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The response of 304L stainless steel to combined mechanical and thermal loadings is studied to enable 
the development of validated computational simulation methods for predicting deformation and failure in coupled 
thermomechanical environments. Experimental coupling was accomplished on axisymmetric tubular specimens 
that were mechanically loaded by internal pressurization and thermally loaded asymmetrically by side radiant 
heating.  Mechanical characterization experiments of the 304L stainless steel tube material was completed for 
development of a thermal elastic-plastic material constitutive model used in the finite element simulations of the 
validation experiments.  The design and implementation of the experimental methodology and results of 
preliminary experiments were presented at 2010 SEM Annual Conference [1, 2].    

The experiments were designed to have well-defined, controlled thermal and mechanical boundary 
conditions that could be accurately represented in the simulations.  Experimental parameters studied include
geometrical features, applied temperature rates, pressurization rates, maximum temperature and pressure, time 
at temperature and phasing of the thermal and mechanical 
loading.  Specimens were made from 89 mm (3.5 in.) diameter 
304L stainless steel tube with a wall thickness of 6.35 mm (0.25 
in.), an overall length of 355 mm (14 in.) and a reduced wall 
thickness in sections of variable length.  Specimens were 
instrumented with twenty-three Type K intrinsic thermocouples at 
locations around the circumference, mainly concentrated in the 
high heat region directly in front of the heat source, as shown in 
Figure 1.  Full-field thermal measurements, applied internal 
pressure and specimen mechanical response were continuously 
monitored during the experiments and were used as direct input 
into the finite element simulations of each experiment. Specimen 
deformation and dimensional changes were measured in-situ with 
optical photography methods.  A photograph of an instrumented 
specimen during an experiment is shown in Figure 2.  The heat 
shroud is shown on the left surrounded by an insulating ceramic 
board, the shroud was heated by a double bank of quartz lamps.  
The specimen was internally pressurized using nitrogen gas.  
Both temperature and pressure were computer controlled to any 
ramp profile desired.  Overall axial force and displacement 
were controlled using MTS Flextest controller of the 220 
Kip test frame.

The results from specimen #10 are shown in Figures 3 and 4. The center temperature of the specimen 
was ramped at 30 degrees/minute from room temperature to 650C.  Once this temperature was reached it was 
held and the specimen was pressurized at a rate of 72 psi/minute until failure occurred at 645 psi.  At failure, the 
specimen split vertically first, followed by horizontal splitting.  Results from specimen #8 are shown in Figures 5
and 6.  The temperature and pressure were ramped simultaneously, at 30 degrees/minute and 36 psi/minute, until 
failure occurred at 650C and 640 psi.  In a similar experiment, specimen #9 was ramped at the same temperature 
rate, but at twice the pressure ramp rate.  In that case, specimen failure occurred at 325C and 730 psi.  Several 

Fig. 1.  Thermocouple placement on 304L 
stainless steel tube specimens.
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variations of temperature and pressure ramp rate were imposed, as well as heating to various hold temperatures 
prior to pressurizing. A photograph of several of the failed specimens is shown in Figure 7. In each case, the 
pressure, displacement, axial load and full-field temperature data was used as direct input into the finite element 
simulation of the experiment.  Figure 8 shows an example of the simulation results for specimen #2 which had 
similar applied temperature and pressure profiles to specimen #10.  Using the full-field thermomechanical loading 
data as input along with a tearing parameter based determination of failure [3], prediction of failure times have 
matched the experimental results very closely.
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Fig. 2.  Thermomechanical test 
specimen during experiment

Fig. 3.  Temperature measurements 
from specimen #10

Fig. 4.  Applied pressure and axial load 
response of specimen #10
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Fig. 7.  Specimens failed under various 
thermomechanical loading conditions

Fig. 5.  Temperature measurements 
from specimen #8

Fig. 6.  Applied pressure and axial load 
response of specimen #8
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Fig. 8.  Thermal-mechanical simulation using measured 
thermal field mapped onto finite element model of 

specimen


