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SNL Water Power Program _ s/8a

Marine Hydrokinetics, Offshore Wind, Conventional Hydropower Hydrodynamics

Unique Capabilities e 1 LN
* MHK environmental circulation and performance code (SNL-EFDC) &
» Composite structural materials and anti-biofouling coatings test facilities
* Sandia Lake Facility — TRL 6 appropriate for wave testing
* SEAWOLF lab/field oscillatory-flow sediment transport testing
* HydroSCOPE Seasonal Optimization Tool (CH)

Collaborative Projects

* Technical Industry Support _ ,
- Ocean Renewable Power Company, w0 e e
Ocean Power Technologies, o

o ey

= Snohomish PUD é
* SNL-EFDC Technology Transfer to _ — -
- Free Flow Power, NOAA, FERC, BOEM, Verdant, ORPC Whale Strike Analysis

Impact Examples
* Whale strike analysis (collaboration with PNNL) allowing demonstration
project to proceed in Puget Sound
* Leading the techno-economic report to Congress detailing what steps
need to be taken to ensure the growth of the WEC industry.
* Novel vertical axis wind turbine designs and structural health monitoring
for offshore wind devices.
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Reference Model Project

Summary
* Multi-Lab effort to obtain baseline performance and Cost Of Energy (COE) estimates for a
variety of Marine Hydro-Kinetic (MHK) devices, sponsored by DOE.
* Method to achieve COE is to develop public domain designs incorporating the following:

*Power performance models *PTO Design
*Structural models *O&M / Installation
*Anchor and mooring design *Permitting & Environment

*Economic Model

* Designs are intended to be conservative, robust, and experimentally verified.

SNL Developed Models/Tools

* Performance Models — WEC: 3D model capable of handling 7DOF in Matlab; FEC: CACTUS
* Survival Model — utilize a Morison’s Eq. approach to model extreme conditions

* Structural Sizing Tool — determination of weight, ballast, COG & COB locations, and natural

frequencies
* PTO Sizing Tool — Turbine sizing tool for given structure and desired performance

Partners: NREL, PNNL, ARL/PSU, ORNL
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Backward Bent Duct Buoy

Profile - = PTO
*Literature survey:
— AL=41 L=35[m]
* 9[sec] A=140[m]
— L/LA=2.0? LA=17.5[m]
— d,/LA=1.02  d,=17.5[m]
— d,/LA=0.22  d,=3.5[m]
— L/B=1.313 B=27[m]

» Selected relationship based on
most used in literature

Structural Design Displaced Mass [kg] 2,024,657
* Entire structure built to withstand Structural Mass [kg] 10

: 22,072
hydrostatic pressure at 23.5 m T
" 70,000
* Ballast chosen for stability RIS 0.00 0.00 4.9
. COB (x,y,z) [m] [eX] 0.00 -3.31
* Bu_oyancy cham!:)ers SEZEd to Support Free Surface Center (x,y,z) [m] RN YA 0.00 0.00
weight and obtain desired natural S » 1253 000  0.00
resonances Gyration at COG y 0.00 14.33 0.00
[m] z 0.00 0.00 14.54
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Optimal Resistive Control of OWCs

Grounded

Power Absorption
* Wave activated water column

Power Conversion

* Pressure and volume in the air chamber

— Wave activated motions linked through
power conversion chain.

) Sandia National Laboratories

Floating

Coupled Power Absorption
* Wave activated water column

* Wave activated structure

Power Conversion

* Pressure and volume in the air chamber

— Coupled wave activated motions linked
through power conversion chain.
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Modeling the Pressure Distribution of
a Floating OWC

Approximation

* Generalized Modes

— Approximates full solution with user defined
number of higher order modes

Explicit Solution

* Free Surface Radiation Potential

— Solves explicitly for the full velocity potential
of 1 oscillating structures with K internal free
surfaces.

$=$o+$d+z¢ijaij+z¢kﬁk
77 X

Implicit Solution

* Reciprocity Relations

— Derive all of the free surface parameters
from the oscillating structure potential

* Requires an array of field points to
define the internal free surface
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Modeling the Pressure Distribution of
a Floating OWC

Approximation Device Representation in WAMIT

* Generalized Modes S i | =

— Approximates full solution with user defined
number of higher order modes

Explicit Solution

* Free Surface Radiation Potential

— Solves explicitly for the full velocity potential
of i oscillating structures with k internal free
surfaces.

$=$o+$d+z¢ijaij+z¢kﬁk
77 X

OWC free surface diffraction velocity values for »=0.46.

o
!

Implicit Solution

* Reciprocity Relations

— Derive all of the free surface parameters
from the oscillating structure potential

* Requires an array of field points to
define the internal free surface

=
!

3%
|

magnitude of diffrac vel
per wave amplitude [(m/s)/A]
w
!
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|

o
|

-10 5 0 -10
x-position [m] y-position [m]
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Modeling the Pressure Distribution of
a Floating OWC

Approximation Device Representation in WAMIT

* Generalized Modes

— Approximates full solution with user defined
number of higher order modes

Explicit Solution

* Free Surface Radiation Potential

— Solves explicitly for the full velocity potential
of i oscillating structures with k internal free
surfaces.

$=$o+$d+z¢ijaij+z¢kﬁk
77 X

OWC free surface diffraction velocity values for «=2.3.

T,
Implicit Solution £5°°
. . . 5 £ 0.6
* Reciprocity Relations -
. 2 0 0.4
— Derive all of the free surface parameters 58
from the oscillating structure potential E 5027
* Requires an array of field points to 0- : W
define the internal free surface 10 -5 0 10

x-position [m] y-position [m]
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Device Hydrodynamics:
Wave Structure Interactions
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Free Surface Hydrodynamics
Total Hydrodynamic Volume Flow: Ury =qA —Yp — Z H;'u;

2500 ; i { J vertical volume flow I
2000 |-
Excitation Volume Flow ool
£
1 0((}50 + ¢d) = 1000 -
= Z a dS 500 -~
S Z
o ] % 075 1 1:5 2 25
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Coupling of the Oscillating Structure to the
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Free Surface Hydrodynamics
Total Hydrodynamic Volume Flow: ¢tz =94 —Yp — Z H;'u;

2500 T T {

J 4
vertical volume flow

2000 -

Excitation Volume Flow ool
1 0 + 1000 -

_ _jf (¢0 ¢d) dS
A S aZ 500 ~

r . i L
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Hydrodynamically Coupled Relative
Pressure

Relativizing the pressure
* Apply transformation vector to account for body

oscillations
T=[0 0 1 0 — 0]T

g-Y.H+TSHuy, —F——
Coupled relative pressure % = J ]Y J77

Determining Resonances: Couple Relative Pressure

4000
o 025 : o :
- 2 < o)
2= <
Q g % 02l Dpiston ()] g § 3000 - heave
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2 8Q 2 83 0wr-
C 5o 0.1 C 5 [ mCoupIedOWC
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(@] g7 o ('UQD & 2 1000 -
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Device Performance:
Linear Wells Turbine Linking the
Structures Oscillations to the OWC
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Linked Governing Equations

Linked Matrix Representation

. Z; —H;
e Structure velocity f y 1 u
*Relative Pressure in the Air Column (q) B H{ Y; + (P)
Rload
C+K
*Radiation Impedance of the Structure Z, =b + b,;; + iw <m +a— ( > )>
w
* Relative Coupling Term H =H+TS
o . o o 1 (,()V
Radlatlon.Adml'.ctance of the v, =6+ +il B+ 0
Compressible Air Column Ryis YPatm
Linked Total Volume Flow r=qA—Yp—Hlu= 5 P
load
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Externally Applied Forces: Viscous
Damping and Mooring

Viscous Damping on the Floating Structure
byis = 0-02\/ M;otCrot

Viscous Damping on the Oscillating Water Column
R,it = 0.01(max(G))

Aft
Mooring Line

150°
6.1[KN]

Mooring Restoring Forces?* 150°

55.5[kN]
Fwd Starboard

Mooring Lin

7.5[KN]

Operating
Environment

A

Fwd Port
Extreme

Envi ‘ Mooring Line
nvironmen
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Optimal Resistive Damping: Derivation

Pneumatic Power

1
* (P)=p(®)Qr(t) = ERe{pQ?}

Pneumatic Power In Monochromatic '
Waves

Py = =
2 Rload

Ip|*

Optimization Condition
d(P)

aRload

Optimal Resistive Damping for
Hydrodynamically Coupled OWC

1

.\jlopt = (|Yl + H'{Zl._lHl.|2)_i
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Optimal Resistive Damping:
- with Wells Turbine

Grounded Floating
Optimal Coupled Resistive

) Damping -
* Ry, = (%) * Ry, = (|1, +HTZ‘1H-| )

Optimal Resistive Damping
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Influence of Wells Turbine on Device

Motion: Troughs
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Influence of Wells Turbine on Device
Motion: Peaks

R ko/nf'sec]

linked pressure RAO, [kPa/A]

Sandia National Laboratories
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R [kg/nf'sec]

Phase Relative FSE RAO, [deg]

Influence of Wells Turbine on Device
Motion: Understanding Peaks
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Influence of Wells Turbine on Device
Capture Wldth Optlmal Resistive Damping
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Comparison of Damping

Applying Grounded R, ,; to
Floating Device
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Applying Coupled R, ,; to Floating

Device
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Conclusions

Grounded vs. Floating OWCs

* Floating OWCs must be modeled such that BOTH the wave activated water column
and the wave activated structure are included

Coupled Water Column Resonance for Floating OWCs

* Floating OWCs are coupled between the wave activated column and the wave
activated structure.

* This coupling results in a new resonance location for the coupled relative free
surface in the device.

Optimal Resistive Control for Floating OWCs
1

* Ry, = ([ +H Z7 ) 2

Controls’ Influence on Device Motion and Power
* Applying R, ., to the floating OWC will preserve the natural resonances of the
coupled system.

* This optimization clearly takes advantage of the coupling between the OWC and
the structure.

ﬂ'l Sandia National Laboratories g%%%%




Next Steps

Experimental Verification at HMRC
* Determine realistic viscous damping values

* Verify the shape of the optimal R,__4 curve in monochromatic waves
— Alinear scaled PTO has been designed

* Verify the predicted power absorption of the device in Northern California

St AT & " EL ll_""‘ :

Incorporation of Wells Turbine

* ARL at PennState is working with SNL to size the Wells Turbine and power
electronics that should be associated with this design
— Incorporation will include sea state — by — sea state derived efficiencies

Economic Model

* NREL will be working to determine the LCOE of this device
— The cost model will incorporate sensitivity analysis on some of the estimates.
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Sandia National Laboratories

Thank you.
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