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Abstract. This paper is the first of three related articles, which de-
velop and demonstrate a new, optimization–based framework for com-
putational modeling. The framework uses optimization and control ideas
to assemble and decompose multiphysics operators and to preserve their
fundamental physical properties in the discretization process. An optimization–
based monotone, linearity preserving algorithm for transport (OBT)
demonstrates the scope of the framework. The second and the third parts
of this work focus on the formulation of efficient optimization algorithms
for the solution of the OBT problem, and computational studies of its
accuracy and efficacy.

1 Introduction

In this, and two companion papers [1, 2], we formulate, apply and study compu-
tationally a new optimization-based framework for computational modeling. The
framework uses optimization and control ideas to (i) assemble and decompose
multiphysics operators and (ii) preserve their fundamental physical properties
in the discretization process. It develops further the approach in [3, 4], which
demonstrates an optimization-based synthesis of fast solvers. Here we focus on
application of the framework for the preservation of physical properties. We de-
velop an optimization-based algorithm for transport (OBT) of a positive scalar
function (density), which is monotone and preserves local bounds and linear
functions on arbitrary unstructured grids.

The OBT algorithm combines the incremental remap (constrained interpo-
lation) strategy for transport in [5] with the reformulation of the remap step as
an inequality constrained quadratic program (QP) [6]. The objective in this QP
is to minimize the discrepancy between target high-order mass fluxes and the
approximate mass fluxes subject to inequality constraints derived from physi-
cally motivated bounds on the primitive variable (density). The merger of these
ideas yields a new type of transport algorithms that can be applied to arbitrary

3 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under contract DE-
AC04-94-AL85000.
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unstructured grids and extended to higher than second-order accuracy by using
suitably defined target fluxes.

Our approach differs substantially from the dominant methods for trans-
port, which preserve the physical properties directly in the discretization pro-
cess through monotonic reconstruction of the fields. The slope and flux limiters
used for this purpose tie together preservation of physical properties with re-
strictions on the mesh geometry and/or the accuracy. As a result, many of them
do not preserve linear functions on irregular grids [7], which impacts accuracy
and robustness. An alternative is to use sophisticated “repair” procedures [8] or
error compensation algorithms [9], which fix the out-of-bound values and main-
tain positivity on arbitrary unstructured grids. However, limiters and “repair”
procedures obscure the sources of discretization errors, which complicates the
analysis of the transport schemes, and their higher-order extensions on unstruc-
tured grids are very complex.

2 An abstract framework for optimization–based
modeling

The abstract framework for optimization–based modeling in this section merges
at an abstract level many of the ideas explored in [3, 4, 6]. To explain the basic
concepts it suffices to consider a coupled problem with two “physics” components
L1 : X1 ×X2 ×D1 7→ Y and L2 : X2 ×X1 ×D2 7→ Y respectively, where Xi,
i = 1, 2, and Y are Banach spaces for the solution and the data, respectively.
The spaces Di, i = 1, 2, supply the model parameters. Given a set of parameters
di ∈ Di the multiphysics problem is to seek {u1, u2} ∈ X1 ×X2 such that

L1(u1, u2; d1) + L2(u2, u1; d2) = 0 . (1)

Regarding (1) we make the following assumptions

A.1 There exist subsets Ui ⊆ Xi such that ui ∈ Ui for any solution of (1).
A.2 Li are well-posed: given ũ2 ∈ U2 the equation L1(u1, ũ2; d1) = 0 has a unique

solution u1 ∈ U1. Conversely, if ũ1 ∈ U1, then L2(u2, ũ1; d2) = 0 has a unique
solution u2 ∈ U2.

A.3 There are discrete spaces Xh
ij , i, j = 1, 2; Y h, and discrete operators Lh1 :

Xh
11 × Xh

12 × D1 7→ Y h and Lh2 : Xh
22 × Xh

21 × D2 7→ Y h , such that for
ũh2 ∈ Xh

12, ũh1 ∈ Xh
21 the problems Lh1 (uh1 , ũ

h
2 ; d1) = 0 and Lh2 (uh2 , ũ

h
1 ; d2) = 0,

have unique solutions, and limh→0 ‖ui − uhi ‖Xh
ii

= 0; i = 1, 2.

A.4 Robust and efficient solvers (Lhi )−1 exist for each discrete constituent com-
ponent operator Lhi .

Remark 1. A.1 is a formal statement of intrinsic physical properties (maximum
principle, positivity, monotonicity, and etc.) of the exact solution of (1). A.2
states that the component physics operators Li are well-posed and preserve these
properties so long as the inputs are admissible. A.3–A.4 imply that each Li can
be discretized and solved in a stable, accurate and efficient manner, however, in
A.3–A.4 it is not assumed that Lhi preserve the physical properties in A.1.
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Assumptions A.1–A.4 can be satisfied for most problems of interest by break-
ing down the multiphysics model into sufficiently small constituent components.
However, in general, Xh

11 6= Xh
21 and Xh

22 6= Xh
12, which is a formal way of saying

that stable discretizations of L1 and L2 may require mutually exclusive field
representations. Consequently, Lh1 +Lh2 is not guaranteed to be a meaningful, let
alone a well-posed discrete operator. This means that even with A.1–A.4 hold-
ing, we are not assured that (i) a stable and accurate monolithic discretization of
the multiphysics problem (1) is readily available, and (ii) if such a discretization
exists, the resulting problem can be solved in a robust and efficient manner.

Our strategy for dealing with these two fundamental issues arising in the
discretization of complex multiphysics problems is based on non-standard appli-
cation of optimization and control ideas. Specifically, we reformulate (1) into an
equivalent multi-objective constrained optimization problem. The cost functional
in this problem minimizes discrepancies between multiple versions of the exact
solution subject to constraints derived from the component physics operators
and the condition that physical properties are preserved in the optimal solu-
tion. In so doing our approach exposes the component physics operators and
separates the preservation of physical properties from mesh geometry and field
representations. It is an example of a “divide-and-conquer” strategy, which de-
composes the operator space and relieves the discretization process of tasks that
it is not well-equipped to handle in a robust and efficient manner. Due to the
limited space, demonstration of the framework will be restricted to preservation
of physical properties in a single physics setting.

2.1 Optimization-based reformulation of multiphysics operators

We reformulate the multiphysics model (1) into a multi-objective constrained
optimization problem in three stages. For simplicity, we assume that all necessary
spaces are Hilbertian and postpone the discussion of data assimilation to the end
of the section. In the first stage we modify (1) into the equivalent problem

L1(u1, u2; d1) +R(θ) + L2(u2, u1; d2)−R(θ) = 0 , (2)

where X is a Hilbert space, θ ∈ X is a control function, and R : X 7→ Y is a
suitable operator. At the second stage we fix θ ∈ X, u12 ∈ U2, and u21 ∈ U1 and
split (2) into two independent problems: seek u11 ∈ X1 and u22 ∈ X2 such that

L1(u11, u12; d1) +R(θ) = 0 and L2(u22, u21; d2)−R(θ) = 0 (3)

The third stage, reconnects these problems using the multi-objective functional

J~α
(
u11, u12;u22, u21; θ

)
=

1

2

(
α1‖u11−u21‖2W + α2‖u22−u12‖2W + α3‖θ‖2X

)
, (4)
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where ~α = {α1, α2, α3}, and W is such that Xi ⊆ W . In this stage we replace
(1) by the constrained optimization problem3:

min J~α(u11, u12;u22, u21; θ) subject to


L1(u11, u12; d1) +R(θ) = 0

L2(u22, u21; d2)−R(θ) = 0

ui1 ∈ U1 ;ui2 ∈ U2 , i = 1, 2

. (5)

The first two constraints in (5) are defined by the physics operators, and the third
enforces the physical properties on the optimal solution. Its structure depends
on these properties and can include both equality and inequality constraints.

2.2 Discretization of the reformulated problem

The gist of our strategy is to use the optimization problem (5) as an instru-
ment to fuse stable and accurate discretizations Lhi of the constituent physics
operators into feature-preserving discretizations of the multiphysics problem (1).
We assume that Xh

ij and Lhi are as in A.1-A.4. Stable and accurate discretiza-
tions of the component operators may require mutually exclusive discrete spaces
Xh

11 6= Xh
21 and Xh

22 6= Xh
12. This is a serious problem for monolithic discretiza-

tions of (1) but is completely benign for the discretization of (5) where physics
operators are decoupled and can be approximated independently.

To separate the accuracy considerations from the preservation of physical
properties we treat the discrete solutions uhij of Lhi as targets that provide the
best possible accuracy and impose the constraints on a separate set of variables
ûhij . To this end, we modify the multi-objective functional by adding terms which

force these new variables ûhij close to the optimally accurate targets uhij :

Ĵ~α(ûhij , u
h
ij ; θ

h) =
1

2

( 2∑
i,j=1

α̂ij‖ûhij−uhij‖2W+

2∑
j=1

αj‖uh1j−uh2j‖2W+α3‖θh‖2X
)
, (6)

where ~α = {{α̂ij}, α1, α2, α3}. The discrete optimization problem then reads

min Ĵ~α(ûhij , u
h
ij ; θ

h) subject to


Lh1 (uh11, u

h
12; d1) +Rh(θh) = 0

Lh2 (uh22, u
h
21; d2)−Rh(θh) = 0

ûhi1,∈ U1 ; ûhi2 ∈ U2 ; i = 1, 2

. (7)

The discrete optimization problem (7) retains the key features of (5) and thus, it
can be used both for the synthesis of approximate multiphysics operators from
discretizations of their constituent physics components, and for the decompo-
sition of such operators into simpler parts.

3 Problem (5) differs from those encountered in conventional PDE-constrained opti-
mization. For instance, because θ is a virtual control, it is not subject to constraints,
and does not reduce solution regularity relative to the original problem (1).
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3 Application to transport problems

We use the optimization framework in Sections 2.1–2.2 to develop a new class of
conservative, monotone and bounds preserving methods for the scalar transport
equation

∂tρ+∇ · ρv = 0 on Ω × [0, T ] and ρ(x, 0) = ρ0(x) , (8)

where T > 0 is the final time, ρ(x, t) is a positive density function (the primitive
variable) on Ω × [0, T ] with initial distribution ρ0(x), and v is a velocity field.
For simplicity, we assume that ρ(x, t) = 0 on ∂Ω × [0, T ]. Let Kh(Ω) denote
a partition of Ω into cells κi, i = 1, . . . ,K. We solve (8) using a cell-centered
discretization of the density. The degrees of freedom ρni approximate the mean
cell density at time t = tn:

ρi(tn) =

∫
κi
ρ(x, tn)dV∫
κi
dV

=

∫
κi
ρ(x, tn)dV

vol(κi)
.

The approximate mass in cell κi at time tn is mn
i = ρni vol(κi).

To solve (8) we proceed as follows. Numerical integration of ρ0(x) on each grid
cell κi yields the initial cell masses ~m 0 = (m0

1, . . . ,m
0
K) and the initial density

distribution ~ρ 0 = (ρ01, . . . , ρ
0
K) on Kh(Ω), where ρ0i = m0

i /vol(κi). Suppose
that the approximate solution ~ρ n = (ρn1 , . . . , ρ

n
K) is known on Kh(Ω) at time

0 ≤ tn < T and ∆tn is an admissible explicit time step. To find the approximate
density distribution ~ρ n+1 = (ρn+1

1 , . . . , ρn+1
K ) on Kh(Ω) at the new time step

tn+1 = tn+∆n, we apply the forward incremental remapping algorithm [5]. This
algorithm advances the solution of (8) to the next time step using that the mass
of a Lagrangian volume VL(t) is conserved along the trajectories dx/dt = v:∫

VL(tn+1)

ρdV =

∫
VL(tn)

ρdV . (9)

In particular, if VL(tn) = Ω, and Ω̃ = VL(tn+1) is the deformed region, the total
mass is conserved:

M(Ω) =

∫
Ω

ρ(x, t)dV =

∫
Ω̃

ρ(x, t)dV = M(Ω̃) .

The idea of the incremental remap approach is to evolve the computational grid
Kh(Ω) into a grid K̃h(Ω̃) on the deformed region Ω̃ at tn+1, compute the mean
density on this grid and interpolate it back to Kh(Ω). Specifically, if we set
VL(tn) = κi then, according to (9) the mass m̃i in VL(tn+1) equals the mass mn

i

in VL(tn) and the mean density on VL(tn+1) is ρ̃i = mn
i /vol(VL(tn+1)).

In practice, VL(tn+1) is not known exactly and must be approximated. A
simple strategy is to evolve the vertices {xp} of κi along the trajectories using,
e.g., an explicit Euler method. This yields a cell κ̃i with vertices x̃p = xp+∆tnv,
which approximates VL(tn+1). The mass m̃i and the mean density ρ̃i on κ̃i are

m̃i = mn
i and ρ̃i =

mn
i

vol(κ̃i)
; i = 1, . . . ,K .
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Algorithm 1: One forward step of incremental remapping

input : Density approximation ~ρ n = (ρn1 , . . . , ρ
n
K) at time tn, time step ∆tn

output: Density approximation ~ρ n+1 = (ρn+1
1 , . . . , ρn+1

K ) at time tn+1

Project grid: Kh(Ω) 3 xp 7→ xp +∆tnv = x̃p ∈ K̃h(Ω̃)1

Transport m and ρ: ∀κ̃i ∈ K̃h(Ω̃) set m̃i = mn
i and ρ̃i = m̃i/vol(κ̃i)2

Remap density: ~ρ n+1 = R({ρ̃1, . . . , ρ̃K})3

Conservative interpolation (remap) of the mean density values ρ̃i from the de-

formed mesh K̃h(Ω̃) onto the original mesh Kh(Ω) gives the approximate mean
cell density ~ρ n+1 = (ρn+1

1 , . . . , ρn+1
K ) at the next time level; see Algorithm 1.

The conservative interpolation (remap) operator R is the key ingredient of
Algorithm 1. To state the requirements on R without going into unnecessary
technical details, it is convenient to assume that v · n = 0. In this case the
original and deformed regions coincide: Ω = Ω̃, and the mass is conserved at all
times. Let Ñi, and Ni denote the neighborhoods of κ̃i ∈ K̃h(Ω̃), and κi ∈ Kh(Ω),
resp., i.e., all cells that share vertex or an edge or a face with κ̃i or κi. Define

ρ̃min
i = min

j∈Ñi

ρ̃j ; ρ̃max
i = max

j∈Ñi

ρ̃j ;

Under the assumptions stated above, R must satisfy the following requirements:

R.1 local bounds are preserved: ρ̃min
i ≤ ρn+1

i ≤ ρ̃max
i ;

R.2 total mass is conserved:
∑K
i=0m

n+1
i =

∑K
i=0 m̃i =

∑K
i=0m

n
i ;

R.3 linearity is preserved: mn+1
i =

∫
κi
ρ(x, tn+1)dV if ρ(x, t) is linear in x.

We use the optimization framework in Section 2.2 to define a constrained in-
terpolation operator that satisfies R.1–R.3. The starting point is the flux-form
formula4 for the cell masses on Kh(Ω) corresponding to the new time level:

mn+1
i = m̃i +

∑
κ̃j∈Ñi

F̃hij ; i = 1, . . . ,K . (10)

The mass fluxes F̃hij approximate the mass exchanges between the cells in the

neighborhood Ñi of κ̃i. We specialize the abstract optimization problem (7) as
follows. Clearly, (8) is a “single-physics” equation and it suffices to consider a
single “physics” operator with a single target field uh and a single approximation
field ûh. We identify ûh with the mass fluxes in (10) and uh – with a target

flux F̃Tij which is exact for linear density functions. In this context, the single

“physics” operator Lh(uh) is the target flux reconstruction

Lh(F̃Tij ) = F̃Tij =

∫
κi∩κ̃j

ρ̃ `j(x)dV −
∫
κ̃i∩κj

ρ̃ `i(x)dV ; κ̃j ∈ Ñi ;κj ∈ Ni

4 The conditions under which this formula holds [9] can be always satisfied for the
settings of interest to us.
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where ρ̃ `i (x) is density reconstruction on cell κ̃i, which is exact for linear func-
tions. Finally, from R.1 we obtain bounds for the mass on the new time level:

ρ̃min
i vol(κi) = mmin

i ≤ mn+1
i ≤ mmax

i = ρ̃max
i vol(κi)

Thus, the abstract discrete problem (7) specializes to the following QP:

minimize
F̃h

ij

K∑
i=1

∑
κ̃j∈Ñi

(F̃hij − F̃Tij )2 subject to



F̃Tij =

∫
κi∩κ̃j

ρ̃ `j (x)dV −
∫
κ̃i∩κj

ρ̃ `i (x)dV ← “physics” operator

F̃hij = −F̃hji ← mass conservation

mmin
i ≤ m̃i +

∑
κ̃j∈Ñi

F̃hij ≤ mmax
i ← local bounds .

(11)

The optimization-based formulation (11) for constrained interpolation is of in-
dependent interest for Arbitrary Lagrangian-Eulerian methods [6]. It separates
enforcement of the physical properties R.1 and R.2, which is done through the
constraints, from the enforcement of the accuracy R.3, which is achieved through
the objective functional. As a result, (11) is impervious to cell shapes and can be
used on arbitrary grids. We conclude Part 1 with a proof that (11) has optimal
solution. Part 2 [1] develops efficient algorithms for (11) and Part 3 [2] presents
implementation of Algorithm 1 and computational studies.

Theorem 1. Assume that Kh(Ω) and K̃h(Ω̃) are such that every cell κi ∈
Kh(Ω) is contained in the neighborhood Ñi of its image κ̃i ∈ K̃h(Ω̃). For any

given set of masses m̃i and associated densities ρ̃i = m̃i/vol(κ̃i) on K̃h(Ω̃) there

exist antisymmetric fluxes {F̃ij} which satisfy the inequality constraints in (11).

Proof. We need to show that there are antisymmetric fluxes F̃ij such that

ρ̃min
i vol(κi) ≤ ρ̃ivol(κ̃i) +

∑
κ̃j∈Ñi

F̃ij ≤ ρ̃max
i vol(κi)

Fix a cell index 1 ≤ i ≤ K, and choose ρ̂j , for κ̃j ∈ Ñj according to

ρ̃min
i ≤ ρ̂j ≤ ρ̃max

i for j 6= i and ρ̂i = ρ̃i . (12)

Define the fluxes

F̃ij = ρ̂jvol(κi ∩ κ̃j)− ρ̂ivol(κ̃i ∩ κj) . (13)

Clearly, F̃ij = −F̃ji. Using the definition (13)

ρ̃ivol(κ̃i) +
∑
κ̃j∈Ñi

F̃ij = ρ̃i

[
vol(κ̃i)−

∑
j 6=i

vol(κ̃i ∩ κj)
]

+
∑
j 6=i

ρ̂jvol(κi ∩ κ̃j)

= ρ̃ivol(κ̃i ∩ κi) +
∑
j 6=i

ρ̂jvol(κi ∩ κ̃j) =
∑
κ̃j∈Ñi

ρ̂jvol(κi ∩ κ̃j) .
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From κi = ∪k(κi ∩ κ̃j) and the bounds in (12) it follows that∑
κ̃j∈Ñi

ρ̂jvol(κi ∩ κ̃j) ≤ ρ̃max
i

∑
κ̃j∈Ñi

vol(κi ∩ κ̃j) = ρ̃max
i vol(κi) ;∑

κ̃j∈Ñi

ρ̂jvol(κi ∩ κ̃j) ≥ ρ̃min
i

∑
κ̃j∈Ñi

vol(κi ∩ κ̃j) = ρ̃min
i vol(κi) . �

In [6] we prove that (11) preserves linear densities if the barycenter of κi
remains in the convex hull of the barycenters of the cells in Ñi for all 1 ≤ i ≤ K.
This condition is less restrictive than the one required for linearity preservation
by Van Leer limiting [10] and is valid for any unstructured grid. In summary,
using Algorithm 1 in conjunction with an operator R defined by the QP (11),
yields a conservative and monotone transport algorithm that is applicable to
arbitrary cell shapes, including polygons and polyhedra.
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