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The Community System Climate Model (CCSM)

9 |IPCC-class model

o Seasonal and interannual
variability in the climate

@ Explore the history of Earth's
climate

o Estimate future of envirornment
for policy formulation

o Contribute to assessments

@ Developed by NCAR, National Labs
(DOE ~ 40%), and Universities

@ Fully documented, supported, and
freely distributed

@ Runs on multiple platforms and
resolutions

@ CCSM4 (Apr 2010) and CESM1 (June
2010): Higher resolution and increasing
complexity

Modeling the Climate System
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Source: IPCC 4" Assessment Report



Community Climate System Model (CCSM)

Model Components

@ Land and ice models are
petascale-ready

@ Ocean component is also
petascale-ready (20
simulated years per day
at 10km)

@ Atmosphere is the
bottleneck!




CCSM Atmosphere Component

http://celebrating200years.noaa.gov/

Physical Processes in a Model
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ATMOSPHERE

@ Column Physics
@ Subgrid parameterizations: precipitation,
radiative forcing, etc
o Embarrassingly parallel with 2D domain
decomposition

CONTINENT

@ Dynamical Core (Dycore)
o Solves Atmospheric primitive equations
@ Scalability Bottleneck!



The Dynamical Core Scalability Bottleneck

Latitude-Longitude Grids

@ Used by most dycores in
operational models

@ Well proven, many good
solutions to “pole problem”:
spherical harmonics, polar
filtering, implicit methods

@ These approaches are all
global and degrade parallel
scalability



The Dynamical Core Scalability Bottleneck

Petascale Dynamical Core

@ Quasi-uniform grids avoid the pole problem

@ Can use full 2D domain decompositions in horizontal
directions

@ Each column in the vertical / radial direction kept on
processor

@ Equations can be solved explicitly with nearest-neighbor
communication



Spectral Element Method

@ Continuous Galerkin Finite Element
Method

o Quadrilateral Elements

o Nodal basis formulation

o Gauss-Lobatto-Legendre quadrature /
inner-product

@ Unstructured Meshes: Any quadrilateral
tiling of the sphere
o Cubed-sphere for uniform resolution
o Variable resolution grids coming soon to
CAM-HOMME
o Efficient calibration of high-res global
model

o Evaluation of 0.125° parameterizations
with ARM data




HOMME spectral element dynamical core option in

CCSM4 / CESM1

o HOMME: NCAR'’s High-Order Method Modeling Environment
@ Based on SEAM (Taylor, Iskandarani, and Tribbia, 1997), a
modification of SEOM (Iskandarani and Haidvogal, 1995)
@ Excellent Numerical Conservation
o Locally conserves mass, tracer mass, moist total energy, PV
@ Dynamics: Modeled After CAM Global Spectral Core

o Galerkin formulation with polynomial basis functions,
collocated grid, high-order / low-dissipation numerics, KE
dissipation through hyperviscosity

@ Vertical coordinate: Simmons and Burridge, 1981

@ Advection

o Monotone and sign-preserving options

s Vertical Lagrangian (Lin, 2004) with monotone remap
(Zerroukat et al., 2005)

o Explicit RK-SSP time-stepping preserves monotonicity



Two Time-Slice Configurations in CCSM4 / CESM1

1°: ~ 110 km

@ Atmosphere: uniform cubed sphere,

equatorial grid spacing 1°

Land: 2° lat-lon

@ Prescribed ocean and ice extent: gx1v6

@ Physics / tracer / dynamics timesteps:
1800s / 360s / 90s

0.125°: ~ 13 km

@ Atmosphere: uniform cubed sphere,
equatorial grid spacing 0.125° 3
Land: 0.25° lat-lon 8 ><
@ Prescribed ocean and ice extent: gx1v6
@ Physics / tracer / dynamics timesteps:

900s / 450s / 11.25s
@ Scalability tested to O(400k) cores

©
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CCSM / HOMME Scalability

CESM1 F1850, ATM component
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@ BGP (4 cores / node): Scalable to 1 element per proc (86400

proc at 0.25°)
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o JaguarPF (12 cores / node): 3x faster per core, poorer

scaling



CCSM 1/,° Scalability

CESM1 F1850, ATM component, BGP
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@ Spectral model (EUL) faster with O(1k) cores, does not scale
beyond
o FV (lat-lon) loses scalability due to polar filters

@ HOMME scales to 1 element per core



Mesh Refinement in HOMME

Conforming Unstructured Static
Refinement

@ Conforming: Every edge is shared
by exactly two elements

@ Unsctructured: Domain is tiled
arbitrarily

@ Static: Mesh is refined prior to run
(based on topography, regional
interests, etc)

Currently testing in stand-alone HOMME, working on CAM / CCSM



More on Refinement Choice

Why Conforming Unstructured Static Refinement?

@ CAM-HOMME currently uses conservative SEM

o Non-conforming refinement breaks conservation in SEM, would
be better suited for DG (currently not part of CAM-HOMME)
o Unstructured meshes allow more flexibility in refinement
Q Will be running CAM-HOMME with variable resolution by end
of fiscal year
o Dynamic refinement would take significantly longer to
implement (and would restrict refinement options)



SW TC5 Surface Topography SW TCS5, Initial Height
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Williamson et al. — Test 5

@ Flow around an isolated mountain

@ Good test for refinement: refine around the mountain



Experiment

Mountain has radius of 20°, refine area w/ radius 30°
Compare meshes based on coarsest elements

Notation

Grid: N20_x4_s9

N20 Begin with uniform grid based on 20 x 20 elements on each
face of cubed sphere

x4 Refine such that edge length in coarse region is 4 times the
length of that in fine

s9 Apply smoothing operator to grid 9 times

Source

Exploring a Multi-Resolution Modeling Approach within the Shallow-Water
Equations
T. D. Ringler, D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, W. Skamarock

Submitted to Monthly Weather Review



Comparing three grids
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First wave of results

SW TC5, h-error
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Problem in the x4 Grids
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We kept the size of the fine mesh the same, but enlarged the
transition region. This fixed the low-res x4 grids, but still had a

problem around N40.



Second Wave of Results

SW TC5, h-error
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Conclusions

o CCSM with HOMME dycore scales to O(100k) proc on
today's hardware

@ CCSM dynamics capable of 0.125° simulations (near climate
integration rates)

o DOE target: High-res configuration of CESM (0.125°
atmosphere, 0.1° ocean) running 5 SYPD with tuned /
calibrated physics by 2015
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