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QASPR
It begins with displaced atoms

1
_ Y A 2
3:h+
|




QASPR

Modeling Radiation Response - QASPR

0
SPR Tests % Weapons systems qualification

!

EXPT <— C|IRCUIT models - XYCE

!

Peter A. Schultz

EXPT <— DEVICE models - CHARON

!

Atomistics and defect chemistry
DFT <> FF-MD<+=> CASCADE

EXPT <=

QASPR charter: replace SPR tests with expt’'l-comp’l system

Atomistic density functional theory (DFT) gives defect chemistry
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Radiation defects chemistry: Si

Peter A. Schultz

Primary defects ... secondary defects ... and more
B;B (0,-)

Si interstitial (/) B; (+,0,-)
i(+2,+1,0,-1,-2) B.O (+0)
C| (+!0, _)

B;C (?)

Annihilation
Osi (0,-) + what we don’t

Bv (+,0,-) know we don’t

Vacancy (v) know (discovery)

v(+2,+1,0,-1,-2)

Pv (+,0,-)

vv (+1,0,-1,-2)

Need to know defects species, charge states, levels, chemical networks ...
DFT most accurate (sometimes only) probe of defect behavior
This chemistry map almost entirely blank in GaAs, Ill-V’s - unknown
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QASPER
HBT model needs more than Si, or even GaAs

Peter A. Schultz

Example HBT stack

aehoNing AlGaAs and InGaP
InGaAs Emitter Stack are important in HBT devices

Emitter InGaP

Need defect physics for:
InP and GaP, AlAs

Collector nGaAs

n+ Gas Then need to extend that
Semiinsulating GaAs defect physics to ternary alloys.

(Thanks: Don King and Gary Patrizi)
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" The sequence of physics challenges

« Silicon: lots of good data
— Expt: DLTS (levels) + EPR (chemical identity)

— Need DFT to fill key gaps in QASPR defect package:
« interstitial, vacancies(-q), reactions/migration energies
* Unknown unknowns (Pv, Bv)
 GaAs: more complex system, very little good data

~ DLTS (levels) + EPRISomicaldentity)

Peter A. Schultz

— Only defect characterized is EL2 (Asg,), no radiation-defects

— DFT must take place of EPR to identify chemistry
— Validation challenge

« HBT’s: other IlI-V’s and ternary alloys, even less good data

Strategy: (1) comprehensive quantitative validation in Si
(2) extend 1nto GaAs, validate and predict
(3) lather, rinse, repeat: dopants in GaAs, III-V, ...
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QASPR

Computational challenges

Peter A. Schultz

« Conventional DFT failed for defect levels in semiconductors
(1) Physical accuracy: “band gap problem”
(2) Computational model convergence — model size limitations
(3) Lack of good and sufficient data for validation (esp. Ill-V’s)
(4) Supercell problem for charged defects:

o S PR

Finite charged defect llI-defined (C‘OUIomb divergence)

* lots of “point solutions” with DFT, but no robust, predictive method
* Need to build and justify new approaches, apply to new problems

Strategy: incrementally build/test, V&V defect models ‘ @ ﬁ%ﬁﬁﬁn |
aboratones
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~ A supercell theory of defect energies

Peter A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).

Standard

DFT model:  /&/@®/® / |
Supercell /‘/‘/‘ / Lgﬂo%gdtgrgx
Target system: / ‘/ ‘/ ‘ / \fondltlons
isolated defect

_ Finite Defect 1000/
Computational Supercell Model O/®O/

model for
isolated defect /
LS |
Jost Bulk L '/C\;/ CryStfc') ‘;;“t:ddmg
LY

screening /

Peter A. Schultz

(+DDO
for defect
banding)
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FDSM - breakthrough for robust calculations of defect levels ‘ Sandia
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Computational methods - GaAs and IlI-V’s

Peter A. Schultz

» General purpose DFT code SeqQuest (http://dft.sandia.gov/Quest)
— Version 2.61j, and development Version dev-2.62/j (equivalent to 2.61))
— well-converged (Gaussian-based) local orbital basis
— both LDA and PBE functionals
— converged norm-conserving pseudopotentials (Ga,In with both Z,,=3,10)
— full force-relaxed (<1 meV total energies)
— full FDSM ... robust control of boundary conditions

- Large bulk simulation supercells
— ay=a,(theory) (GaAs:5.60A(LDA),5.63A(3d),5.74A(PBE); a,(expt)=5.65 A)
— 216-, 512- and some 64-site (+defect) cubic lII-V cells
— k-sampling: (23 for 216- and 512-cells, 32 for 64-site cell)
— real-space grids: 64/963, 216/1443, 512/1923 (963, 1443,1923 for GaAs-d0)
— fully calibrated, verified polarization model
— all these computational parameters are tested for convergence

National
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Comparable method to Si that yielded 0.1 eV accuracy ‘ @ Sandia



Peter A. Schultz

/ +H++ 0 — = 0.8
Needed — = = /1. 0.7
from N4 = ¢ 0 cy X 0.6

0 N — 0.4

0 ++ — = = 0.3
=\|=|+/++ + + 0.2
++3 )+ 0.1
VB

... and V,P(=/-/0/+),vP,(-/0),v,O(=/-10/+/2+),v,0,(=/-/0/+/2+),H(-/0/+) ... O, P, B, C,,

DFT “defect gap” matches experiment — no band gap problem.
DFT/PBE max error=0.20 eV, mean |error|=0.10 eV — VALIDATION
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DFT gives verified, validated results with good uncertainties ‘@ Sandia
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~ Simple intrinsic defects in GaAs: LDA
P.A. Schultz and O.A. von Lilienfeld, MSMSE 17, 084007 (2009), 35pp.
Vga Vas VWV Asg, Ga,, Ga, As; aa
. I —E 15

Peter A. Schultz

216-site results = 512-site

Verification: cell-converged s — _
LDA-3d = LDA to <0.1eV e-ry T TE2 m:
=Y == 512-site
Verification: PP converged ] E3 .
(3-/2-) 1.0 ?"/
- 3 \p61) >
Defect band gap = ~1.54 eV T a o Lo =
Validation: band gap (1.52) 5 1-0) om = (1-/0) =
Asg, levels = EL2 levels ;*1-_“&:(’) o o
vGa levels below midgap o~ (2-1-) g 0 0.5
Validation: levels < 0.1 eV = A (24/3%)
2+/3+) '11 ¥ -on
DFT/SeqQuest-FDSM 5 -, 2+ 2+
V&V accuracy ~0.1 eV "m/9+)$ip.u(1+/'<+) - r U+ 0.0
3+
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Pure prediction: a GaAs radiation defects Rosetta Stone ‘@ Sandia
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QASPR

-TERNATIVES TO SPR

Transients: Identify mobile species in GaAs

*Ga, is thermally mobile in p-type
— migration barriers, T-H-T: Ga,[1+] 1.1 eV, Ga[2+] 0.8 eV, Ga[3+] 0.5 eV

* As; is thermally mobile in p-type, likely also in n-type
— p-type migration barriers, T-H-T: As,[3+], As,[2+] <0.5 eV (~validated)
— n-type: flat (<1 eV) structural energy variations in other charge states

* As, is athermally mobile in p-type (~validated), just as in Si

—e.g.,T[3+]+e —>H[2+]+hT —>T[3+] + &

Peter A. Schultz

— recombination-enhanced diffusion through bistabilities in other charge states

* No other mobile species (e.g. vacancies are stationary)
— consistent with, and roughly validated by experimental analyses

Transient effects dominated first by As,, second by Ga,

12/17 @
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QASPR

RNATIVES TO 5|

GaAs transient defect chemistry network

Peter A. Schultz

Primary defects ... secondary defects ... and more
As interstitial ?
As(1-,0,1+,2+,3+) g ?
Ga interstitial .
Ga,(1+,2+,3+) :
ﬁnti.s“.es’. Reactant initiation ranked by mobility:
nnihilation ”
As;: “instant” athermal

~0.5 thermal

Vacancies _
Ga;: ~0.5 eV thermal in p-type

VGa! VAs
(3-.2-,1-,0,1+,2+,3+)

(v, Xy immobile)

Likely reactant targets of mobile interstitials:
p-type ... C.As - in. p-type
n-type ... SIGa (SlAs) - N @ Sandia

National
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RNATIVES TO SPR

QASPR
Interstitial-defect reactions and energies

Peter A. Schultz

Thermodynamic (non-charge conserving)

As interstitial: Reaction energy
p-type: As, + C,, > C -1.35eV
(E=VB edge) Ci+Chrs > (C))as -3.23

( C, )as IS terminus of chemistry
n-type: As; + Sig, — (SIAS)g, -0.70
(E=CB edge) (SiAS)g, Is terminus of chemistry

but perhaps source of delayed release of As;

e.g. (SiAs)g, = Asg, + Sii +2.20

(SiAs)g, Is strongly bound vs. dissociation to Si,

Ga interstitial:
n-type: Ga, + Sig, = Sj; -0.92
(E=CB edge) Si; will be mobile (just as in Si), not a terminus
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GaP: Simple intrinsic defects

SeqQuest version dev2.62/j, LDA, Ga(Z=3) PP

Peter A. Schultz

216-site results = 512-site Vea Vo W Pea Gap Ga P aa
Verification: cell-converged | -o- 216-site[ 24
- | 512site 5o
Defect band gap = ~2.4 eV f('; 5 Rt 27— 2.0 <
Validation: band gap (2.35) L. s 18
1.6 >
-ﬂ'—rr e - 1.4 %
Mobile species: ! iy - i 5 12 ¢
P., thermal (~0.5 eV) B o) = a0 == 10 2
and athermal p-type (e (0) O g o o 8'2 (‘D“
Ga,, migration barriers ~1.0 o » & (1+) '
S @) (;:3 2 04
. o (r+13%) 0.2
Similar to GaAs ... L ¥ 0.0

. with some differences

National
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Pure prediction: defect physics of GaP almost unknown ‘@ Sandia
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InP: Simple intrinsic defects

SeqQuest version dev2.62/j, LDA, In(Z=3) PP

Peter A. Schultz

216-site results = 512-site Vim Vp W Py Inp Inp P aa
Verification: cell-converged [o= 216t )0
(4-) I* 512-site 1.8
Defept bgnd gap =~1.7 eV . P28 @ 15 >
Validation: band gap (1.42) (2) (71%) =) 1'4 Qo
1') (2-) —e 12 >
0 &=8e1-/1+) 1'0 %
Mobile species: (-1+) =T 08 S
P., thermal (~0.5 eV) ZR ey @09 06 o
and athermal p-type (14) ©) o ST <R (3 N 8
- ol (3+) 14/3+) (oq ©
In,, barriers > 0.7 eV 3+ (14) (24) B @n 0.2
24) — 0.0

Similar to GaAs, GaP
Some difference, but same mobile species -> similar defect chemistries

National
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InGaP alloy within reach, intermediate between InP, GaP? ‘@ Sandia
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Path forward for defect chemistries

 Impurity-defect chemistry in GaAs - Si (n-type), C (p-type)

— clean up chemical networks, need experiment to filter possibilities

Peter A. Schultz

» Set up baseline defect physics for other IlI-V - get ahead of engineering needs

—identify mobile species, and begin to scope radiation chemistry networks

— scope issues for extending to HBT-relevant alloys, e.g. InGaP

* Ternaries? Looks like InGaP ~ GaP + InP ...

* Need to figure out physics in GaAs (U-band)
* Need experiment in InP, GaP, InGaP for model development, validation
* Need to develop validated defect-aware device models

DFT has achieved accuracy necessary for device model needs
DFT studies can meet (lead) engineering timeline constraints

17/17
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QASPR

V&V: EL2 and the As antisite
EL2 = antisite Asg,(0)

Peter A. Schultz

216-site =
512-site
(~ 64-site)

Experiment -EL2 SeqQuest/FDSM - Asg,

EL2(0/1+) E.-0.74 eV E.-0.81eV
EL2(1+/2+) E,+0.54 eV E, +0.48 eV
Splitting: 0.24 eV (E;=1.52) 0.25eV

EL2* no donor states no donor states
Reorientation: ~0.3 eV ~0.2 eV

Verification: 64-216-512-site supercell results match
Validation: DFT matches experiment for EL2 w/in 0.1%
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Defect complex energy levels

Peter A. Schultz

(in eV) Ci (C2)as Si (SiAS)g,
(cf VB) (cf VB) (cf CB) (cf CB)
E(2-/1-) +1.23 n/x ~-0.14 20.33
E(1-/0) +1.04 +1.18 _-0.03 +0.71
E(0/1+) +0.53 +0.97 —-0.71 -1.03
E(1+/2+)  +0.32 n/x _-0.40 -1.35

20/17

Complexes have complicated structures, bistabilities
Lead to -U transitions in Si-complexes
(SiAS)g, [2-], [1-] states thermodynamically inaccessible

Levels can be used to extend defect physics package in GaAs
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llI-V: The DFT Defect Gap

Peter A. Schultz

» Usual band gap definition: CB to VB energy
— cannot compute directly in DFT (Kohn-Sham (KS) gap is wrong predictor)

 Defect band gap: range of transition energies for local defects

Si 1.17 eV AlAs 2.16' eV

KS Defect KS Def. | & = &o(€Xpt)
lda 049 1.2 lda 137 22 Rekin = 1.6(1)
pbe 0.62 1.2 pbe 1.53 n/a Verified polarization model
GaAs 1.52 eV GaP 2.35 eV InP 1.42 eV

KS Def. KS Def. KS Def.
lda 0.83 1.54 lda 1.51 2.3 lda 0.67 1.7
lda-3d 0.47 1.51 lda-3d 1.47 n/a lda-3d 0.66 1.7
pbe 0.45 1.44 pbe 1.74 n/a pbe 0.47 n/a
pbe-3d 0.13 n/a pbe-3d 1.52 n/c pbe-3d 0.46 n/c

DFT: defect band gap accurate for interesting IlI-V
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QUALTFICATION ALTERNATIVES TO

‘The polarization model and verification

LS

For extrapolation to infinite cell, need energy of screening outside of cell. E

Peter A. Schultz

9 RjOSt RvoI - Rskin
Jost model: E = (1-1/e)q q = charge on defect
0]
" RjOSt Rjost: vol ~ Rskin

R, = radius of volume sphere

Two parameters for any material

R.in = Unscreened gy = static dielectric constant - expt
volume inside cell. Si GaAs InP GaP AlAs InAs
fit: =1.5(1) bohr 11.8 13 125 11.2 10.1 15.15

Sandia
@ National
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Enabling progress on oxides

Collaboration with Purdue (ASC/PSAAP program) and PNNL
N. Anderson, R. Vedula, A. Strachan (Purdue), R. Van Ginhoven (PNNL)

Peter A. Schultz

Strategy:

(1) MD (ReaxFF) to generate many hi-fidelity samples
both stoichiometric and O-deficient (60 each)

(2) DFT (SeqQuest/PBE) to screen structures

(3) identify non-artifact “defects”, compute energies

(4) model charge states, diffusion and interfaces

Advance: accurate, statistical approach for a-SiO,
Prediction: isolated IlI-Si (E’" centers), without v,

o Albn Advance: FDSM approach for amorphous systems
9% ] New capability: defect levels (charge traps) in oxides

= =
U

III-O/TII-Si
e

1);:5%4‘

Progress made outside of QASPR
Methods now enable quantitative studies of oxides
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