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HOMME (High Order Methods Modeling Environment)

HOMME

@ “A scalable and efficient spectral-element-based atmospheric
dynamical core” (http://www.homme.ucar.edu)

o CAM-HOMME dynamical core available in CCSM

o Elements originally were squares on a cube, projected onto a
sphere using gnomonic projection
@ Now able to use any quadrilaterals on cube or sphere (with
great-circle edges)



Why Do We Refine?

Benefits of Refinement

o High-res studies of specific areas (the tropics, Australia, etc)

@ Refine over Atmospheric Radiation Measurement [ARM] sites
Q Calibrate global parameters for high-res runs based on ARM
data (significantly cheaper than tuning via 500+ global runs)

@ Alternative to nested models for regional climate



How Do We Refine?

Refinement Options

@ Conforming or non-conforming?
Q@ Structured or unstructured?

© Static or dynamic?

Constraint

The spectral element method, as implemented in HOMME,
requires quadrilateral meshes tiling a sphere.

Spoiler: conforming unstructured static refinement



Conforming vs Non-Conforming [Quadrilateral] Refinement

Conforming Refinement (left)

@ Focus of this talk

o Every edge is shared by exactly two elements

Non-Conforming Refinement (right)

o Refine grid by splitting an edge

@ Allows for “hanging nodes”



Structured vs Unstructured [2D] Meshes

Structured Mesh (left)

@ Domain is tiled by elements in such a way that elements can
be numbered with (7, /) coordinates

Unstructured Mesh (right)

@ Focus of this talk

@ Domain is tiled arbitrarily



Static vs Dynamic Mesh Refinement

Static Refinement

@ Focus of this talk

o Refine grid initially (based on topography, regional interests,
etc), then run

Dynamic Refinement

o Refine grid continually throughout the run (based on
gradients, mass, or some other user-defined criterion)

@ Computationally more expensive, also far more complicated to
implement

This project: conforming unstructured static refinement



More on Refinement Choice

Why Conforming Unstructured Static Refinement?

@ CAM-HOMME currently uses conservative SEM

o Non-conforming refinement breaks conservation in SEM, would
be better suited for DG (currently not part of CAM-HOMME)
o Unstructured meshes allow more flexibility in refinement
Q Will be running CAM-HOMME with variable resolution by end
of fiscal year
o Dynamic refinement would take significantly longer to
implement (and would restrict refinement options)



Changes Due to Refinement

Two Major Changes to HOMME

@ Implement hyperviscosity with variable viscosity coefficient,
rather than static

Q Ability to read in mesh (Exodus file) rather than simply
generate “uniform” meshes

And Some Minor Changes

@ Map directly from element on sphere to reference element,
bypassing cube (hope to move from “cubed sphere” to
“global quads” in description of method)

@ Change to resolution statistics (e.g. calculate average element
length rather than average equatorial element length)



Changes Due to Refinement

Variable Viscosity

@ Spectral Element core includes constant hyperviscosity
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implemented with auxiliary variable f:

% = —V(V(v-f)—vXR(va))

f = V(V-u)—Vx(Vxuk

o Allowing v to vary, hyperviscosity is

% = —(vﬁ(v-f)—le?ﬁ(fo))
f = Vvu(V-u)—V x /u(V x u)k



Changes Due to Refinement

Variable Viscosity

@ Spectral Element core includes constant hyperviscosity
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2 Questions about Variable Viscosity

1. Why vary v?

Short Answer: Relationship between v and effective resolution

o If v is too large for fine mesh, results look similar to coarse
mesh with same v

o Alternately, if v is too small for coarse mesh, results are noisy
Complicated Answer: Locally, want to dissipate near the grid scale
@ This implies we want v = v(Ax)

2. What's the best way to vary v?

Dissipation rate of mode k = 2Ax is v/Ax*

o Keeping dissipation rate constant = v = CAx*



2 Questions about Variable Viscosity
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More on Varying v

Since this is 2D code, vary v by square of element area:

@ Define area of element €2, := Ae and €2; := largest element.

2
A.
@ For any element Q;, v = 1y (XJ) =0<v<
i
@ Continuity is enforced by averaging over element corners then
using bilinear interpolation for element edges / interior nodes



0 100 200 300 400 500 600 700 800 900 1000

Williamson et al. — Test 1

@ Advect a cosine bell around the globe

® A great test for refinement: refine the path of the bell



Two Refinements

Refinement Scheme #1

Start with 6 x 6 uniform grid on all faces, refine to 24 x 24 on the
four equatorial faces (1 — 16 splitting)

Refinement Scheme #2

Start with 12 x 12 uniform grid on all faces, refine to 24 x 24 on
the four equatorial faces (1 — 4 splitting)

Notes:
@ The transition from coarse to fine occurs on equatorial faces
@ Compare numerically to 24 x 24 uniform grid

@ “Improve” grid by smoothing



SWTC 1 — Refinement #1

Not Smoothed
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SWTC 1 — Refinement #2

Not Smoothed

60E

1208

180

= 2 dt -

Smoothed (Mean Ratio technique)

= 2 dt -

{\ |
]




SWTC 1 — Computational Efficiency (Tabular)

Grid # Elem | tstep (s) | Work Units | L2 error
12 x 12 864 720 1 5.784 1072
18 x 18 1944 480 3.38 2.333.1072
24 x 24 3456 360 8 1.225 - 1072
Refine 1 1656 360 3.83 1.343.1072
Refine 2 1920 360 4.44 1.261-1072

Smooth 1 | 1656 360 3.83 1.228 1072
Smooth 2 | 1920 360 4.44 1.227 - 1072

Table Details

@ 1 work unit = computation (time) to run coarsest uniform grid
As resolution increases, time step decreases

@ Refined grids are slightly more work than 1944 element
uniform grid, error is comparable to 3456 element uniform grid

Even better results w/ smoothing



SWTC 1 — Computational Efficiency (Graphical)

Error vs Work
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Graph Details

@ Same data as presented in table on previous slide

Relative Error (log scale)

0.01

@ Red line = uniform meshes, blue points = refined / smoothed

@ Not shown: advecting through low-res region of refined mesh
(over poles) results in same error as global low-res mesh



SW TC5 Surface Topography SW TCS5, Initial Height
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Williamson et al. — Test 5
@ Flow around an isolated mountain

@ Another good test for refinement: refine around the mountain



Experiment

Mountain has radius of 20°, refine area w/ radius 30°
Compare meshes based on coarsest elements

Notation

Grid: N20_x4_s9

N20 Begin with uniform grid based on 20 x 20 elements on each
face of cubed sphere

x4 Refine such that edge length in coarse region is 4 times the
length of that in fine

s9 Apply smoothing operator to grid 9 times

Source

Exploring a Multi-Resolution Modeling Approach within the Shallow-Water
Equations
T. D. Ringler, D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, W. Skamarock

Submitted to Monthly Weather Review



Comparing three grids
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First wave of results

SW TC5, h-error
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Problem in the x4 Grids
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Transition Region

We kept the size of the fine mesh the same, but enlarged the
transition region. This fixed the low-res x4 grids, but still had a

problem around N40.



Second Wave of Results

SW TC5, h-error
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Future Work

Still to Come

Q Improve grid construction ( “sizing function” determines how

elements are located, Anderson et al.)
o Though transition region improved look of x4 results, didn't
help much with x8 grids

Q Initial 3D runs: start w/ aquaplanet

Q Full 3D: look into vertical dissipation (Tribbia and Temam
report)

Q Get mesh refinement working with DG core of HOMME
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