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Abstract. This paper is the final of three related articles that develop
and demonstrate a new optimization-based framework for computational
modeling. The framework uses optimization and control ideas to assemble
and decompose multiphysics operators and to preserve their fundamental
physical properties in the discretization process. One application of the
framework is in the formulation of robust algorithms for optimization-
based transport (OBT). Based on the theoretical foundations established
in Part 1 and the optimization algorithm for the solution of the remap
subproblem, derived in Part 2, this paper focuses on the application of
OBT to a set of benchmark transport problems. Numerical comparisons
with two other transport schemes based on incremental remapping, fea-
turing flux-corrected remap and the linear reconstruction with van Leer
limiting, respectively, demonstrate that OBT is a competitive transport
algorithm.

1 Introduction

In this and two companion papers [1,2] we formulate and study a new
optimization-based framework for computational modeling. One application of
the framework, introduced in Part 1 [1], is in the formulation of a new class of
optimization-based transport (OBT) schemes, which combine incremental remap
[3] with the reformulation of the remap subproblem as an inequality-constrained
quadratic program (QP) [4]. An efficient algorithm for the solution of the remap
subproblem is presented in Part 2 [2]. In this paper we apply the OBT framework
to a series of benchmark transport problems cited in [5].

Numerical comparisons with two other transport schemes based on incre-
mental remapping are presented. The first scheme solves the remap subproblem
using flux-corrected remap (FCR); for an FCR reference see [6]. We denote this
scheme by FCRT (FCR based Transport). The second scheme solves the remap

3 Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94A1.85000.



subproblem via a linear flux reconstruction with van Leer limiting, see [3] and
references therein. We denote the latter transport scheme by LVLT (Linear Van
Leer based Transport). In comparisons with FCRT and LVLT, we demonstrate
that OBT, while computationally more expensive, can be more accurate and
significantly more robust.

2 Implementation

The OBT framework is developed in Part 1 [1]. To summarize, OBT for mass
density relies on an incremental remap procedure with the following steps:
(1) move an original computational grid in the direction of the advection and
obtain a new grid; (2) compute mass density updates on the new grid; and
(3) remap mass density onto the original grid. The remap subproblem in step (3)
is formulated as an inequality-constrained quadratic program (QP) and solved
using Newton’s method for piecewise differentiable systems, derived in Part 2 [2].
The QP describing the remap subproblem has the form

1 — — — —
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where F1 € RM are the given discrete high-order fluxes, 5min € R¥ and gmax €
RE are lower and upper bounds obtained from local mass density bounds on the
new grid, and A € RE*M is an inequality-constraint matrix. Below we define the
dimensions K and M for a concrete implementation of OBT. We also elaborate
on the computation of FH and A.

For the implementation of OBT, FCRT and LVLT algorithms we use struc-
tured quadrilateral grids. If N, and N, are the numbers of intervals in = and
y directions, respectively, then K = N,N,. The high-order flux vector FH can
be computed via integration over exact cell intersections, following the theory
in Part 1 [1]. We avoid this potentially costly computation by using the concept
of swept regions, see [7,4], where mass exchanges are allowed only between cells
that share a side. This simplifies the computation of high-order fluxes used in
OBT, as well as the computation of low and high-order fluxes used in FCRT
and LVLT. Following the swept-region approximation, the dimension M is given
by M = (N + 1)N, + (N, + 1)N,. Assuming a dimensional partitioning of flux
variables, Figure 1 gives the inequality-constraint matrix A for a structured grid
with NV, =3 and N, = 4.

We implement OBT, FCRT and LVLT in Matlab™ and rely on vectorized
arithmetic and efficient data structures for the storage of mesh data. We remark
that such implementation can rival the computational performance of mathe-
matically equivalent Fortran code, see [4, Sec. 6.4]. The global linear systems
involving the matrices AAT, see Part 2 [2], are solved using sparse Cholesky
and/or LU factorizations.
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Figure 1. The inequality-constraint matrix A for a structured grid with N, =
3 and N, = 4. For compactness, zeros have been replaced by dots.

3 Results

In this section, we study OBT, FCRT and LVLT on a number of numerical ex-
amples similar to those given by LeVeque [5]. We do not give a direct comparison
to all methods implemented by LeVeque, such as the transport with superbee
limiting, however, we provide analogous figures so that an interested reader can
make a qualitative comparison.

In Example 1, we compute a solid body rotation of a smooth hump in a
circular flow. Specifically, we define the initial hump to be

a(,9,0) = (1 -+ cos(r(z, ),

where

r(z,y) = min{y/(z — 20)2 + (y — y0)%, 70} /o,

and define the rotating flow as

u=—(y—1/2), v=(x—1/2).

In order to test the accuracy of the methods, we set rg = 0.15, zog = 25, and
yo = 0.5 and compute the solution over the domain [0,1] x [0,1]. In order to
insure that we rotate the hump one complete revolution, we use |8(27n)] time
steps, where n denotes the size of the computational grid in both the z and y
directions, resulting in a maximum CFL number of about 1/8. We summarize
the amount of error and the convergence rates for each method in Table 1.



LVLT
Fcells #remaps Lo err Ly err Loo err Lo rate Lj rate L rate
80x80 4021 5.85e-03 1.29e-03 7.36e-02 — — —
100x100 5026 4.00e-03 8.88e-04 5.08e-02 1.70 1.67 1.66
120x120 6031 2.94e-03 6.59e-04 3.78e-02 1.69 1.65 1.64
140x140 7037 2.35e-03 5.30e-04 2.97e-02 1.64 1.60 1.62
FCRT
Fcells #remaps Lo err Ly err Lo err Lo rate Lj rate L rate
80x80 4021 5.66e-03 1.24e-03 5.42e-02 — — —
100x100 5026 3.89e-03 8.63e-04 3.66e-02 1.68 1.62 1.76
120x120 6031 2.85e-03 6.45e-04 2.57e-02 1.69 1.61 1.84
140x140 7037 2.29e-03 5.21e-04 1.98e-02 1.63 1.56 1.82
OBT
F#cells #remaps Lo err L1 err Lo err Lo rate L rate Lo rate
80x80 4021 6.15e-03 1.40e-03 5.71e-02 — — —
100x100 5026 4.11e-03 9.38e-04 3.76e-02 1.81 1.81 1.88
120x120 6031 2.95e-03 6.83e-04 2.60e-02 1.82 1.78 1.94
140x140 7037 2.33e-03 5.46e-04 1.98e-02 1.75 1.70 191

Table 1. Errors and convergence rate estimates after applying a variety of
methods to Example 1. In this example, we rotate a smooth hump one revo-
lution for a number of time steps specified in the table above.

As we can see from Table 1, the three methods give similar numerical results.
OBT exhibits slightly better asymptotic convergence than FCRT or LVLT. The
lack of perfect second order convergence may be attributed to the time dis-
cretization.
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Figure 2. Initial data for the solid body rotation tests.

In Example 2, we use the same rotating flow from above, but rotate a combi-
nation of a smooth hump, cone, and slotted disk shown in Figure 2. In each test,



we use the same smooth hump as above and use a cone and disk with radius
0.15 centered at (0.5,0.25) and (0.5,0.75), respectively. As before, we rotate the
objects one full revolution, but use |27n| time steps, where n denotes the size
of the computational grid. In our first test, we summarize a comparison of the
runtime required for each method in Table 2. In addition, we give a qualitative
comparison between OBT and FCRT in Figures 3 and 4, respectively.

Grid Size  40x40 80x80 160x160  320x320

OBT 4.00 34.21 422.85 4108.27
FCRT 0.83 5.48 45.27 375.90
LVLT 0.89 5.84 45.38 362.65

Table 2. Comparison of the computational cost for Example 2 using OBT,
FCRT, and LVLT, in seconds (total wall-clock time). In each test, we compute
one revolution of the smooth hump, cone, and slotted disk for increasing grid
resolutions. For the number of time steps, we use |27n| where n denotes the
grid size. The computational cost of OBT is on average 10 times higher than
the cost of FCRT or LVLT.
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Figure 3. The result of applying OBT to Example 2 for one revolution (628
time steps) on a 100 x 100 grid. We show four different cross sections of the
solution along with the surface plot. The solid lines denote the true solution.
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Figure 4. The result of applying FCRT to Example 2 for one revolution (628
time steps) on a 100 x 100 grid. We show four different cross sections of the

solution along with the surface plot. The solid lines denote the true solution.

In terms of computational cost, we note that OBT is on average 10 times
more expensive than FCRT or LVLT. However, as with FCRT and LVLT, the
computational cost of OBT scales linearly with mesh refinement. Improvements
in the optimization algorithm, in particular the solution of global linear systems,
are possible and will lead to a reduction in the computational cost. In terms of
qualitative results, the methods are comparable, see Figure 3 for OBT and Figure
4 for FCRT (LVLT not shown).

The purpose of Example 3 is to examine the robustness of the methods. In
particular, we rotate the slotted disk from Example 2 about its axis for one
complete revolution. In order to accomplish this, we center the slotted disk at
(0.5,0.5) and use the same rotating flow from above. We compute the result of
rotation for 27(1/At) time steps where we use an initial At = 1/100. Then, we
slowly increase the size of the time step until the L; error doubles from its initial
value computed at At = 1/100. We give the result of this test on a 100 x 100
grid in Table 3 and a qualitative depiction of OBT in Figure 5.



1/At=100 1/At=62 1/At=61 1/At=45 1/At=44 1/At=19 1/At=18
CFL=1.00 CFL=1.60 CFL=1.62 CFL=220 CFL=225 CFL=550 CFL=521

OBT 2.14e-02 2.37e-02 2.38e-02 2.60e-02 2.62e-02 4.02e-02 4.36e-02
FCRT 1.97e-02 2.19e-02 2.21e-02 3.00e-02 6.00e+06 9.45e+38 1.83e+40
LVLT 2.14e-02 2.36e-02 8.15e-01  3.47e+54 2.85e+56 2.83e+79 6.23e+77

Table 3. L; errors in OBT, FCRT and LVLT for Example 3. In this ex-
ample, we rotate a slotted disk centered at the point (0.5,0.5) one revolu-
tion (|27(1/At)] time steps). Our goal is to determine the largest time step
for which the error measured in the L; norm doubles given a baseline with
At = 1/100. Results that are better than this error bound are given in bold.
FCRT and LVLT clearly exhibit numerical breakdown at CFL numbers larger
than 2.25. In contrast, OBT remains stable.
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Figure 5. The result of applying OBT to Example 3. In this example we rotate
a slotted disk centered at the point (0.5,0.5) one revolution. In the above plots,
we show the original disk on top. On the bottom, we show surface and cross
section plots of the disk after one revolution where At = .01 (CFL=1.00) on
the left and At = 0.047 (CFL=4.7) on the right.

As we can see, OBT exhibits a level of robustness that far exceeds FCRT and
LVLT. In fact, OBT produces qualitatively reasonable results for CFL numbers
of about 5, while both FCRT and LVLT break down numerically at CFL numbers
beyond 2.25.



4 Conclusion

In this paper we applied the framework for optimization-based transport, for-
malized in [1,2], to benchmark transport problems presented in [5].

Numerical comparisons with transport schemes based on incremental flux-
corrected remap and incremental linear flux reconstruction with van Leer limit-
ing demonstrate that optimization-based transport is a competitive alternative.
In particular, while computationally more expensive due to the solution of a glob-
ally constrained optimization problem, optimization-based transport is shown to
be more accurate asymptotically and significantly more robust.

Future work includes performance optimizations and applications to the
transport of systems.
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