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Thermal conductivity of porous nanofilms

oL_ow thermal conductivities

eldeal for many applications (insulations,
chemical sensors)

*Measurement challenges

*Brittle
Fragile
*Non conformal (i.e., not specular)
Porous silica (e.g., aerogels) Dunphy et al. to appear in
 Transparent Chemistry of Materials

Electrically insulative
«Can “collapse” with contact/pressure
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Outline

*Time domain thermoreflectance — measuring
thermal properties of porous samples

eSensitivities and measurements
*Thermal conductivity of aerogel thin films

*“Porous” minimum limit to thermal conductivity
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Time domain thermoreflectance (TDTR)
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Hopkins, et al. J. Heat Trans. 132, 081302 (2010)

» Can measure thermal conductivity of thin
films and substrates (k) separately from
thermal boundary conductance (h)

* Nanometer spatial resolution (~10’s of nm)

* Femtosecond to nanosecond temporal

resolution
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TDTR for nonconformal/non-solid surfaces

TDTR requires a specular, partially reflecting surface

Experiment
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TDTR for nonconformal/non-solid surfaces

TDTR requires a specular, partially reflecting surface
Geometry for rough nanosystem

Experiment

Coat/fabricate/deposit
nanosystem on metallized

glass slide
Rough/porous film ]‘
Detector
Metal film
Transparent, Cover glass
smooth _
substrate 80 nm Al film

~500 nm aerogel film
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TDTR for nonconformal/non-solid surfaces
For liquids: Ge et al., Phys. Rev. Lett. 96, 186101 (2006)
For liquids: Schmidt et al., Rev. Sci. Instrum. 79, 064902 (2008)

For porous composites: Hopkins, et al., J. Heat Trans. 133, 061601 (2011)
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TDTR for nonconformal/non-solid surfaces
For liquids: Ge et al., Phys. Rev. Lett. 96, 186101 (2006)
For liquids: Schmidt et al., Rev. Sci. Instrum. 79, 064902 (2008)

For porous composites: Hopkins, et al., J. Heat Trans. 133, 061601 (2011)

Glass slide
N=0

Glass/Air surface
z=0

do<+1
Glass/Al film

interface
z=1

Bi-directional heat transfer
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TDTR sensitivities
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TDTR sensitivity to x,
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TDTR measurements of nanoporous silica films
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Heat capacity of the sample during TDTR
oy = /Cako

If no energy Is transferred to air in pores,
assume C, = C, of bulk solid

*Measurement only ~4-5 ns in duration

*Not enough time for energy transfer to
air

*All energy absorbed in Al film then
transferred to solid in nanoporous film

hsolid—)solid > hsolid—m,'i/r‘
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Validate bulk heat capacity assumption mathematically
C, of porous SiO, = C, of bulk SiO,
In TDTR measurements

“Two fluid” model for conduction in porous media (Kaviany,1991)

Heat conduction in solid part
(1 — ¢)OS 85?18 — (1 — Cb)ﬁSvQTS — hs—>g(Ts — Tg) + (1 — Cb)@abs,s

Heat conduction in gas part

(0)Cy % = (¢)kg V2T, + hesg(Te — Ty) + (6)dabe.g
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Validate bulk heat capacity assumption mathematically
C, of porous SiO, = C, of bulk SiO,
In TDTR measurements
“Two fluid” model for conduction in porous media (Kaviany,1991)

Heat conduction in solid part
(1 — )% = (1 — )R V2T — —Ty) + (1 = &) qabs,s
Heat conduction in gas part

(0)C, 8;;9 = (Cb)’ngQTg ‘|ng) + (@) qabs,g

*No heat transfer from solid to gas
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Validate bulk heat capacity assumption mathematically
C, of porous SiO, = C, of bulk SiO,
In TDTR measurements
“Two fluid” model for conduction in porous media (Kaviany,1991)

Heat conduction in solid part
(1 — )% = (1 — )R V2T — —Ty) + (1 = &) qabs,s

Heat conduction in gas part

(0)C 8;;9 = (gb)""QVQTQ x M

*No heat transfer from solid to gas
*No energy absorbed in gas from pulse
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Validate bulk heat capacity assumption mathematically
C, of porous SiO, = C, of bulk SiO,
In TDTR measurements
“Two fluid” model for conduction in porous media (Kaviany,1991)

Heat conduction in solid part
— (1 - Cb)ﬁ"SVQTS — — Tg) + (1 — Cb)@abs,s

Heat conduction in gas part

R el

*No heat transfer from solid to gas
*No energy absorbed in gas from pulse
*Therefore, no heat transfer in gas

(1 o d))OS 63;8
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Validate bulk heat capacity assumption mathematically
C, of porous SiO, = C, of bulk SiO,
In TDTR measurements
“Two fluid” model for conduction in porous media (Kaviany,1991)

Heat conduction in solid part
(1 - @)C% — (1 — (b)’istT + (1 - (b)Qabs

!

oTs __ 2
Cs ot K/sv Ts =+ dabs,s

If no energy is transferred to or absorbed by air in nanoporous
samples, effective medium does not have to be assumed for C,
to determine xg @ Sandia

National _
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Validate bulk heat capacity assumption numerically
C, of porous SiO, = C, of bulk SiO,

INn TDTR measurements

If we assume bulk properties in a reduced volume system with
Insulating pores, does the surface temperature change?

 FEM simulations of
experiment performed

— one with solid silica film
— one with half of silicaremoved

* In half-silica cases, all fluxes
from metal were superposed
on remaining silica

« Temperature measured in
metal film

* No discernable difference
observed in results
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Validate bulk heat capacity assumption experimentally

Measure effusivity of aerogel films in ambient and under vacuum

Aerogel films: Prakash, Brinker, Hurd, J. Non-Crystalline Solids 190, 264 (1995)

Eaerogcl,P<10—3mbar =VCrk=223£95 Wm™* K™! \/E
Eaerogcl,P:ambient — 'V Crk=233+121 W m—Q K_l \/g

B Grains 5 mm
ool | ¢ Cramedmm Time scale of
measurement too short to
g S - o allow any thermal
B T _ diffusion into air in pores
oL 1 S g '._,.—.—.:.—.T.ETT.T.._: ....................... i
R e (~4 -5 ns)

107" 107 107 107 107 10° 10 10° 10°

Air pressure (mbar) Sandia
Spagnol et al., J. Heat Trans. 131 074501 (2009) @ fre ]
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*Time domain thermoreflectance — measuring
thermal properties of porous samples

Sensitivities and measurements
*Thermal conductivity of aerogel thin films

*“Porous” minimum limit to thermal conductivity
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Thermal conductivity (W m" K")

0.1p i

0.01p

Thermal conductivity of aerogel thin films

Bulk SiO;— =+

l':- <5

Sputtered SiO;—— ="~

’
-
4

e A
. A
DEM theory ,*” FOx

”,

XLK
b Bulk aerogel ,’f

? \Calcined aerogel film

" O Aerogel film

Aerogel film
(no vacuum)

Differential Effective
Medium (DEM) theory

3

] 2
Nporous

< porous

d R = Rsoli

] "vporous solid Naolid

0.2 1
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10

Si0,, Fox, and XLK data: Costescu et al., Phys Rev. B 65, 094205 (2002)
Bulk aerogel data: Spagnol et al., J. Heat Trans. 131, 074501 (2009)

& Wei et al., J. Phys. Chem. C. 113, 7424 (2009)

DEM: Bruggeman, Ann. Phys. 416, 636 (1935)
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Thermal conductivity of aerogel thin films
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Outline

*Time domain thermoreflectance — measuring
thermal properties of porous samples

eSensitivities and measurements
*Thermal conductivity of aerogel thin films

*“Porous” minimum limit to thermal conductivity

Sandia
II'| National
Laboratories



T~
>
Lower limit to thermal conductivity
Thermal conductivity

1 1
K = gC’v)\ — nggva

Scattering time is half period of oscillation (i.e. atomic spacing limited)
Einstein, Annalen der Physik 35, 679 (1911) and Cahill et al., Phys. Rev. B 46, 6131 (1992).
_ T _ 1 us
T=7 = K= 350040,
Scattering destroys “phase” of oscillation (“diffusive” scattering)
Hopkins and Beechem, Nano. Micro. Thermophys. Eng. 14, 51 (2010).

—1/3
Cvg

. w N
Vg £ Vp = —175- — K=

Assume Debye solld
o\ 1/3 2/3 . ©;/T 2 oxp []

For porous media o nl-4 Costescu et al., Phys Rev B 65, Sandia
P g & 094205 (2002). @ laboratris
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“Porous” minimum limt
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Thermal conductivity (W m’ K'l)
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sSummary

*TDTR can be used to measure thermal conductivity
of porous materials with minimal losses from air in
pores

*TDTR measurement is dominated by heat flow In

the solid matrix due to time scale of measurements

*Thermal conductivity of aerogel thin films agrees
with bulk aerogels with similar densities

*Porous minimum limit gives better estimate of

thermal conductivity than traditional minimum

*Thanks to: Harry S. Truman Fellowship program at
Sandia (Hopkins and Kaehr), LDRD program at Sandia
(Piekos and Brinker) ) peiow
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