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Abstract— With vastly increasing system parallelism, energy
efficient data movement has emerged as one of the key
challenges in High Performance Computing (HPC). Silicon
photonics uniquely offers the potential for creating system-wide
optical interconnection networks with extremely high
bandwidth and energy efficiency. However, to fully reap the
benefits of optical data movement, the interconnect design must
go beyond a simple wire replacement to include a fully
networked architecture. Furthermore, future optically
interconnected systems must support a wider range of HPC
applications, in particular, those with irregular behavior.
Simulation is an essential tool in the design space exploration of
future optical network-enabled systems for various applications.
However, simulation requires appropriate models capturing the
relevant system-interconnection network-application
interactions as well as the photonic physical layer integrity. An
important goal is to keep the simulation as simple as possible to
enable a wide design space exploration. In this paper, we
propose a traffic generation model that captures the interactions
and dependencies between computation and communication for
a given application. Our proposed model remains tractable
enough to be implemented on top of detailed photonic network
simulators as well as general enough to analyze different
components of the network under investigation.

Keywords—Optical interconnects, performance evaluation,
high-performance computing.

L INTRODUCTION

In recent years, parallelization has emerged as the main
enabler of High Performance Computing (HPC) speedup [1].
However, rising levels of parallelization induce a drastic
increase in the amount of data movement. For this reason,
interconnects linking multiple computing elements have
become critical components of the overall HPC system. Many
novel architectures have been proposed [2][3] in response to
this problem. Typical modern HPC interconnects span tens of
meters and must sustain Terabytes per second of aggregated
bandwidth. Given these requirements, photonics is a promising
solution due to its wide offered bandwidth and limited signal
attenuation over long distances. Although only a small portion
of the links are optical in current super-computers [4], this
proportion is likely to increase in the upcoming years as
technological advances are leading to cheaper and more
efficient optical links. Moreover, alternatives to optics will
likely be unable to sustain the future bandwidth requirements
[5].

In addition to increasing the proportion of optical links,
there is a great incentive to perform switching operations
optically to reduce the transfers between the optical and

electronic domains. If optical switching is performed on
Wavelength Division Multiplexed (WDM) data, a common
technique for optical transmission, the switching of hundreds
of Gb/s can be performed in one single operation. The
integration of optical switching in data-center type
interconnects with Micro Electro Mechanical Systems
(MEMS) acting as micro mirrors is proposed in references [6]
and [7]. Emerging technologies, such as Silicon Photonics,
have also been proposed to perform optical switching [8].

Optics  provides wide bandwidth, quasi-distance
independence, and fast, low power switching. Furthermore
optics can be exploited to perform unconventional networking
operations, such as multicast communications [9]. However,
no practical optical memories or buffers have been
demonstrated to date, presenting a significant challenge for
network design. Also, although some optical devices can be
operated at sub-nanosecond speeds (i.e. several or even tens of
Ghz), others demonstrate much slower reaction times. To
either circumvent or exploit these peculiarities, hardware
optical interconnect designs typically must be complemented
by custom network control mechanisms and protocols. One
common function of these control mechanisms and protocols
is to shift all the buffering on the optical network edge (where
it is achieved by electronic buffers)[10]. These obstacles
complicate the design process of a hybrid electrical/optical
interconnect. To make the design process even more difficult
to define, the design objectives vary with the HPC system
target application(s). Some applications primarily require
wide bandwidth, while others require fast message passing
mechanisms. Other application may have even more specific
requirements, such as barrier synchronization [11].

In this context, the interconnect design is not a direct
process, but requires a sequence of iterations across multiple
platforms, each with a different target level of abstraction.
Devices assembled in optical sub-systems are progressively
translated into network capabilities. Concurrently, the
application requirements can be analyzed and expressed as
network requirements. After these initial steps, the best
matching sub-systems are gathered into a full-size network
structure that at least partially fits the application
requirements. Finally, the application can be modified to
better exploit the optical sub-systems (or more generally, the
hardware), or vice-versa. Both may also be optimized jointly
in a co-design process [12].

In order to speedup this iterative process, a better
communication model between application developers and
networking engineers is necessary. Generally, network
architects express the capacities of their architectures in terms
of bisectional bandwidth, and/or latency while application



developers tend to describe an application as bandwidth
sensitive or latency sensitive. These generic definitions
unfortunately provide limited information. In fact, two
architectures providing the same theoretical bandwidth can
result in different application performances. This is especially
true in an optical networking context, as their buffer-less nature
may temporarily impair the nominal bandwidth due to
necessary retransmissions. Recent studies have shown that
parallel computer architectures can be affected by long tail
latency distributions [13]. However, such a statistic is difficult
to obtain, as the latency is application dependent.

In this paper, we propose a new abstract model to address
these issues. We start by representing applications as a set of
interdependent computation and communication operations.
Some computations can take place only after the reception of
input data, and resulting communications arise only after the
execution phase completes. This approach is similar to the
skeleton-based model used by Jannsen et al [14]. However,
while skeletons can explicitly represent an application code,
they can be labor-intensive or unrealizable, especially for
data-driven applications that exhibit irregular behavior. Unlike
skeletons, which are derived from real applications, we create
random operation sets. By changing the method of random set
creation, we can change the type of traffic, the length of the
computations, and their interdependencies. We can therefore
mimic different classes of applications. In particular, by
creating random operation sequences based on random tree
structures, we intend to capture the various interdependencies
between computations and communications present in
irregular applications. The main goal of the proposed scheme
is to capture the particular structure and dependencies of
application traffic without involving the application itself.
Moreover, given that the simulator is simplified at the traffic
level, this releases a margin in terms of execution time and
software complexity. This margin can in turn typically be
exploited to include more optics specific details in the
network simulation.

The remainder of this paper is organized as follows. In the
next section we compare our approach with existing
methodologies. In Section III, we present a model for the task
generator of a HPC system and show how it can be
parameterized. We apply generated operation sequences to
several interconnection architectures in Section IV. In Section
V we discuss how our approach can be extended. Conclusions
are drawn in Section VI.

II.  RELATED WORK

Due to the complexity, it is impossible to formulate the
interconnect design as a solvable equation set. The design
methodology consists of iteratively 1) sketching a preliminary
design based on the estimated application requirements; 2)
optimizing the interconnect parameters while keeping the
design physically achievable; 3) evaluating the performance
with modeling, simulation, and/or prototypes [15]. Analytical
modeling is of limited use due to dynamic behavior such as
congestion-aware or adaptive routing. Simulation is therefore
generally considered the main evaluation technique, along
with test-beds and prototypes later in the design cycle.
However, in this paper we focus only on simulation.

Candidate networks can be simulated with simple traffic
models, such as Poisson, which assumes no correlation
between message arrivals. This gives good insight as to the
intrinsic network performance in a dynamic environment (e.g.
bandwidth, minimal latency). However, because most
application traffic significantly diverges from Poisson traffic,
it is difficult to obtain information as to how well the
candidate network fits with any application. More complex
packet or flow based generation methods have been proposed,
in particular to capture the self-similar nature of the traffic in
many networks [16]. Soteriou et al. proposed this type of
traffic model for networks-on-chip [17]. Another packet
generation technique consists of reading trace files of
previously executed applications [18]. These complex traffic
models, or trace based packet generators, produce flows with
similar characteristics to those induced by applications.
However, the traffic is replicated a posteriori - this method
does not allow analysis of the impact of a message's delay on
the application state or on future packet emissions.

To capture these dependencies, a network can be modeled
within a cycle accurate simulation platform, such as gemS5
[19][20]. On these platforms, HPC sub-systems are described
at the instruction set level. Code execution, and therefore all
application/network interdependences can be simulated.
Because the interconnect is stressed in a realistic way, this
cycle accurate approach provides good system scale
performance estimates. However, the network's effect on
performance might be difficult to isolate, as many elements of
the system are modeled simultaneously. Furthermore, such
extensive simulations are extremely complex and time
consuming to construct and execute, and near impossible for
extreme scale. For this reason, cycle accurate simulators tend
to model the interconnect with a low level of detail (e.g.
accounting only for a given delay when a message has to be
transported, disregarding the network state).

To capture application/network interdependence while
keeping the simulation more tractable, transformed computer
code is executed along a coarse-grained network simulator
[14]. The portion of code that is purely computation is
replaced by a jump in time or a reduced model of the
computation, while the network simulator handles
communication calls. In this way, the communication patterns
can be simulated without significant overhead, while
remaining consistent with the original application.

Another simulation approach is to execute application
derived benchmarks on real hardware in order to understand
the requirements in terms of I/O [21]. This method provides
exact measurements, both in number of bits and execution
time, both extremely useful statistics, and can actually be used
to obtain the aforementioned traffic traces. Similar to our
proposed synthetic model, some benchmarks can be
configured to stress different aspects of the interconnect.
However, this approach is unfortunately only available to
HPC systems users. Additionally, as the hardware is
"concrete" - different protocols cannot be simulated in rapid
succession (the entire system must be reconfigured), and
hardware changes are simply inconceivable. Finally, in situ
benchmarks can be used only in rare exceptions to monitor the
activity of individual interconnect components, as probes are
difficult to insert directly into the HPC system.



These performance evaluation approaches are generally
complementary due to the different levels of software
infrastructure they require. Packet generation models can be
implemented in very lightweight software blocks, and
therefore quickly adapted on top of any network simulator.
This flexibility places them first in line to test novel
interconnect concepts. Application simulators require a
greater time investment: new interconnect architectures must
be developed and integrated, simulations conducted, and
relevant results extracted. These application simulators will
typically be used as second-pass performance analysis. The
output of a given performance evaluation approach can also
be used as input for another approach. For example, as
mentioned in the introduction, basic results in terms of
bandwidth and latency can first be obtained through packet
simulation. These bandwidth and latency values are then used
as characteristics of the simplified interconnect employed in
cycle accurate simulations. The opposite direction is also
plausible - cycle accurate simulations can be used to obtain
traces. Fig. 1 summarizes these approaches and their potential
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This description leaves a gap between lightweight
independent packet based generators and accurate
communication pattern simulators that capture the packet
interdependencies but require more software development. A
mechanism that both is easy to implement on top of network
simulators and accurately generates correlated packets is
desirable. For our purposes, this requirement exists in the
context of optical networking. Optics require the simulator to
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include physical layer details because designing optical
networks requires coordination across different layers of the
standard network protocol stack. Additionally, the buffer-less
nature of optical networks greatly impacts transmission
latencies. The optical network designer must have a tool to
analyze these atypical features specific to optical networks. A
related system was realized with the PhoenixSim NoC
simulator. Dependency graphs representing computation and
communication events and their dependencies are read by the
simulator and packets generated accordingly [22]. Here we
extend this concept and propose a random generation of inter-
dependent events.

III. MODEL DESCRIPTION

A. Generation description

We consider an HPC system with N interconnected nodes
which receives jobs at random points in time. We assume a
node to be an independent CPU. This system is composed of
N-1 computing nodes, and one scheduler node. When such a
job is received, the scheduler assigns it to one node of the
system (let this be called node 1). If no node is idle, the task is
queued at the scheduler.

Upon job reception, node 1 executes its root-task, starting
with the initialization phase. Each task may or may not
contain independent subtasks. Once the initialization phase
terminates, node 1 is aware of the number (and type) of
subtasks to execute. If there is more than one subtask, node 1
contacts the scheduler and asks if idle nodes can be assigned
to these subtasks to speedup the task completion time. If such
idle nodes exist, the scheduler returns a list of idle nodes.
Node 1 then contacts each node on this list and delegates a
subtask i.e. sends the data required to start the execution of
each subtask. A subtask can in turn be composed of more
subtasks. The same scheme repeats recursively, eventually
reaching Jeaf tasks which have no subtasks. Leaf tasks are also
composed of an initialization phase, but this is instead directly
followed by an aggregation phase. Once this aggregation
phase terminates, the aggregated results are transmitted back
to the delegating node, or are simply kept locally if the
subtask is executed locally.

A task comprised of subtasks similarly has an aggregation
phase that can be executed only when all results of the
subtasks are available. If one or more subtasks have been
delegated, the parent task might have to wait for the results.
As soon as all of these results are obtained, this aggregation
phase starts. Upon completion, results are transmitted to the
delegating node if the completed task is a subtask. If the task
is on the contrary the root task, we assume that no
transmission takes place. In a more sophisticated version of
the model, one node of the system could be designated as the
1/0 manager, to which final task results would be directed.

As it appears through the words (root, leaves), each
randomly arising job has a tree structure, with a root-task and
subtasks as vertices. The dependencies between the tasks form
the tree branches. Downward facing edges (toward the leaves)
indicate that subtasks cannot start before the parent task's
initialization phase ends; upward facing edges (toward the
root) imply that the task's aggregation phase depends on the
completion of the subtasks. Fig. 2 provides graphical



examples of such trees. In particular, Fig. 2b represents a
scatter/gather operation, extensively used in data-centers
[7]. The tree task representation detailed here is not directly a
dependency graph as evoked in [22]. However, such a
dependency graph G' can be obtained by applying the
following graph transformation to a job tree G. a) Each vertex,
v in G, is divided into two vertices v; and v,, representing the
initialization and aggregation phases respectively. b) v; and v,
inherit v’s outgoing and incoming edges respectively. c¢) If v is
a leaf, an additional edge v; — v, is added as the initialization
phase precedes the aggregation phase. An example of such a
transformation is depicted in Fig. 3.

B. Random task and trees generation

To generate the tree structure, we employ either a
deterministic method or a stochastic one. The deterministic
tree generator takes a vector, z = [z, z;, ... ,z;], as a parameter,
and constructs the tree such that each vertex of the i™ level of
the tree has z; siblings. Fig 4. displays several resulting trees
for different z vectors. The stochastic method is inspired from
the preferential attachment model described by Barabasi et al.
[24]. Given a tree graph H, we obtain a new graph H' by
adding a new vertex to H and by connecting it to exactly one
vertex u already in H. To select u, we compute for each vertex
v in H a weight w(v) = (2deg(v))’ where deg(v) designates the
degree of v and s is a parameter. We then operate a weighted
random selection. To obtain a tree with n vertices, we create
an initial graph with only a single vertex and then apply our
H—H' transformation n-/ times. Several graphs obtained with
this method are displayed in Fig. 5. The parameter s is used to
change the shape of the graph. When s >= ] graphs with few
hub vertices are favored. In opposition, when s < / vertices
with high degree are discriminated, leading to deeper trees
with many levels.

Fig. 4. Examples of trees provided by the deterministic tree generator
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Fig. 5. Examples of trees delivered by the stochastic generator

Once the tree is generated, we create as many tasks as
vertices in the tree. Formally, a task is described with four
values ( s‘s,s‘r,fi,ia) where S, stands for the number of bits

sent when the task is assigned (the data required to start the
initialization phase), §, for the size in bits of the task results,

{, and { for the initialization and aggregation phase
completion times (in seconds)®. Random tasks (i.e. tree

2As we assume all compute nodes of the system to be homogenous,
execution phases can be expressed in time units. In a heterogeneous
environment, these would be expressed in terms of operations per second, to
be later converted into time depending on each node’s computing power.

vertices) can be obtained by sampling four random variables
Sy S, T, T,). Our two job generators take parameters,
(z S, S, T, T,) and (n, s, S, S,, T;, T,). Note that to obtain a
wider diversity of jobs, (n, s) or z can also be randomly
generated. Also note that special sizes are used for the root-
task's messages. In the absence of an I/O node, these can be
considered control messages.

C. Scheduler and delegation model

As previously introduced, the scheduler assigns tasks and
subtasks. A possible scheduler implementation, realized in a
similar way in [24], is detailed here. However, other
scheduling strategies are possible.

Our example scheduler is the only entry point for arising
jobs. It maintains a list of flags indicating whether a
computing node is allocated or not. It also contains a FIFO for
queued jobs. When a task begins, a computing node is
randomly selected from those available, the description of the
task is sent to this node, and the corresponding busy status is
updated on the scheduler. If no node is available, the task is
inserted into the FIFO. The scheduler then reacts to node
allocation requests when necessary- as computing node M
terminates the initialization phase of its assigned task, it may
ask for additional nodes to complete the subtask execution. In
our example, M asks for a number of nodes equal to the
number of detected subtasks minus one, keeping one task for
itself (in this way, node M keeps itself at least partially busy
while expecting results from its delegates). The scheduler,
upon reception of an allocation request for k& nodes, allocates
(randomly) k nodes if k nodes are currently available or all the
remaining idling nodes else. The allocated nodes are marked
as busy and their IDs sent to M. Reversely, as M detects that
an allocated node is not needed anymore, it sends its ID back
to the scheduler. If M was assigned to a root task, it replies to
the scheduler, too. In both cases, the scheduler updates its
status list and checks the FIFO. If a task is waiting, it is
immediately assigned to the just released node.

Suppose node M is assigned to a task with m subtasks;
node M will request (m-1) allocations to the scheduler. If k <
m-1 IDs for idle nodes come back, all subtasks cannot be
executed in parallel. Node M therefore sends subtasks /
throu%h k to each of the k allocated nodes, then execute the
(k+1)" subtask itself. Upon completion of this subtask, it
assigns the (k+2)™ subtask to itself but does not execute it
until & answers are received from the & associated nodes. Each
time an answer is received, say from node r, an unassigned
subtask, if any remain, is sent back to r. If no there are no
additional subtasks, a release message is sent to the scheduler
for node r. Once all of the delegates of node M are either
released or assigned to a new task, node M starts the execution
of the (k+2)™ task. This scheme is repeated until all subtasks
are either delegated or executed locally.

D. Computation and communication footprint estimation

The computation and communication footprints of our
model can be predicted (deterministic tree generator, constant
distributions for S, S,, T;, T,) or estimated. For the sake of
notation simplicity, s;, s,, ¢; and ¢, hold for the expectancies of
Sy, S,, T;, T, respectively. 7 is the expectancy of the number of
vertices in the tree. If the deterministic generator is used,
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The computation time required by a single task is (#+¢,).
Therefore, the total computation footprint for a compound
task is F,=7i(t;+1,) (to distinguish between communication and
computation footprints, x stands for computation (execution)
while ¢ stands for communication). Assuming f jobs arrivals
per second on average, the mean computing load submitted to
the HPC is F,f. The relative computing load can be expressed
as p=F.p/(N-1)=i(t+t,)f/(N-1). p, is the ratio between the
offered computation load and the theoretical maximum
computational capabilities. It is therefore also an upper bound
for the computing nodes’ utilization.

The communication footprint is more complicated to
estimate. In case of system saturation, fewer nodes are
allocated and some subtasks are executed sequentially and
locally, which results in fewer communications between
nodes. The communication footprint is also determined by the
subtask allocation strategy. We consider here the strategy
detailed in previous subsection and assume the situation
where each node keeps always exactly one subtask locally (&
= m-I in previous subsection). The total number of
communication phases between the delegating nodes and the
nodes to which tasks are delegated is equal to the number of
the leaves in the tree minus one. This fact is true for both
stochastically and deterministically generated trees and is
easily illustrated with an example. We will examine the case
of a deterministic tree (Figure 4a) with z vector [2,6]. First,
the root node keeps one subtask for itself but must
communicate the other subtask to an idle node. Therefore to
move from level 0 to 1 of the tree, there is one
communication. To move from level 1 to 2, each of the two
subtasks spawns six sub-subtasks. However each of the two
nodes at level 1 keep one of their subtasks to execute locally.
Therefore, moving from level 1 to 2 of the tree results in ten
communications. Altogether, there are 11 communications,
which is the number of leaves minus one. It should be noted
that if a task spawns only one subtask, there is no
communication because the parent task will execute this one
subtask locally as previously explained. Therefore, each job
induces a network traffic of (L-7)(s,*s,), where L is the
number of leaves in the tree. The number of exchanges with
the scheduler also depends on the tree structure: only the
vertices with degree > 2 induce a delegation process (except
the root node that has no parent and delegates if the degree
is>1). Assuming d delegating vertices, (L-1)+2d+2
control messages are exchanged. The L-/ ones corresponds to
the release messages sent after each subtask completes, the 2d
accounts for the request-IDs and IDs-granted messages
exchanged with the mapper; 2 more messages account for the
communication with the root node to start and end the job.
The total communication footprint for a task, under the
maximum delegation assumption, is therefore
F.=(L-1)(sy+s,+¢) + ¢(2+2d), ¢ being the size of a control
message. The expressions or methods to obtain L and 4 for
each tree generator are provided in the Appendix.

Still considering the case where all potential delegations
happen (there are enough idle nodes when requested), the
average load offered to the interconnect is fF.. Assuming
each node has a maximum access bandwidth of B (bits/s), the

m=1

relative communication load can be expressed as p,= fF/BN.
Similarly to p, p. provides a relation between the
communication load induced by the arriving tasks and the
interconnect capabilities. However, as tasks can be kept
locally, p.is a bound and not a strict prediction.

E. Rough bandwidth estimation for balanced system

In large systems the ratio between the communication and
computation loads ¢ = p./p. =[FF/(N-1)//[fF/BN] can be
estimated as { =B/F, where F=F/F,. In the particular case
where { =/, i.e. when the interconnect and the computing
nodes are equally over- or under- dimensioned, we obtain
B=F. In other words, F'is the bandwidth required to have a
bandwidth/computation balanced system. This definition of a
balanced system considers a utilization point of view only. In
fact, diverse application (or, in our case, generated job)
requirements call for different bandwidth/computing resource
ratios. Nevertheless, F' is useful in expressing this ratio. If a
bandwidth B = {F'is present in the system, this means that the
interconnect is ' times more provisioned. As we will see in the
next Section, varying { allows shorter job completion times at
the price of network utilization, or vice-versa.

Table 1 summarizes the model's parameters and notation

F. Speedup bound

The completion time of a job arising in a HPC system
depends on the properties of tasks associated with that job,
and on the state of the system. F, can be taken as a reference
point, as it is the completion time if all tasks and subtasks are
executed sequentially. Another reference point is the minimal
completion time, which is given by the most costly path from
the root vertex in the tree (considering 7,7 as vertex costs).

For a leaf task to be executed, the initialization phase of each
vertex separating it from the root must be completed. As each
of these phases depends on the parent completion, they cannot
be parallelized. Successive aggregation phases leading up to
the root cannot be parallelized either. The minimal completion
time can therefore be estimated with D (#,+¢,), where D is the
depth of the tree. The maximal speedup compared to
sequential  execution can also be estimated as
F./ D(t;+t,) = /D (as Fy= fi(t+1,)).

TABLE L.

HPC system parameters

Number of computing nodes in the system

| Z

Computing node global I/O bandwidth [bits/s]

™

Control message size [bits]

Task generator parameters

Average task assignment message size [bits]

kg

Average task termination message size [bits]

kel

Endl

Average task initialization computing time [s]

o~

Average task aggregation computing time [s]

Average task arrival rate [s™']

Average number of subtasks in a job

Average number of leaves in a job tree

Average number of delegating tasks in a job

Per job average execution footprint

®

o

Per job average maximal communication footprint

SIS SRS

Job generator footprint ratio - Equilibrated bandwidth reference [bits/s]

Deterministic tree generator parameter

&~

| Vector of integers describing the tree span at each layer

Stochastic tree generator parameters

n | Vertices in the tree




s | Tree shape parameter
Global bounds and metrics
Pe Maximum relative communication load - Maximal theoretical
network utilization - Upper bound for measured network utilization
0. | Measured node utilization
P Relative computing load - theoretical node utilization -
Upper bound for measured node utilization
0. Measured network utilization
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The scheduler and tree generators are implemented in the
LWSim simulator [15]. In our implementation, the scheduler is
also responsible for simulating the sporadic arrival of jobs.
This is achieved by generating exponentially distributed inter-
arrival times with parameter S. In the following reported
simulations, 5 sequences of 1500 job arrivals have been
simulated, using different pseudo-random number generator
seeds.

SIMULATION EXAMPLES AND RESULTS

A. Implementation validation and relations to the bounds
Simple configurations are first tested to validate our
implementation. A simplified system organized around a
single switch interconnecting the N computing nodes with
bandwidth B is considered. The latency of the switch is fixed
to 200ns, the latency of the links to 20ns (so about 4m
assuming a light propagation speed of 2e8 m/s). The
predictability of the deterministic generator is exploited to
validate the model: z=[4,3] which translates into the following
values 7 = 17, L = 12, d = 5. Constant values of 20kB
(kBytes) and 40kB are used for s; and s, while #,= ¢,=10us.
The size of control messages ¢ is assumed to be 40bytes. This

results in footprints per job of F,=340us and F.=660.92kB,
with F=15.55 Gb/s as equilibrated bandwidth value ({=1).

The completion time of a single job running on networks
with varying bandwidths is represented in Fig. 6a. It is
measured as the time elapsed between the job arrival and the
"job complete" message arrival at the scheduler. For N=2
(sequential execution on a single computing node) this time is
340ps plus a round trip time between the computing node and
the scheduler, as expected. For higher N, completion times
(and speedups, Fig. 6b) depend on how the z=[4,3] job is
scheduled over the N nodes. As the job tree has a depth of 3
and all tasks are equal, the maximum speedup is #/D=17/3.
For a given B, this speedup is maximized as soon as all
possible delegations occur (N >= L). The speedup increases to
the maximum value as B increases (Fig. 6¢). As it appears in
Fig. 6a, some configurations are clearly disadvantageous and
show the limit of the job allocation strategy, especially for low
B. The case when N=4 is a typical example (Fig. 7a). Out of
the first 4 subtasks, only three can be parallelized. Therefore,
node 1 keeps the fourth task, and executes it after reception of
the other three aggregations results. The three siblings of the
last subtask are parallelized but because the network is slow,
this parallelism leads to critical waiting times. Fig. 7b shows a
case where subtask can be distributed more advantageously.
Note that the dependency graph structure detailed in Fig. 3c is
clearly visible in Fig.7b.
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Fig. 8. Evolution of the measured utilizations: (a) computing node (c)
network. (b) and (d) Comparisons with the theoretical values and bounds.

We then tested our implementation with N=100 and
different task arrival times. We calculated values for the
arrival rate using S= p,(N-1)/F, such that p, = 10%, 20%, etc.
For p,=0.1, B=29117. We use network bandwidth proportional
to the balanced bandwidth F to obtain p,= p. ((=1). Fig. 8
shows, for these increasing arrival rates (top axis) and loads
(bottom axis) that: a) g (i.e. the node utilization or the

computation throughput) is increasing almost proportionally
until p, =1, then saturates. The higher the bandwidth, the
closer it approaches one. b) The deviation between the offered
computing load p, (which is also the predicted node
utilization) and the effective node utilization g is limited up

to p, =1. Beyond this point, the deviation becomes obviously
larger as the system saturates. c) The effective network
utilization g _first grows linearly but drops much earlier as

some computations are achieved sequentially (p. is different
for each different bandwidth- the corresponding trends are



visible is dotted lines). d) The effective network utilization
deviates early from the bound except when bandwidth is over-
provisioned ({=4).

B. Utilization vs. speedup trade-off analysis

We tested our model with most of the parameters taken
randomly and assuming a larger scale system. Task execution
times and message sizes are modeled by uniform distributions
[2 us, 100 us] and [2kB, 128kB] respectively. Random trees
are generated with the stochastic generator. The number of
tasks in the tree is in the interval [25,175] (so 7=100) and s is
fixed to one initially. ¢ is kept to 40bytes. F, is therefore
10.2ms and F, is 9.07 MB. These values give an equilibrated
bandwidth B=F= 7.11 Gb/s. We consider architectures with
N=50 to 1000 computing nodes, and a job arrival rate S of
5000 task per second. We therefore have a computational load
spanning between p,=1.04 (for N=50) and p,=0.051]
(N=1000).

Figure 9(a) shows the 5 /p.deviation. The measured load

is lower than expected for a system close to saturation (p,
close to 1) or equivalently with a slow network. Fig. 9(b)
represents the speedup factor achieved by the system. For
B=10Gb/s and 100Gb/s, the speedup factor increases as more
computing nodes are present in the system, until a point where
idling nodes are always available and all possible delegations
can take place. As more bandwidth generally decreases
transmission times, node allocation and release messages
suffer fewer delays, resulting in a more dynamic node
allocation. Fewer nodes are hence required to reach the limit
speedup. However, with B=1Gb/s, the speedup is always less
than one (counter-productive case) and is even decreasing as
more nodes are added to the system. As visible in Fig. 9(c),
this is not due to a network overload: the network utilization
peaks around 23% for N=200 and then decreases. It is due to
the wide intervals separating the node status update events and
the actual start (or end) of the computation phase at the node.
The relative time spent in this "synchronization overhead"
depicted in Fig. 9(d). With B=1Gb/s, allocated nodes are
idling around 70% of the time, leading to poor performances.
Note that high overheads are also measured with more
bandwidth when the system is facing a more sustained load.
As it appears in the cases reported in Fig. 9, bandwidth
(or, more specifically, the bandwidth over-provisioning factor
{) is the determinant speed-up factor. This fact is confirmed in
Fig. 10(a), which represents the speed-up/network utilization
trade-off for the previous simulation cases. We can see that
using the current scheduler, significant speed-up can only be
achieved at the price of very low network utilization. In
Figure 10(b) we compare two HPC systems (N=300 or 500)
with different bandwidths (from 10Gb/s to 100Gb/s by steps
of 10Gb/s) running two types of random tasks (s parameter 1
or 2). The speed-up/network utilization trade-off appears
clearly again with this example. This parameter can therefore
be used mimic applications parallelizable to various extents.

C. Random tree based traffic over optical network

These presented results aim at explaining the raw
characteristics of our random task traffic model. We now
achieve our final objective: apply this traffic to different
optical networking platforms, analyze how these platforms

cope with this new environment, and take appropriate
measures if poor performances are reported.

We consider the same random tree task generator
configuration, applied to a HPC system comprised of 64 nodes.
These nodes are either connected with the single switch
network structure (the reference case), or with a multistage
optical interconnection network controlled by an in-band
signaling mechanism called SPINet [8]. B is fixed to 40Gb/s in
the reference case and to 160Gb/s in the SPINet case. Three
different SPINet variants are tested: with the minimal number
of interconnection stages (i.e. 6 for 64 ports) or with 1 or 2
additional stages. At the network level, the SPINet architecture
provides a drastically lower average latency than the reference
case (Fig. 11 (a-b)). The additional stages aid to further reduce
this latency. However, at the application level, the benefits of
the SPINet architecture, while still evident, are not of the same
order. Moreover, the modest advantages in terms of latency
gained by using multiple stages are not translated into a
significant speedup. This demonstrates that optimizing a
network considering only latency can be useless, or even
counter-productive.

0.25 0.1 Pz 0.06 0.25 01 Pz 0.06
1 - S N L L . HIOOOBOOOOOOOOOOOOOBOOOOODO
10} - -

8 a ——6— B=1Gb/s
< 3 —+— B=10Gb/s
4 g —— B=100Gb/s
— o 5 i
< g

k-] ‘:‘:

c ®

2 £

g 2 06|

E] ° ¢

£ £ |

o I

5 g 03

E‘_; 8 d

= )

250
Computing nodes (N}

500 750 250 500 750

Computing nodes (N)

Fig. 9. Various measurement with =35 task per ms and random tasks.

- o B=1Gbs g g T o - s=1, N=300
10 S : +  B=10Gb/s .0.20 ...@ .- s=1, N=500
x x__ B=100Gbis ||| @ €y | e s=2,n=300
g + ] . : Vg m s=2,N=500
8 : ", 2 .q ®.
@ % " a, ©
10 o T o
o Q}, 'I_"D..
0.01 0.03 Pe 0.1 0.01 0.03 e 0.1
Fig. 10. Network-utilisation / speedup trade-offs.
20 0 SPINet1
8le +  SPINet2
15 é% X SPINet3
Elec. network

Latency inp s

10

5

Speed-up

1
‘ (@) 0.2p, 0.4

Fi

—

V.

a . .
() 02p,0.4

(©

g. 11. Optical vs. electrical network comparison

2 Pz 04
b

EXTENSIONS AND FUTURE WORK

The proposed application model has been primarily
developed to analyze the impact of unconventional optics-



aware novel protocols on interdependent communication
phases. However this model also has large potential for
extensions beyond those proposed in this work. The
development of more complex, possibly optics-aware,
scheduling schemes is one possible direction. Another
extension could consist of replacing some vertices in the
random tree with a well known dependency pattern (e.g. an
FFT computation) to closer capture real application behaviors.
Alternatively, a dependency graph could be generated not out
of trees, but as directed graphs, leveraging an example such as
the GGen generator detailed in reference [25]. The HPC
model can also be complemented to consider multi-core nodes
or I/0 nodes.

Looking further ahead, such an approach can be leveraged
to analyze the impacts of dynamic load-balancing or
contention resolution scheme on the global performances. An
interesting feature that emerges from the reported results is
that the inter-dependence between the network and the
scheduler is as important as the application/network relation.
Scheduling algorithms design should therefore be included in
the co-design approach.

VL

This paper presents a performance evaluation approach for
High Performance Computing optical interconnects. Our
approach allows us to capture the interdependencies between
the application and network mechanisms. It also provides the
capability to tune the injected network load. Our approach,
being additionally relatively easy to implement on top of a
network simulator, allows us to include more optics-specific
aspects in the simulation while still evaluating the HPC
system as a whole. A formal model describing our approach is
provided. Numerical results obtained by simulation in various
cases exemplify the situations where our approach can
provide valuable information. In particular, results show that
improvements in terms of raw latency do not always translate
in global performance improvements.

CONCLUSIONS

APPENDIX

The number of leaves L and nodes with degree > 2 d are
easy to express when using the deterministic tree generator.

length(z) length(z)-2 Zk lf’ Zk >1
Ly, = H L dy =1+
0 else
k=1 =0

i.e. L4 (deterministic tree generator) is the product of z
elements (so 12, 30 and 30 for the examples of Fig. 4) and d
the sum of the n-1 first elements of z that are greater than 1,
plus one (so 3,7, and 9 in Fig. 4). Ly, (stochastic generator)
and dy, are harder to derive. Ly, can be written as np;, and
dgo= p» + (n-1)(1-p;-py), where p; and p, denote the
probability of a vertex in the tree to have degree 1 or 2
respectively, and (1-p;-p,) is the probability of having a
degree > 2. A table of values for pl and p2 can be obtained
via Monte Carlo simulations for several values of n and s.
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