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mlsed—power generators provide an energy-rich

platform for inertial confinement fusion experiments
(1)
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> 21 Ml stored energy at 85 kV
500 kJ delivered to cm-scale targets
100 kJ delivered to fusion fuel i
» 26 MA into low impedance loads R R %o T 0 0 W0 ow o
» 33 m diameter footprint

» Facility refurbishment completed in
2007 at a cost of ~4$/]J

High energy density achieved
through multiple stages of spatial
and temporal pulse compression



m H: Fuel pre-heat & magnetization allow relatively
slow 1mplosions to achieve significant fusion yield

Liner (Al or Be = Aninitial 10 T axial magnetic field is applied

\‘ | azimuthal
/drivefield

= |nhibits thermal conduction losses

;:Ld"[:l“ = Enhances alpha particle energy deposition
axial
magnetic = May help stabilize implosion at late times
, field
- = During implosion, the fuel is heated using the
[laser| Z-Beamlet laser (<10 kJ needed)
preheated '99?‘_’5‘_ __
fuel g = Preheating reduces the compression needed to

obtain ignition temperatures to 20-30 on Z

= Preheating reduces the implosion velocity
needed to “only” 100 km/s (slow for ICF)

= Stagnation pressure required is few Gbar, not a
few hundred Gbar

compressed &
axial field

= Scientific breakeven may be possible on Z
(fusion yield = energy into fusion fuel)

*S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010); Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)



*rres-,entation focuses on liner dynamics; primary diagnostic
1s two-frame monochromatic (6151+0.5 e¢V) radiography™
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The low opacity of beryllium to 6.151 keV photons
allows measurement of liner’s inner surface

Transmission Fraction
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“tracer” layer to liner’s inner
surface is extremely useful

r

r r r

o)

0.5

1 1.5 2 2.5

Transwverse Distance [mm]

W
Ol

Sandia
National
laboratories



~Experiments obtain high-

quality radiographs of an
imploding Be liner
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R. D. McBride, S. A. Slutz, C. A. Jennings ef al., Phys. Rev. Lett. 109, 135004 (2012).
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Experiments have focused on developing predictive
capability of instability growth of imploding liners*

(2) Experiment (b) GORGON 3D (c) GORGON 3D Sample from 22173 Be target with 120-nm RMS roughness
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*'Afe, inversion allows calculation of several important
experimental parameters
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"WlagLIF Helmholtz-like coil pair first fielded on Z in
February of 2013—All requirements met

Field strength requirements:
—10 T seed field with full
diagnostic access
—30 T coils will have limited
diagnostic access

Pulse length requirement:
— Must not crush or buckle
target or hardware
— Fully magnetize liner/fuel
with uniform field
— 3.5 ms risetime used

Minimize increased
inductance from required
elongation of final feed




"“Experiments with “micro-Bdots” confirm Bg penetration
through the liner, and B, flux compression within the liner
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e Compressed flux observed = MicroBdots (B,) measure
rising fringe fields above imploding liner

MicroBdot data, Raw, BMIC5&BMIC7 multiplied by (-1)
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“Electrode instabilities can cause jetting of liner material
into fusion fuel; mitigated by nylon “cushions”
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"Helix-like instabilities develop on premagnetized liners

Boo=10T Bio=0T
72465: CP=50%, r=3093.2 ns

2481-t1: CP=65%, r=3094.8 ns
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T.J. Awe et al., manuscript submitted to PRL
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Pinhole imaging .
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A

High-density structures
are at large angle to the z
axis

Penetrating radiography
“sees” structures at
“front” and “back” of
liner, so structures with
positive and negative slope
are observe. This results
in the observed cross-
hatched pattern

Well-connected structures
can be traced through
multiple cycles
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A simple cylindrical helix model fits the data well

72480, t1=3094.3ns
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Axial Distance [mm]
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Axial Distance [mm]
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72481, 12=3100.8ns
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72481, 12=3100.8ns
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Silicon diode and PCD data may indicate enhanced
stability
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Stainless steel and gold emission were evident in spectra from
Washington targets with no axial B-field
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Stainless steel and gold emission were evident in spectra from
Washington targets with no axial B-field

TIXTL
spectra

22465 radial i
Stainless

z2465 axial




Stainless steel and gold emission were also evident, faintly,
from Roosevelt shots!

22480 radial 22481 axial CRITR

Stainless




Absolute intensities are very weak (0.1%) compared to stainless
wire arrays, but line emission unambiguously signals stainless.
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The Be liner, stainless, and Au appear to reach ~ 2 keV (lower
T on the Roosevelt shots)
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Summary & Conclusions

» Liner implosion & MRT studies using penetrating radiography
have provided valuable data for benchmarking codes &
characterizing a MagLIF-relevant liner implosion through to
stagnation

» Radiographs with high-opacity tracer layers have allowed us to
assess the stability of the imploding liner’s inner surface more
accurately and more directly than previously possible

» A radiograph of a liner at a convergence ratio of 7 shows that the
liner’s inner wall remains highly uniform

» Micro-Bdot measurements confirm flux compression by liners
seeded with a uniform axial field

» In stark contrast to liner with no seed B, field, pre-magnetized
liners develop 3D helix-like surface instabilities

> Evidence suggests that this may have a stabilizing effect
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Recent experiments used 2.5 um Al just inside the Be liner to enhance
the contrast of the liner’s inner surface*

(a) Full Transmission (%) (b) Zoomed Transmission (%) (c) Density (g/cc)
50 100 0 10 20 30 0 5 10
cl [

*Thin Al
uBdot layer to
probes enhance
inside contrast

liner suggested

by D.D.

R

= yutov
E
8
g
0
(]
©
>
On-axis
rod to
guench
radiation

Distance [mm]

R. D. McBride et al., invited manuscript in preparation for Phys. Plasmas (2013).



Simulations Suggest that the addition of a “cushion” feature to
the end cap will mitigate this instability




Experiments planned to test mitigation schemes:

Integrated MagLIF Top end cap
simulations using 2D ;

LASNEX suggest that ! l
bubble blocker will be !

sufficient to prevent ! 0.5 mm

negative effects of early =—>

electrode implosions : A

[

l 1 mm .

; 0.75 mm Outer anode / split-
Bubble : v ring structure
Block : 0

: 4

e



Other schemes that can be tested include:

Angled glide planes, as tested by
Reinovsky et al., IEEE Trans. Plasma
Sci. (2002).

Static

t=7.5 usec

t=8.5 usec

t=10.76 usec



Radiographs at a convergence ratio of ~5 show
remarkably good stability for inner liner surface

(a) Full Transmission (%) {b) Zoomed Transmission (%) (c) Density (g/cc)
0 50 100 O 10 20 30 0 5 10

M s | |
: - Q7L
L PTS Note: Most

/ disruption to

liner stability
caused by

electrode end-
3 effects and
8 jetting
;5 material
g

Note: MagLIF

requires final
compression
to about
diameter of
on-axis rod

Distance [mm)]

R. D. McBride et al., invited manuscript in preparation for Phys. Plasmas (2013).



Most disruption to liner stability caused by
electrode end-effects

z2320, t2=3115.9ns

Early anode implosion
causes material to jet
into imploding volume
and disrupt liner stability

(Camera was fortuitously
aligned high on this
particular shot, allowing
a partial view of the
bubble near the anode
surface; presumably this
occurs along the cathode
surface as well) -4 -2 0 2
Transverse Distance [mm]

Axial Distance [mm]

R. D. McBride et al., invited manuscript in preparation for Phys. Plasmas (2013).
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Micro-Bdot experiments:

1D ALEGRA simulations predicted magnetic field penetration (Z’s
B, drive field) into liner interior upon shock breakout:

Amplitude
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R. D. McBride et al., invited manuscript in preparation for Phys. Plasmas (2013).
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Micro-Bdot experiments:

Micro-Bdot probes
fabricated for use on Z
by John Greenly at
Cornell University

For probes from
0.020” semi-rigid co-
ax, loop areas are
about 0.1 mm?

These probes are being
considered for
measuring the flux-
compression
component of the
MagLIF concept (by
measuring the fringe
fields above the

imploding liner) FIGURE 2. COBRA magnetic probe construction.




Micro-Bdot experiments:

Z load load hardware and liners
modified to accept Greenly
micro-Bdot probes

R. D. McBride et al., invited manuscript in preparation for Phys. Plasmas (2013).



Micro-Bdot experiments:

(a) Full Transmission (%) {b) Zoomed Transmission (%) (c) Density (g/cc)
0 50 100 O 10 20
9} Bdot BT

probes 4
inside =3~
liner 2

Axial Distance [mm]

0

Distance [mm]

R. D. McBride et al., invited manuscript in preparation for Phys. Plasmas (2013).



%eh‘éﬁmg will be integrated into Z experiments
in July 2013—Relevant physics will be assessed

* Beam 1s delivered off-
axis for radiography
application

* Both MagLIF and X-ray
Thomson Scattering
(XRTS) require laser
light to be delivered on
or very close to the axis

e XRTS work resulted in
engineering solutions to
debris concerns

* Filling out booster amps
increases energy to ~6 kJ
















e.can Abel invert the data line by line:

—— 100 10
1 - F
0.5 . 0.5
0
11 - - =90 ] 9
0.5 L 05
0 o
14 - 1
05 I — —80 0.54 8
0 0
] : : 1
0 T T B 70 0 7
31 - 31
»
2] L 21
€ 60 E 6
E 1] . _ E 1
) = 2] —_
2 9; T 8
£ 0 s e J ®
4 - 7] 1
2 B 50 & 8 5 2
2 5 a 2
2 21 L c & 2] [
[m] g o =) [a)]
= (= =
g 11 i 8 4]
Pod 40 é 4
0 ; . 0 b
34 | 31
: i 30 -3
21 ‘ L 2]
11 - 11
20 - 2
0 . . 0
34 L 31 L J
27 ! 10 2 -1
11 - 11 Ll
0 . - —r 0 0 . - . 0
-4 2 0 2 4 -4 2 0 2 4
Transverse Displacements [mm] Transverse Displacements [mm]

Sandia
|1'| National

laboratories




And compare implosion E 2 -
trajectories to 1D = i =
OUTER
ALEGRA simulation: € T e
o xp- Rgpike
£ 05} ®  Exp.Rgygpe
- L0 FPRwen N =
130 140 150 160 ) *1_70
Time [ns]
600
° 4:550*[1.—H(1)IR(0)]—90
Then define MRT g 0 fr?ﬁégﬁni"
— 400 2
amplitude as difference 3
. = =
between bubble radius S 00f O
° ° <
and spike radius
0l.'l 0:5 1
. . N . Dist. M d [1-R(t)/R(0
We find nearly linear orm. Dist, Moved [1-A/REO)
growth With normalized MRT Amplitude as Fraction of Distance Moved
0.2 r T . r
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Wavelength Growth from Abel Inverted
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Mean liner pR and A(pR)
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Radiographs at a convergence ratio of ~5 show
remarkably good stability for inner liner surface

Note: MagLIF requires final compression to

on-axis rod

LASNEX 2D from
S. A. Slutz, et al., PoP (2010)

Experiment
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