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Abstract— With vastly increasing system parallelism, energy 

efficient data movement has emerged as one of the key 
challenges in High Performance Computing (HPC). Silicon 
photonics uniquely offers the potential for creating system-wide 
optical interconnection networks with extremely high 
bandwidth and energy efficiency. However, to fully reap the 
benefits of optical data movement, the interconnect design must 
go beyond a simple wire replacement to include a fully 
networked architecture. Furthermore, future optically 
interconnected systems must support a wider range of HPC 
applications, in particular, those with irregular behavior. 
Simulation is an essential tool in the design space exploration of 
future optical network-enabled systems for various applications. 
However, simulation requires appropriate models capturing the 
relevant system-interconnection network-application 
interactions as well as the photonic physical layer integrity.  An 
important goal is to keep the simulation as simple as possible to 
enable a wide design space exploration. In this paper, we 
propose a traffic generation model that captures the interactions 
and dependencies between computation and communication for 
a given application. Our proposed model remains tractable 
enough to be implemented on top of detailed photonic network 
simulators as well as general enough to analyze different 
components of the network under investigation. 

Keywords—Optical interconnects, performance evaluation, 
high-performance computing. 

I. INTRODUCTION 
In recent years, parallelization has emerged as the main 

enabler of High Performance Computing (HPC) speedup [1]. 
However, rising levels of parallelization induce a drastic 
increase in the amount of data movement. For this reason, 
interconnects linking multiple computing elements have 
become critical components of the overall HPC system. Many 
novel architectures have been proposed [2][3] in response to 
this problem. Typical modern HPC interconnects span tens of 
meters and must sustain Terabytes per second of aggregated 
bandwidth. Given these requirements, photonics is a promising 
solution due to its wide offered bandwidth and limited signal 
attenuation over long distances. Although only a small portion 
of the links are optical in current super-computers [4], this 
proportion is likely to increase in the upcoming years as 
technological advances are leading to cheaper and more 
efficient optical links. Moreover, alternatives to optics will 
likely be unable to sustain the future bandwidth requirements 
[5].  

In addition to increasing the proportion of optical links, 
there is a great incentive to perform switching operations 
optically to reduce the transfers between the optical and 

electronic domains. If optical switching is performed on 
Wavelength Division Multiplexed (WDM) data, a common 
technique for optical transmission, the switching of hundreds 
of Gb/s can be performed in one single operation. The 
integration of optical switching in data-center type 
interconnects with Micro Electro Mechanical Systems 
(MEMS) acting as micro mirrors is proposed in references [6] 
and [7]. Emerging technologies, such as Silicon Photonics, 
have also been proposed to perform optical switching [8].  

Optics provides wide bandwidth, quasi-distance 
independence, and fast, low power switching. Furthermore 
optics can be exploited to perform unconventional networking 
operations, such as multicast communications [9]. However, 
no practical optical memories or buffers have been 
demonstrated to date, presenting a significant challenge for 
network design. Also, although some optical devices can be 
operated at sub-nanosecond speeds (i.e. several or even tens of 
Ghz), others demonstrate much slower reaction times. To 
either circumvent or exploit these peculiarities, hardware 
optical interconnect designs typically must be complemented 
by custom network control mechanisms and protocols. One 
common function of these control mechanisms and protocols 
is to shift all the buffering on the optical network edge (where 
it is achieved by electronic buffers)[10]. These obstacles 
complicate the design process of a hybrid electrical/optical 
interconnect. To make the design process even more difficult 
to define, the design objectives vary with the HPC system 
target application(s). Some applications primarily require 
wide bandwidth, while others require fast message passing 
mechanisms. Other application may have even more specific 
requirements, such as barrier synchronization [11]. 

In this context, the interconnect design is not a direct 
process, but requires a sequence of iterations across multiple 
platforms, each with a different target level of abstraction. 
Devices assembled in optical sub-systems are progressively 
translated into network capabilities. Concurrently, the 
application requirements can be analyzed and expressed as 
network requirements. After these initial steps, the best 
matching sub-systems are gathered into a full-size network 
structure that at least partially fits the application 
requirements. Finally, the application can be modified to 
better exploit the optical sub-systems (or more generally, the 
hardware), or vice-versa. Both may also be optimized jointly 
in a co-design process [12]. 

In order to speedup this iterative process, a better 
communication model between application developers and 
networking engineers is necessary. Generally, network 
architects express the capacities of their architectures in terms 
of bisectional bandwidth, and/or latency while application 
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developers tend to describe an application as bandwidth 
sensitive or latency sensitive. These generic definitions 
unfortunately provide limited information. In fact, two 
architectures providing the same theoretical bandwidth can 
result in different application performances. This is especially 
true in an optical networking context, as their buffer-less nature 
may temporarily impair the nominal bandwidth due to 
necessary retransmissions. Recent studies have shown that 
parallel computer architectures can be affected by long tail 
latency distributions [13]. However, such a statistic is difficult 
to obtain, as the latency is application dependent.  

In this paper, we propose a new abstract model to address 
these issues. We start by representing applications as a set of 
interdependent computation and communication operations. 
Some computations can take place only after the reception of 
input data, and resulting communications arise only after the 
execution phase completes. This approach is similar to the 
skeleton-based model used by Jannsen et al [14]. However, 
while skeletons can explicitly represent an application code, 
they can be labor-intensive or unrealizable, especially for 
data-driven applications that exhibit irregular behavior. Unlike 
skeletons, which are derived from real applications, we create 
random operation sets. By changing the method of random set 
creation, we can change the type of traffic, the length of the 
computations, and their interdependencies. We can therefore 
mimic different classes of applications. In particular, by 
creating random operation sequences based on random tree 
structures, we intend to capture the various interdependencies 
between computations and communications present in 
irregular applications. The main goal of the proposed scheme 
is to capture the particular structure and dependencies of 
application traffic without involving the application itself. 
Moreover, given that the simulator is simplified at the traffic 
level, this releases a margin in terms of execution time and 
software complexity. This margin can in turn typically be 
exploited to include more optics specific details in the 
network simulation.   

The remainder of this paper is organized as follows. In the 
next section we compare our approach with existing 
methodologies. In Section III, we present a model for the task 
generator of a HPC system and show how it can be 
parameterized. We apply generated operation sequences to 
several interconnection architectures in Section IV. In Section 
V we discuss how our approach can be extended. Conclusions 
are drawn in Section VI. 

II. RELATED WORK 
Due to the complexity, it is impossible to formulate the 

interconnect design as a solvable equation set. The design 
methodology consists of iteratively 1) sketching a preliminary 
design based on the estimated application requirements; 2) 
optimizing the interconnect parameters while keeping the 
design physically achievable; 3) evaluating the performance 
with modeling, simulation, and/or prototypes [15]. Analytical 
modeling is of limited use due to dynamic behavior such as 
congestion-aware or adaptive routing. Simulation is therefore 
generally considered the main evaluation technique, along 
with test-beds and prototypes later in the design cycle. 
However, in this paper we focus only on simulation. 

Candidate networks can be simulated with simple traffic 
models, such as Poisson, which assumes no correlation 
between message arrivals. This gives good insight as to the 
intrinsic network performance in a dynamic environment (e.g. 
bandwidth, minimal latency). However, because most 
application traffic significantly diverges from Poisson traffic, 
it is difficult to obtain information as to how well the 
candidate network fits with any application. More complex 
packet or flow based generation methods have been proposed, 
in particular to capture the self-similar nature of the traffic in 
many networks [16]. Soteriou et al. proposed this type of 
traffic model for networks-on-chip [17]. Another packet 
generation technique consists of reading trace files of 
previously executed applications [18]. These complex traffic 
models, or trace based packet generators, produce flows with 
similar characteristics to those induced by applications. 
However, the traffic is replicated a posteriori - this method 
does not allow analysis of the impact of a message's delay on 
the application state or on future packet emissions. 

To capture these dependencies, a network can be modeled 
within a cycle accurate simulation platform, such as gem5 
[19][20]. On these platforms, HPC sub-systems are described 
at the instruction set level. Code execution, and therefore all 
application/network interdependences can be simulated. 
Because the interconnect is stressed in a realistic way, this 
cycle accurate approach provides good system scale 
performance estimates. However, the network's effect on 
performance might be difficult to isolate, as many elements of 
the system are modeled simultaneously. Furthermore, such 
extensive simulations are extremely complex and time 
consuming to construct and execute, and near impossible for 
extreme scale. For this reason, cycle accurate simulators tend 
to model the interconnect with a low level of detail (e.g. 
accounting only for a given delay when a message has to be 
transported, disregarding the network state).  

To capture application/network interdependence while 
keeping the simulation more tractable, transformed computer 
code is executed along a coarse-grained network simulator 
[14]. The portion of code that is purely computation is 
replaced by a jump in time or a reduced model of the 
computation, while the network simulator handles 
communication calls. In this way, the communication patterns 
can be simulated without significant overhead, while 
remaining consistent with the original application. 

Another simulation approach is to execute application 
derived benchmarks on real hardware in order to understand 
the requirements in terms of I/O [21]. This method provides 
exact measurements, both in number of bits and execution 
time, both extremely useful statistics, and can actually be used 
to obtain the aforementioned traffic traces. Similar to our 
proposed synthetic model, some benchmarks can be 
configured to stress different aspects of the interconnect. 
However, this approach is unfortunately only available to 
HPC systems users. Additionally, as the hardware is 
"concrete" - different protocols cannot be simulated in rapid 
succession (the entire system must be reconfigured), and 
hardware changes are simply inconceivable. Finally, in situ 
benchmarks can be used only in rare exceptions to monitor the 
activity of individual interconnect components, as probes are 
difficult to insert directly into the HPC system. 



These performance evaluation approaches are generally 
complementary due to the different levels of software 
infrastructure they require. Packet generation models can be 
implemented in very lightweight software blocks, and 
therefore quickly adapted on top of any network simulator. 
This flexibility places them first in line to test novel 
interconnect concepts. Application simulators require a 
greater time investment: new interconnect architectures must 
be developed and integrated, simulations conducted, and 
relevant results extracted. These application simulators will 
typically be used as second-pass performance analysis. The 
output of a given performance evaluation approach can also 
be used as input for another approach. For example, as 
mentioned in the introduction, basic results in terms of 
bandwidth and latency can first be obtained through packet 
simulation. These bandwidth and latency values are then used 
as characteristics of the simplified interconnect employed in 
cycle accurate simulations. The opposite direction is also 
plausible - cycle accurate simulations can be used to obtain 
traces. Fig. 1 summarizes these approaches and their potential 
interactions. 
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Fig. 1. Review of interconnect traffic simulation approaches. 

 
Fig. 2. Two examples of tree-represented tasks 
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Fig. 3. Transformation of a tree task graph in a dependency graph 

This description leaves a gap between lightweight 
independent packet based generators and accurate 
communication pattern simulators that capture the packet 
interdependencies but require more software development. A 
mechanism that both is easy to implement on top of network 
simulators and accurately generates correlated packets is 
desirable. For our purposes, this requirement exists in the 
context of optical networking. Optics require the simulator to 

include physical layer details because designing optical 
networks requires coordination across different layers of the 
standard network protocol stack. Additionally, the buffer-less 
nature of optical networks greatly impacts transmission 
latencies. The optical network designer must have a tool to 
analyze these atypical features specific to optical networks. A 
related system was realized with the PhoenixSim NoC 
simulator. Dependency graphs representing computation and 
communication events and their dependencies are read by the 
simulator and packets generated accordingly [22]. Here we 
extend this concept and propose a random generation of inter-
dependent events.  

III. MODEL DESCRIPTION 

A. Generation description 
We consider an HPC system with N interconnected nodes 

which receives jobs at random points in time. We assume a 
node to be an independent CPU. This system is composed of 
N-1 computing nodes, and one scheduler node. When such a 
job is received, the scheduler assigns it to one node of the 
system (let this be called node 1). If no node is idle, the task is 
queued at the scheduler.  

Upon job reception, node 1 executes its root-task, starting 
with the initialization phase. Each task may or may not 
contain independent subtasks. Once the initialization phase 
terminates, node 1 is aware of the number (and type) of 
subtasks to execute. If there is more than one subtask, node 1 
contacts the scheduler and asks if idle nodes can be assigned 
to these subtasks to speedup the task completion time. If such 
idle nodes exist, the scheduler returns a list of idle nodes. 
Node 1 then contacts each node on this list and delegates a 
subtask i.e. sends the data required to start the execution of 
each subtask. A subtask can in turn be composed of more 
subtasks. The same scheme repeats recursively, eventually 
reaching leaf tasks which have no subtasks. Leaf tasks are also 
composed of an initialization phase, but this is instead directly 
followed by an aggregation phase. Once this aggregation 
phase terminates, the aggregated results are transmitted back 
to the delegating node, or are simply kept locally if the 
subtask is executed locally. 

A task comprised of subtasks similarly has an aggregation 
phase that can be executed only when all results of the 
subtasks are available. If one or more subtasks have been 
delegated, the parent task might have to wait for the results. 
As soon as all of these results are obtained, this aggregation 
phase starts. Upon completion, results are transmitted to the 
delegating node if the completed task is a subtask. If the task 
is on the contrary the root task, we assume that no 
transmission takes place. In a more sophisticated version of 
the model, one node of the system could be designated as the 
I/O manager, to which final task results would be directed. 

As it appears through the words (root, leaves), each 
randomly arising job has a tree structure, with a root-task and 
subtasks as vertices. The dependencies between the tasks form 
the tree branches. Downward facing edges (toward the leaves) 
indicate that subtasks cannot start before the parent task's 
initialization phase ends; upward facing edges (toward the 
root) imply that the task's aggregation phase depends on the 
completion of the subtasks. Fig. 2 provides graphical 



examples of such trees. In particular, Fig. 2b represents a 
scatter/gather operation, extensively used in data-centers 
[7].The tree task representation detailed here is not directly a 
dependency graph as evoked in [22]. However, such a 
dependency graph G' can be obtained by applying the 
following graph transformation to a job tree G. a) Each vertex, 
v in G, is divided into two vertices vi and va, representing the 
initialization and aggregation phases respectively. b) vi and va 
inherit v’s outgoing and incoming edges respectively. c) If v is 
a leaf, an additional edge vi → va is added as the initialization 
phase precedes the aggregation phase. An example of such a 
transformation is depicted in Fig. 3. 

B. Random task and trees generation 
To generate the tree structure, we employ either a 

deterministic method or a stochastic one. The deterministic 
tree generator takes  a vector, z = [z0, z1, ... ,zi], as a parameter, 
and constructs the tree such that each vertex of the ith level of 
the tree has zi siblings. Fig 4. displays several resulting trees 
for different z vectors. The stochastic method is inspired from 
the preferential attachment model described by Barabasi et al. 
[24]. Given a tree graph H, we obtain a new graph H' by 
adding a new vertex to H and by connecting it to exactly one 
vertex u already in H. To select u, we compute for each vertex 
v in H a weight w(v) = (2deg(v))s where deg(v) designates the 
degree of v and s is a parameter. We then operate a weighted 
random selection. To obtain a tree with n vertices, we create 
an initial graph with only a single vertex and then apply our 
H→H' transformation n-1 times. Several graphs obtained with 
this method are displayed in Fig. 5. The parameter s is used to 
change the shape of the graph. When s >= 1 graphs with few 
hub vertices are favored. In opposition, when s < 1 vertices 
with high degree are discriminated, leading to deeper trees 
with many levels. 

 
Fig. 4. Examples of trees provided by the deterministic tree generator 

 
Fig. 5. Examples of trees delivered by the stochastic generator 

Once the tree is generated, we create as many tasks as 
vertices in the tree. Formally, a task is described with four 
values ( sŝ , rŝ , it̂ , at̂ ) where sŝ  stands for the number of bits 
sent when the task is assigned (the data required to start the 
initialization phase), rŝ  for the size in bits of the task results, 

it̂  and at̂  for the initialization and aggregation phase 
completion times (in seconds) 2 . Random tasks (i.e. tree 

                                                             
2As we assume all compute nodes of the system to be homogenous, 
execution phases can be expressed in time units. In a heterogeneous 
environment, these would be expressed in terms of operations per second, to 
be later converted into time depending on each node’s computing power. 

vertices) can be obtained by sampling four random variables 
(Ss, Sr, Ti, Ta). Our two job generators take parameters, 
(z, Ss, Sr, Ti, Ta) and (n, s, Ss, Sr, Ti, Ta). Note that to obtain a 
wider diversity of jobs, (n, s) or z can also be randomly 
generated.  Also note that special sizes are used for the root-
task's messages. In the absence of an I/O node, these can be 
considered control messages. 

C. Scheduler and delegation model  
As previously introduced, the scheduler assigns tasks and 

subtasks. A possible scheduler implementation, realized in a 
similar way in [24], is detailed here. However, other 
scheduling strategies are possible. 

Our example scheduler is the only entry point for arising 
jobs. It maintains a list of flags indicating whether a 
computing node is allocated or not. It also contains a FIFO for 
queued jobs. When a task begins, a computing node is 
randomly selected from those available, the description of the 
task is sent to this node, and the corresponding busy status is 
updated on the scheduler. If no node is available, the task is 
inserted into the FIFO. The scheduler then reacts to node 
allocation requests when necessary- as computing node M 
terminates the initialization phase of its assigned task, it may 
ask for additional nodes to complete the subtask execution. In 
our example, M asks for a number of nodes equal to the 
number of detected subtasks minus one, keeping one task for 
itself (in this way, node M keeps itself at least partially busy 
while expecting results from its delegates). The scheduler, 
upon reception of an allocation request for k nodes, allocates 
(randomly) k nodes if k nodes are currently available or all the 
remaining idling nodes else. The allocated nodes are marked 
as busy and their IDs sent to M. Reversely, as M detects that 
an allocated node is not needed anymore, it sends its ID back 
to the scheduler. If M was assigned to a root task, it replies to 
the scheduler, too. In both cases, the scheduler updates its 
status list and checks the FIFO. If a task is waiting, it is 
immediately assigned to the just released node. 

Suppose node M is assigned to a task with m subtasks; 
node M will request (m-1) allocations to the scheduler. If k < 
m-1 IDs for idle nodes come back, all subtasks cannot be 
executed in parallel. Node M therefore sends subtasks 1 
through k to each of the k allocated nodes, then execute the 
(k+1)th subtask itself. Upon completion of this subtask, it 
assigns the (k+2)th subtask to itself but does not execute it 
until k answers are received from the k associated nodes. Each 
time an answer is received, say from node r, an unassigned 
subtask, if any remain, is sent back to r. If no there are no 
additional subtasks, a release message is sent to the scheduler 
for node r. Once all of the delegates of node M are either 
released or assigned to a new task, node M starts the execution 
of the (k+2)th task. This scheme is repeated until all subtasks 
are either delegated or executed locally. 

D. Computation and communication footprint estimation 
The computation and communication footprints of our 

model can be predicted (deterministic tree generator, constant 
distributions for Ss, Sr, Ti, Ta) or estimated. For the sake of 
notation simplicity, ss, sr, ti and ta hold for the expectancies of 
Ss, Sr, Ti, Ta respectively. ñ is the expectancy of the number of 
vertices in the tree. If the deterministic generator is used,  



ñ =1+ zm
m=1

k

!
k=1

length(z)"1

#  

The computation time required by a single task is (ti+ta). 
Therefore, the total computation footprint for a compound 
task is Fx=ñ(ti+ta) (to distinguish between communication and 
computation footprints, x stands for computation (execution) 
while c stands for communication). Assuming β jobs arrivals 
per second on average, the mean computing load submitted to 
the HPC is Fxβ. The relative computing load can be expressed 
as ρx=Fxβ/(N-1)=ñ(ti+ta)β/(N-1). ρx is the ratio between the 
offered computation load and the theoretical maximum 
computational capabilities. It is therefore also an upper bound 
for the computing nodes’ utilization. 

The communication footprint is more complicated to 
estimate. In case of system saturation, fewer  nodes are 
allocated and some subtasks are executed sequentially and 
locally, which results in fewer communications between 
nodes. The communication footprint is also determined by the 
subtask allocation strategy. We consider here the strategy 
detailed in previous subsection and assume the situation 
where each node keeps always exactly one subtask locally (k 
= m-1 in previous subsection). The total number of 
communication phases between the delegating nodes and the 
nodes to which tasks are delegated is equal to the number of 
the leaves in the tree minus one. This fact is true for both 
stochastically and deterministically generated trees and is 
easily illustrated with an example. We will examine the case 
of a deterministic tree (Figure 4a) with z vector [2,6]. First, 
the root node keeps one subtask for itself but must 
communicate the other subtask to an idle node. Therefore to 
move from level 0 to 1 of the tree, there is one 
communication. To move from level 1 to 2, each of the two 
subtasks spawns six sub-subtasks. However each of the two 
nodes at level 1 keep one of their subtasks to execute locally. 
Therefore, moving from level 1 to 2 of the tree results in ten 
communications. Altogether, there are 11 communications, 
which is the number of leaves minus one. It should be noted 
that if a task spawns only one subtask, there is no 
communication because the parent task will execute this one 
subtask locally as previously explained. Therefore, each job 
induces a network traffic of (L-1)(ss+sr), where L is the 
number of leaves in the tree. The number of exchanges with 
the scheduler also depends on the tree structure: only the 
vertices with degree > 2 induce a delegation process (except 
the root node that has no parent and delegates if the degree 
is > 1). Assuming d delegating vertices, (L-1) + 2d + 2 
control messages are exchanged. The L-1 ones corresponds to 
the release messages sent after each subtask completes, the 2d 
accounts for the request-IDs and IDs-granted messages 
exchanged with the mapper; 2 more messages account for the 
communication with the root node to start and end the job. 
The total communication footprint for a task, under the 
maximum delegation assumption, is therefore  
Fc=(L-1)(ss+sr+ε) + ε(2+2d), ε being the size of a control 
message. The expressions or methods to obtain L and d for 
each tree generator are provided in the Appendix. 

Still considering the case where all potential delegations 
happen (there are enough idle nodes when requested), the 
average load offered to the interconnect is βFc. Assuming 
each node has a maximum access bandwidth of B (bits/s), the 

relative communication load can be expressed as ρx= βFc/BN. 
Similarly to ρx, ρc provides a relation between the 
communication load induced by the arriving tasks and the 
interconnect capabilities. However, as tasks can be kept 
locally, ρc is a bound and not a strict prediction. 

E. Rough bandwidth estimation for balanced system 
In large systems the ratio between the communication and 

computation loads ζ = ρx/ρc =[βFx/(N-1)]/[βFc/BN] can be 
estimated as ζ ≈B/F, where F=Fc/Fx. In the particular case 
where ζ =1, i.e. when the interconnect and the computing 
nodes are equally over- or under- dimensioned, we obtain 
B=F. In other words, F is the bandwidth required to have a 
bandwidth/computation balanced system. This definition of a 
balanced system considers a utilization point of view only. In 
fact, diverse application (or, in our case, generated job) 
requirements call for different bandwidth/computing resource 
ratios. Nevertheless, F is useful in expressing this ratio. If a 
bandwidth B = ζF is present in the system, this means that the 
interconnect is ζ times more provisioned. As we will see in the 
next Section, varying ζ allows shorter job completion times at 
the price of network utilization, or vice-versa. 

Table 1 summarizes the model's parameters and notation 

F. Speedup bound 
The completion time of a job arising in a HPC system 

depends on the properties of tasks associated with that job, 
and on the state of the system. Fx can be taken as a reference 
point, as it is the completion time if all tasks and subtasks are 
executed sequentially. Another reference point is the minimal 
completion time, which is given by the most costly path from 
the root vertex in the tree (considering it̂ , at̂ as vertex costs). 
For a leaf task to be executed, the initialization phase of each 
vertex separating it from the root must be completed. As each 
of these phases depends on the parent completion, they cannot 
be parallelized. Successive aggregation phases leading up to 
the root cannot be parallelized either. The minimal completion 
time can therefore be estimated with D (ti+ta), where D is the 
depth of the tree. The maximal speedup compared to 
sequential execution can also be estimated as  
Fx/ D(ti+ta) = ñ/D (as Fx= ñ(ti+ta)). 

TABLE I.   

HPC system parameters 
N Number of computing nodes in the system 
B Computing node global I/O bandwidth [bits/s] 
ε  Control message size [bits] 

Task generator parameters 
ss Average task assignment message size [bits] 
sr Average task termination message size [bits] 
ti Average task initialization computing time [s] 
ta Average task aggregation computing time [s] 
β Average task arrival rate [s-1] 
ñ Average number of subtasks in a job 
L Average number of leaves in a job tree 
d Average number of delegating tasks in a job 
Fx Per job average execution footprint 
Fc Per job average maximal communication footprint 
F Job generator footprint ratio - Equilibrated bandwidth reference [bits/s] 

Deterministic tree generator parameter 
z Vector of integers describing the tree span at each layer 

Stochastic tree generator parameters 
n Vertices in the tree 



s Tree shape parameter 
Global bounds and metrics 

ρc Maximum relative communication load - Maximal theoretical 
network utilization - Upper bound for measured network utilization 

cρ
~  Measured node utilization 
ρx Relative computing load - theoretical node utilization - 

Upper bound for measured node utilization  

xρ
~  Measured network utilization 
ζ System assymetry 

 
Fig. 6. (a) Time required to execute one z=[4,3] task on different 
architectures with various B and N. (b) Corresponding speedup factors.  
(c) Evolution of the speedup with the bandwidth when N=12. 

 
(a) 

 
(b) 

Fig. 7. (a) Simulation of one single task (det([4,3]) on N=4 nodes, (b) same 
task on a N=13  

IV. SIMULATION EXAMPLES AND RESULTS 
The scheduler and tree generators are implemented in the 

LWSim simulator [15]. In our implementation, the scheduler is 
also responsible for simulating the sporadic arrival of jobs. 
This is achieved by generating exponentially distributed inter-
arrival times with parameter β. In the following reported 
simulations, 5 sequences of 1500 job arrivals have been 
simulated, using different pseudo-random number generator 
seeds. 

A. Implementation validation and relations to the bounds 
Simple configurations are first tested to validate our 

implementation. A simplified system organized around a 
single  switch interconnecting the N computing nodes with 
bandwidth B is considered. The latency of the switch is fixed 
to 200ns, the latency of the links to 20ns (so about 4m 
assuming a light propagation speed of 2e8 m/s). The 
predictability of the deterministic generator is exploited to 
validate the model: z=[4,3] which translates into the following 
values ñ = 17, L = 12, d = 5. Constant values of 20kB 
(kBytes) and 40kB are used for ss and st while ti= ta=10µs. 
The size of  control messages ε is assumed to be 40bytes. This 

results in footprints per job of Fx=340µs and Fc=660.92kB, 
with F=15.55 Gb/s as equilibrated bandwidth value (ζ=1).  

The completion time of a single job running on networks 
with varying bandwidths is represented in Fig. 6a. It is 
measured as the time elapsed between the job arrival and the 
"job complete" message arrival at the scheduler. For N=2 
(sequential execution on a single computing node) this time is 
340µs plus a round trip time between the computing node and 
the scheduler, as expected. For higher N, completion times 
(and speedups, Fig. 6b) depend on how the z=[4,3] job is 
scheduled over the N nodes. As the job tree has a depth of 3 
and all tasks are equal, the maximum speedup is ñ/D=17/3. 
For a given B, this speedup is maximized as soon as all 
possible delegations occur (N >= L). The speedup increases to 
the maximum value as B increases (Fig. 6c). As it appears in 
Fig. 6a, some configurations are clearly disadvantageous and 
show the limit of the job allocation strategy, especially for low 
B. The case when N=4 is a typical example (Fig. 7a). Out of 
the first 4 subtasks, only three can be parallelized. Therefore, 
node 1 keeps the fourth task, and executes it after reception of 
the other three aggregations results. The three siblings of the 
last subtask are parallelized but because the network is slow, 
this parallelism leads to critical waiting times. Fig. 7b shows a 
case where subtask can be distributed more advantageously. 
Note that the dependency graph structure detailed in Fig. 3c is 
clearly visible in Fig.7b. 

 
Fig. 8. Evolution of the measured utilizations: (a) computing node (c) 
network. (b) and (d) Comparisons with the theoretical values and bounds. 

We then tested our implementation with N=100 and 
different task arrival times. We calculated values for the 
arrival rate using β= ρx(N-1)/Fx such that ρx = 10%, 20%, etc. 
For ρx=0.1, β=29117. We use network bandwidth proportional 
to the balanced bandwidth F to obtain ρx= ρc (ζ=1). Fig. 8 
shows, for these increasing arrival rates (top axis) and loads 
(bottom axis) that: a) 

xρ
~ (i.e. the node utilization or the 

computation throughput) is increasing almost proportionally 
until ρx ≈1, then saturates. The higher the bandwidth, the 
closer it approaches one. b) The deviation between the offered 
computing load ρx (which is also the predicted node 
utilization) and the effective node utilization 

xρ
~ is limited up 

to ρx ≈1. Beyond this point, the deviation becomes obviously 
larger as the system saturates. c) The effective network 
utilization 

cρ
~  first grows linearly but drops much earlier as 

some computations are achieved sequentially (ρc is different 
for each different bandwidth- the corresponding trends are 



visible is dotted lines). d) The effective network utilization 
deviates early from the bound except when bandwidth is over-
provisioned (ζ=4). 

B. Utilization vs. speedup trade-off analysis 
We tested our model with most of the parameters taken 

randomly and assuming a larger scale system. Task execution 
times and message sizes are modeled by uniform distributions 
[2 µs, 100 µs] and [2kB, 128kB] respectively. Random trees 
are generated with the stochastic generator. The number of 
tasks in the tree is in the interval [25,175] (so ñ=100) and s is 
fixed to one initially. ε is kept to 40bytes. Fx is therefore 
10.2ms and Fc is 9.07 MB. These values give an equilibrated 
bandwidth B=F= 7.11 Gb/s. We consider architectures with 
N=50 to 1000 computing nodes, and a job arrival rate β of 
5000 task per second. We therefore have a computational load 
spanning between ρx=1.04 (for N=50) and ρx=0.051 
(N=1000). 

Figure 9(a) shows the 
xρ
~ /ρx deviation. The measured load 

is lower than expected for a system close to saturation (ρx 
close to 1) or equivalently with a slow network. Fig. 9(b) 
represents the speedup factor achieved by the system. For 
B=10Gb/s and 100Gb/s, the speedup factor increases as more 
computing nodes are present in the system, until a point where 
idling nodes are always available and all possible delegations 
can take place. As more bandwidth generally decreases 
transmission times, node allocation and release messages 
suffer fewer delays, resulting in a more dynamic node 
allocation. Fewer nodes are hence required to reach the limit 
speedup. However, with B=1Gb/s, the speedup is always less 
than one (counter-productive case) and is even decreasing as 
more nodes are added to the system. As visible in Fig. 9(c), 
this is not due to a network overload: the network utilization 
peaks around 23% for N=200 and then decreases. It is due to 
the wide intervals separating the node status update events and 
the actual start (or end) of the computation phase at the node. 
The relative time spent in this "synchronization overhead" 
depicted in Fig. 9(d). With B=1Gb/s, allocated nodes are 
idling around 70% of the time, leading to poor performances. 
Note that high overheads are also measured with more 
bandwidth when the system is facing a more sustained load. 

As it appears in the cases reported in Fig. 9, bandwidth 
(or, more specifically, the bandwidth over-provisioning factor 
ζ) is the determinant speed-up factor. This fact is confirmed in 
Fig. 10(a), which represents the speed-up/network utilization 
trade-off for the previous simulation cases. We can see that 
using the current scheduler, significant speed-up can only be 
achieved at the price of very low network utilization. In 
Figure 10(b) we compare two HPC systems (N=300 or 500) 
with different bandwidths (from 10Gb/s to 100Gb/s by steps 
of 10Gb/s) running two types of random tasks (s parameter 1 
or 2). The speed-up/network utilization trade-off appears  
clearly again with this example. This parameter can therefore 
be used mimic applications parallelizable to various extents. 

 
C. Random tree based traffic over optical network 

These presented results aim at explaining the raw 
characteristics of our random task traffic model. We now 
achieve our final objective: apply this traffic to different 
optical networking platforms, analyze how these platforms 

cope with this new environment, and take appropriate 
measures if poor performances are reported.  

We consider the same random tree task generator 
configuration, applied to a HPC system comprised of 64 nodes. 
These nodes are either connected with the single switch 
network structure (the reference case), or with a multistage 
optical interconnection network controlled by an in-band 
signaling mechanism called SPINet [8]. B is fixed to 40Gb/s in 
the reference case and to 160Gb/s in the SPINet case. Three 
different SPINet variants are tested: with the minimal number 
of interconnection stages (i.e. 6 for 64 ports) or with 1 or 2 
additional stages. At the network level, the SPINet architecture 
provides a drastically lower average latency than the reference 
case (Fig. 11 (a-b)). The additional stages aid to further reduce 
this latency. However, at the application level, the benefits of 
the SPINet architecture, while still evident, are not of the same 
order. Moreover, the modest advantages in terms of latency 
gained by using multiple stages are not translated into a 
significant speedup. This demonstrates that optimizing a 
network considering only latency can be useless, or even 
counter-productive.  

 
Fig. 9. Various measurement with β=5 task per ms and random tasks. 

 
Fig. 10. Network-utilisation / speedup trade-offs. 

 
Fig. 11. Optical vs. electrical network comparison 

V. EXTENSIONS AND FUTURE WORK 
The proposed application model has been primarily 

developed to analyze the impact of unconventional optics-



aware novel protocols on interdependent communication 
phases. However this model also has large potential for 
extensions beyond those proposed in this work. The 
development of more complex, possibly optics-aware, 
scheduling schemes is one possible direction. Another  
extension could consist of replacing some vertices in the 
random tree with a well known dependency pattern (e.g. an 
FFT computation) to closer capture real application behaviors. 
Alternatively,  a dependency graph could be generated not out 
of trees, but as directed graphs, leveraging an example such as 
the GGen generator detailed in reference [25]. The HPC 
model can also be complemented to consider multi-core nodes 
or I/O nodes. 

Looking further ahead, such an approach can be leveraged 
to analyze the impacts of dynamic load-balancing or 
contention resolution scheme on the global performances. An 
interesting feature that emerges from the reported results is 
that the inter-dependence between the network and the 
scheduler is as important as the application/network relation. 
Scheduling algorithms design should therefore be included in 
the co-design approach. 

VI. CONCLUSIONS 
This paper presents a performance evaluation approach for 

High Performance Computing optical interconnects. Our 
approach allows us to capture the interdependencies between 
the application and network mechanisms. It also provides the 
capability to tune the injected network load. Our approach, 
being additionally relatively easy to implement on top of a 
network simulator, allows us to include more optics-specific 
aspects in the simulation while still evaluating the HPC 
system as a whole. A formal model describing our approach is 
provided. Numerical results obtained by simulation in various 
cases exemplify the situations where our approach can 
provide valuable information. In particular, results show that 
improvements in terms of raw latency do not always translate 
in global performance improvements. 

APPENDIX  
The number of leaves L and nodes with degree > 2 d are 

easy to express when using the deterministic tree generator.  

Ldet = zk
k=1

length(z)

!        ∑
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0
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1
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k

kk

else
zifz

d  

i.e. Ldet (deterministic tree generator) is the product of z 
elements (so 12, 30 and 30 for the examples of Fig. 4) and ddet 
the sum of the n-1 first elements of z that are greater than 1, 
plus one (so 3,7, and 9 in Fig. 4). Lsto (stochastic generator) 
and dsto are harder to derive. Lsto can be written as np1, and 
dsto= p2 + (n-1)(1-p1-p2), where p1 and p2 denote the 
probability of a vertex in the tree to have degree 1 or 2 
respectively, and (1-p1-p2) is the probability of having a 
degree > 2. A table of values for p1 and p2 can be obtained 
via Monte Carlo simulations for several values of n and s.  
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