate multiple metris Due to the enormous input datasets (usually between
including performance-per-watt, energy-delay product, ad 1 gigabyte and 20 gigabytes) and the computational
energy consumption. We found that irregular GPU-based ¢, mpexity, reconstruction of industrial datasets can eas
approaches [1] realized tremendous savings in energy . L
consumption when compared to CPU implementations ily ansume a significant amognt of energy. Therefo_re,
while also significantly improving the performance-per- consideration should be taken in choosing an appropriate
watt and energy-delay product metrics. Additional energy computing platform.
savings and other metri(; improvgment was realized on the  This work will evaluate multiple implementations
GPU-based reconstructions by improving storage /O by ot he standard Feldkamp-David-Kress (FDK) recon-
implementing a parallel MIMD-like modularization of the . . . .
compute and 1/O tasks. struct|0n_ algon?hm [8] '_[hat |s_rout|nely use_d fpr non-
destructive testing and industrial scale applicationse Th
evaluation will include multiple energy-efficiency met-
rics, including energy consumption, performance-per-
Industrial Computed Tomography (CT) is an indirecivatt, and the energy-delay product to obtain a broad
imaging Technique similar to medical applications exanderstanding of the energy-efficiency characteristics of
cept frequently on a larger scale with respect to dosijs real-world application.
energy, and resolution [2], [3]. The system consists of
an x-ray source and detector with a rotary stage located
somewhere in between the two (dependent on the desired\ very simple way of looking at energy efficiency is to
magnification and system limitations) along with a posteasure the total energy used by each system. The less
processing machine, usually a high-end laptop, workstanergy used by one system in comparison to another,
tion, or supercomputer. The x-ray source and detectitre better. However, this misses the very important
are typically stationary while the measurement objedimension of performance. Two systems may expend the
is rotated on the rotary stage. Multiple X-ray imagesame amount of energy for a given computation, but the
(projections) are acquired about the axis of rotatiomptal time required may be very different. Thus, other
usually measured with just one revolution [4]. For thisnetrics are needed in order to include the notions of
paper, large-scale CT can mean that numerous projgower and performance.
tions are acquires (greater than 1000), the projectionsOne such common measure that incorporates the speed
have a large pixel count (greater than 10 megapixels), of computation is performance per watt, often MIPS/W
any combination thereof. or million instructions per second per watt. This incorpo-
CT reconstructions are very computationally andates the power of the system into the energy efficiency
bandwidth intensive and thus requires significant conmetric. However, this measure is more appropriate for

|. INTRODUCTION

Il. ENERGY EFFICIENCY



laptops or mobile devices, where reducing energy coaut the entire reconstruction, thus severely hindering
sumption is vital to save the battery. For many integratgmerformance. This problem is exacerbated by the intro-
circuit designs, power consumption is proportional tduction of large-scale data; this include more projections
the square of the voltage, and reducing voltage by hd#frge magnifications, large images, large voxel counts, or
reduces the frequency of the circuit by much less becaumsy combination thereof. Although GPUs have worked
of this quadratic term [9]. Thus one could easily sacrificeery well on reconstruction algorithms on smaller scale
speed to get a better value for performance per watlatasets (medical datasets for example); for large-scale

When speed of computation is a more vital factor, data, the algorithm would still require hours to days to

different metric is warranted.
Gonzalez and Horowitz [10] propose a metric with
a greater emphasis on performance, nanslgrgy x
delay, in other words, the total energy used times the
amount of time for the computation, with the lower
the number the better. Brooks et al. [11] propose evﬂa
squaring or cubing the delay, to give an even great
emphasis on performance.
We will use all three of these metrics to compar?
energy efficiency of the various implementations of the
FDK reconstruction algorithm we examine in this paper. 1)

CT reconstruction algorithms frequently consist of
some variation of a back projection. The back projection
operation in a CPU-based environment is typically coa-
lesced with respect to the x-ray image or sinogram data.
Neighboring voxels in the reconstruction volume will
usually access image data from a small neighborhood
of pixels of a given x-ray image. In a multi-threaded
CPU-based implementation where the number of threads
is on the order of 16 and each thread is updating its
individually assigned voxel simultaneously, the memory
access pattern can still be made relatively small (i.e.
small enough so that CPU L1 and L2 cache hit-rates
are still acceptable) by assigning neighboring voxels to
CPU threads on the same multiprocessor. Regardless of
the position of this neighborhood in the volume, the
magnified projected neighborhood on the x-ray image is
still reasonably small for almost any volume of interest
and thus performance is not significantly degraded due
to the memory access pattern.

In a GPU-based environment, hundreds to thousands®)
of threads could potentially update hundreds to thou-
sands of voxels simultaneously. The magnified projection
data footprint could be potentially enormous (at least
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reconstruct a 64 billion voxel volume.

IV. IMPLEMENTATION

The implementation of this work revolves around the
rnel design presented in the work by Jimenez et. al.
in order to achieve a majority of the energy metric
improvement. The kernel design focuses on the general
rchitecture of a graphics processor and exploits various

eatures of the hardware such as:

Fast Device MemoryData access can be faster

and in parallel fetches on Graphics processors,
this allows for faster evaluation of the bilinear

interpolation step required of most back projection
algorithms.

2) Massive Multi-threading:This is the most well

known feature and appeal of GPGPU applications.

For reconstruction, each thread is assigned a set of
voxels to update, arranged such that no more than
one voxel per image plane is assigned to a given

thread.

3) Texture MemoryFast read-only memory that has

its own dedicated on-chip cache. Reading x-ray
subimages through texture memory frees up L1-
cache for voxel information and thus increasing
computational (and ultimately energy) efficiency.

) Hardware Interpolation: An additional benefit

of utilizing texture memory is the exploitation
of hardware-based interpolation. Although GPU-
based interpolation is usually done in a lower
precision, it has been shown to not affect numerical
stability noticeably [13].

Constant Memory:To further reduce L1-cache
pressure, all geometry parameters defining the
arrangement of the CT system are stored in this
user customizable on-chip cache.

larger than the on-chip cache structure can handldle work by Jimenez et. al. also showed that in order to
Additionally, these thousands of threads do not run imaximize voxel processing throughput by a GPU, one
lock-step; the consequence is neighboring threads potemdst mostly dedicate the device memory to voxel storage
tially accessing entirely different x-ray images, or worseénd upload small sets of x-ray projection data.

updating entirely different image planes from a disjoint Implementing the irregular kernel is only half the the
subset of images. In the CUDA environment, lock-stefask. Energy efficient optimizations made on the kernel
execution only occurs at the warp level (32 threads), withill be moot if the host cannot provide the device with
no control on warp execution ordering [12]. Thereforajata fast enough in order to minimize device idling. To
the memory access pattern could easily become irreguéaidress the host side implementation, the method devel-
over the large projection data neighborhood and througbped by Orr and Jimenez [14]. This approach attempts



to minimize the GPU downtime by implementing ar(Ver. 5.0). For multiple GPU control, as well as the

MIMD-like environment on the host. CPU thread assignment in the modularized approach,
Many traditional reconstruction algorithms, both CPWpenMP 2.0 was utilized to implement CPU parallel

and GPU-based, execute tasks serially in a SIMD af&sking.

proach where a single thread on a CPU is tasked with

storage I/O and compute/GPU kernel launch tasks. The

consequence is that when a CPU thread is performing V. EVALUATION

I/O tasks, the GPU is idling and not contributing towards

the completion of any tasks while still consuming energy Three metrics will be measured:

(albeit in a potentially lower power state). 1) Energy ConsumptionThis will be measured in
The MIMD-like approach modularizes the read, kilowatt-hours (KWh).

launch and write tasks. Prior to reconstruction, threads,

are assigned a duty; either read/launch or read/write.

Once assignments are made, the algorithm dynamically

determines the amount of system memory available and

calculates the number of image planes in the volume to | ;5ed as reconstruction is limited by the computa-
reconstruct simultaneously; allowing for volatile memory tion, the irregular memory access pattern, and the
storage of the relevant x-ray subimages necessary for storage media /0.

the given subvolume and the subvolume itself. Next, all 5
CPU threads perform the reading and pre-processing of

the relevant x-ray data. Once reading has completed,

a subset of threads (equal to the number of GPUs on  econstruction is more detrimental and efficiency,

the host) each determine its proportion of image planes  \ye use a square weighting of delay as suggested
to process at once, dependent on the GPU’s hardware by Laros Il et. al. [16].

specifications and launches the required kernels while
feeding necessary input data to the GPU. Once theMetrics will be measured for four implementations
reconstruction of the set of image planes is completed 9t CT reconstruction. The first is a CPU-based mul-
downloads the image planes to host memory and fetcHégreaded approach that uses both MPI and OpenMP
the next set of image planes to reconstruct and repefsimplement parallel processing. The CPU-based im-
the process until all image planes of the subvolunfdementation is currently used in industrial radiography
are processed. The complement of host threads eafplications and will be used for comparison. Addition-
iteratively check if any image planes are ready to kally, to serve as a GPU-based baseline, a naive GPU-
written. When the thread encounters an image plane tased approach is developed which consists of a brute
is ready to be written, it fetches the image plane, peferce GPU-porting of CPU code which reconstructs one
forms any required post-processing and writes the imaljBage plane per GPU iteratively and does not exploit the
plane to storage media. This process is repeated until &ggular nature of GPU-based reconstruction [1], [15].
image planes of the subvolume are written to storaJéﬂe other two implementations are the serialized and
media. The entire process is repeated until the entfeedular approach described in the previous section.
volume is reconstructed. The benefit of the approach isThe experiments were performed on a high-end Su-
that the storage bottleneck is ameliorated by allowingermicro workstation that consists of dual octo-core Intel
writing tasks to occur during kernel computation whileXeon E-2687W processors clocked at 3.1 GHz with
simultaneously reducing GPU downtime. The drawbackyperthreading, 512 GB of system memory, 8 Nvidia
to this approach is the additional load required on thEesla M2090 GPUs ("Fermi’-class) in two Next /O
CPUs while the write threads are iteratively checkin§2090 units connected via 4 PCI-E 2.0 x16 host interface
for image planes to write and the additional memorgards, the storage media made up of 8 x 3GB SATA 6
required to temporarily store the image planes. Gb/s drives in a RAID 0 array controlled by an Intel
This work will present two implementations of ir- Controller with 1 GB of DDR3 cache.
regular computed tomography; The first is a serialized Energy metrics were obtained using several P3 Inter-
approach based on the work of Jimenez et. al. amational P4460 Kill-A-Watt EZ Electricity Usage Mon-
Jimenez and Orr [1], [15], the second is the modularizetbrs directly connected to the workstation and each
approach of Orr and Jimenez [14] which expands d®2090 device. For the CPU-based implementation mea-
the serialized approach by allowing overlapping computirements, all GPUs were disconnected from the system
and write tasks. Both implementations were written ibefore measurements are started to ensure GPU energy
C++ and Nvidia’s CUDA programming environmentconsumption was eliminated from the measurements.

) Performance-per-WattPresented as average vox-
els reconstructed (and stored) per second per
watt. Other more well-known performance-per-
watt metrics, such as MFLOPs per watt, were not

) Energy-Delay ProductThis metric is measured to
ensure that the algorithm is not trading off energy
savings for a slower reconstruction. As a delay in
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Fig. 1. Energy Consumption in kWh for the 64 gigavoxel re¢arcdion.

VI. RESULTS not improve with respect to GPUs, and in the se-
A. Energy Consumption rialized approach performance actually degrades. The

. : : leveled/degraded performance may be due to the fact
Figure 1 shows energy consumption for all imple;

tat h tructing the 64 ai | dat that while 64 gigavoxels is indeed considered a large-
mentations when reconstructing the 54 gigavoxel datasil, o dataset, the dataset may not properly push the
with respect to the number of GPUs. It is observe

that the GPU-port actually consumes more enerav th itations of the GPUs as is observed in the measurable
the CPU-basch)i methgd zvhen gxecuted using E?yGP gprovement with respect to GPUs in the teravoxel

while both irregular approaches require approximately taset.

1 kwh. For the GPU-port method, the GPUs are never Energy-Delay Product

fully utilized and as a result, a majority of the time is

spent idling. Figure 2 shows energy consumption for the Figures 5 and 6 show the energy-delay product with

teravoxel dataset. For both irregular approaches, enef§gpect to GPUs on the 64 gigavoxel and teravoxel
Consumption improves with respect to GPUs as t[ﬂﬂtaset respectively. These figures validate that the ir-
reconstruction is completed in less time; it is noted th&€gular approaches do not trade off efficiency for delay.

the improvement seems to level off towards 8 GPUs atd fact, for the 64 gigavoxel dataset, the energy-delay
is most likely due to PCI-E bus bandwidth limitationsProduct increases by over an order of magnitude for the
Figures 1 and 1 show that overlapping compute and stéton-irregular GPU-based approach. Figure 5 shows that

age tasks does indeed improve the energy consumptidfile the energy-delay product for the modular approach
slightly increases for 8 GPUs, it is still an improvement

B. Performance Per Watt over all other approaches.

Figures 3 and 4 show performance per watt with For the teravoxel dataset, the reconstruction pushes all
respect to the number of GPUs on the 64 gigavoxapproaches to their limits and thus we see a continued
and teravoxel datasets respectively. It is observed thatprovement in the irregular approaches with respect to
while both irregular approaches significantly outperforrPU count. In both methods, we see that both irregular
the naive and CPU-based approaches, the metrics afiproaches achieve an improved energy-delay product
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Fig. 2.

by 3 orders of magnitude compared to the CPU-based
approach. [1]

VII. CONCLUSION

It has been well documented that computed tomogra-
phy reconstruction algorithms can greatly benefit fromy
the utilization of GPGPU technology. This has been
observed by the remarkable increase in computational
performance and reduction in time required to executg
the reconstruction task. We have shown that GPU-
based approaches also benefit from energy eﬁicienéﬁ‘/]
performance; not just in overall energy consumption, but
other energy efficiency metrics as well. As the computings]
community approaches energy limitations, intelligent
algorithm design will be crucial for the exploitation of
optimal performance from the hardware. The communitys]
needs to explore other approaches outside of recon-
struction and investigate whether some algorithms can
be further improved by implementing energy efficient[7]
methods.
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