

Model-Based Decision Making: A New Perspective

John Doherty¹, Scott James²,
and
Paul Reimus³

April 13th, 2011

¹National Centre for Groundwater Research and Training, Flinders University, Australia

²Thermal/Fluid Science & Engineering, Sandia National Laboratories, USA

³Earth and Environmental Sciences, Los Alamos National Laboratory, USA

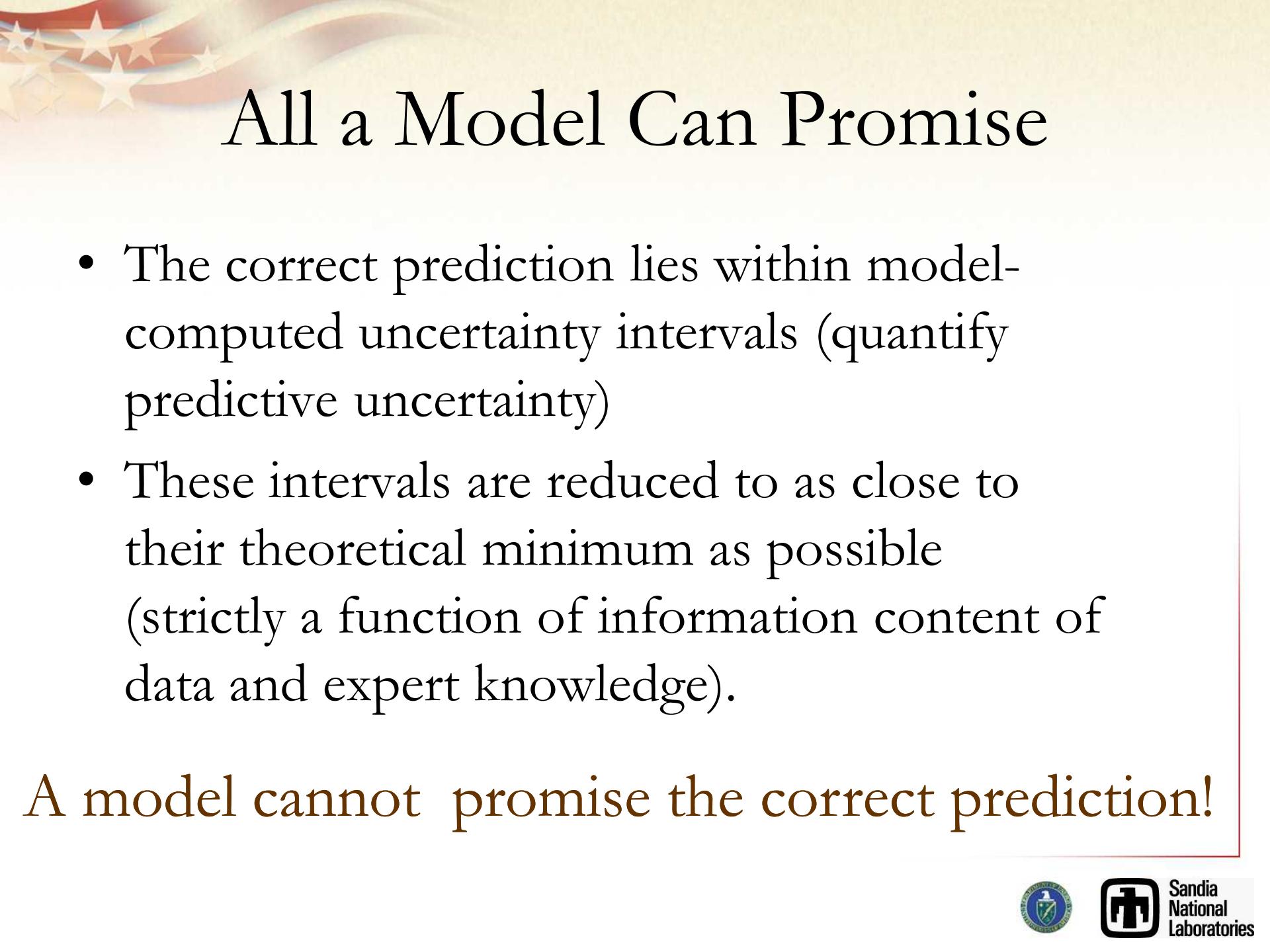
Not So New Perspective?

“All models are wrong, but some are useful.”

George Edward Pelham Box, *Robustness in the strategy of scientific model building*, in “Robustness in Statistics,” R.L. Launer and G.N. Wilkinson, Editors, Academic Press: New York, 1979.

“...We have a large reservoir of engineers (and scientists) with a vast background of engineering know how. They need to learn statistical methods that can tap into the knowledge. Statistics used as a catalyst to engineering creation will, I believe, always result in the fastest and most economical progress....”

Sandia
National
Laboratories



All a Model Can Promise

- The correct prediction lies within model-computed uncertainty intervals (quantify predictive uncertainty)
- These intervals are reduced to as close to their theoretical minimum as possible (strictly a function of information content of data and expert knowledge).

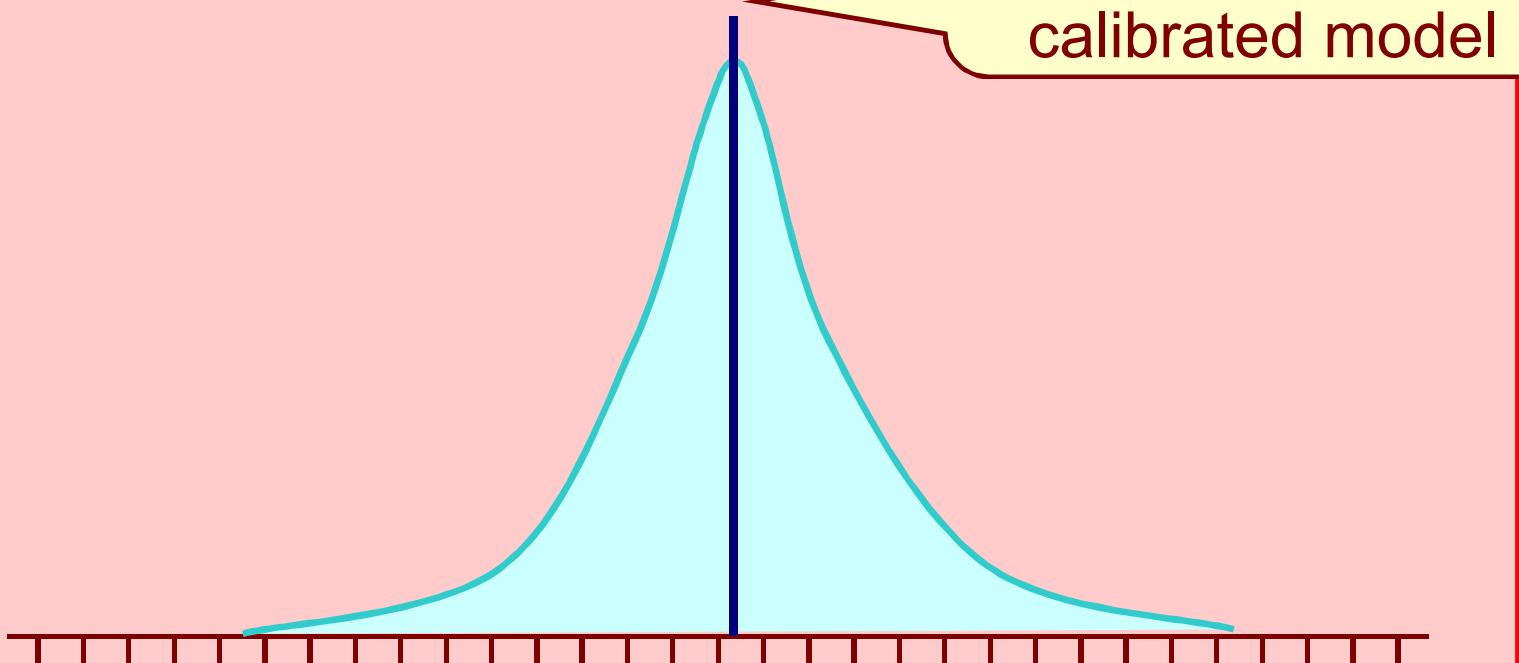
A model cannot promise the correct prediction!

The Prediction of Minimum Error Variance

Sandia
National
Laboratories

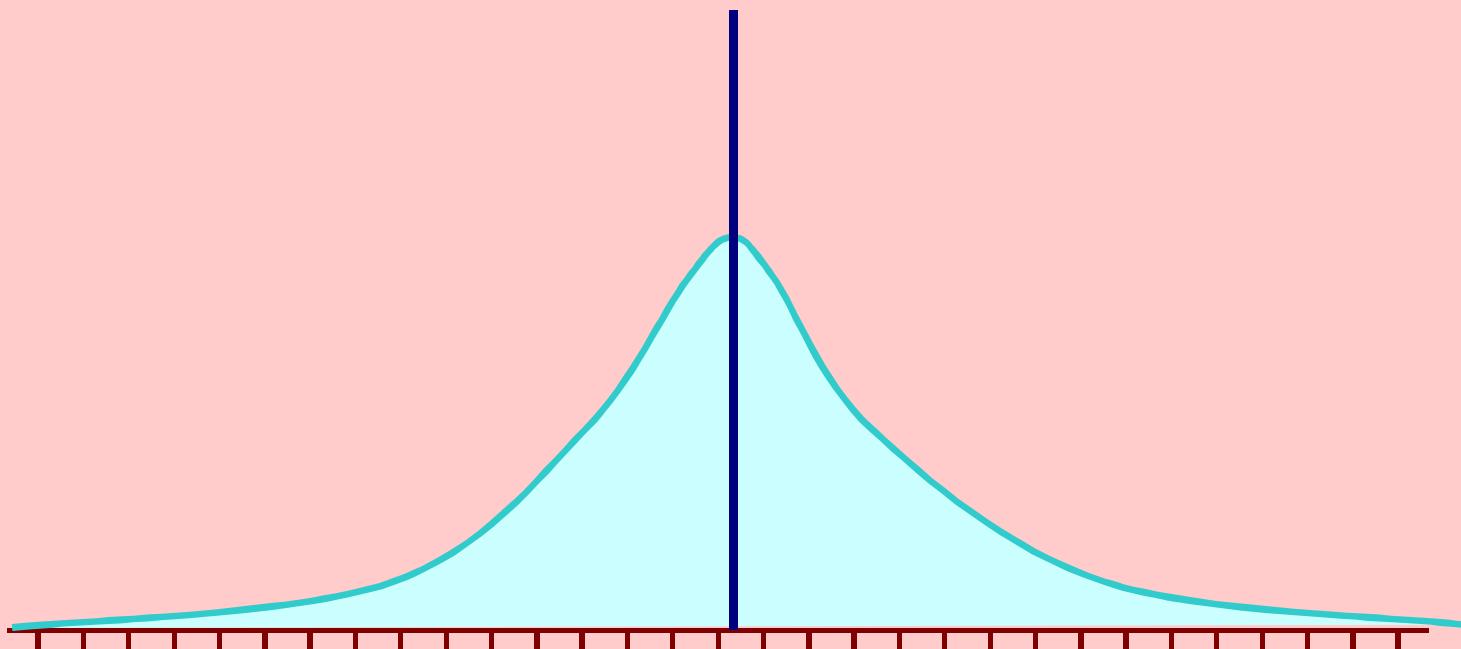
The Prediction of Minimum Error Variance

The most that we
can promise from a
calibrated model



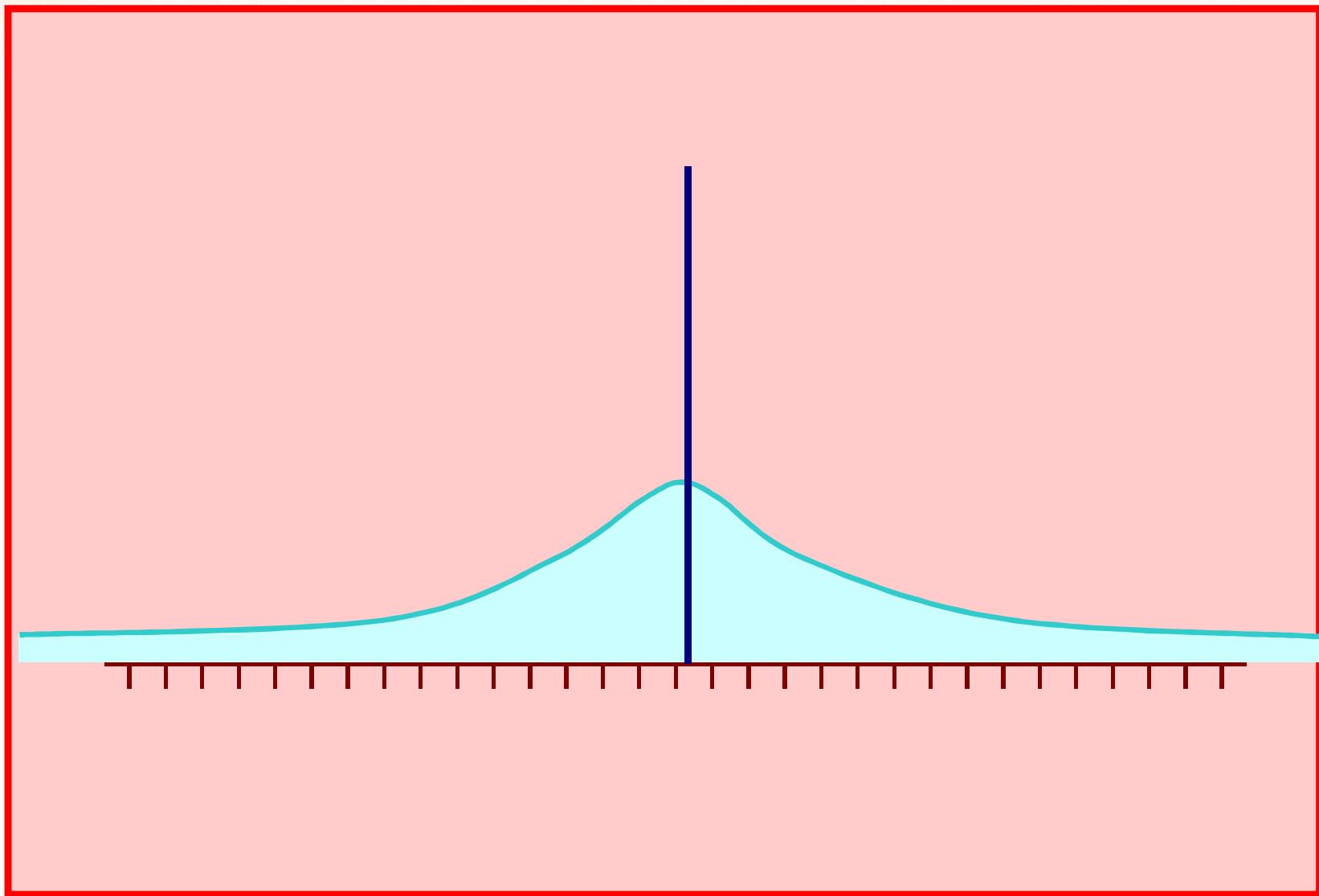
Sandia
National
Laboratories

The Prediction of Minimum Error Variance



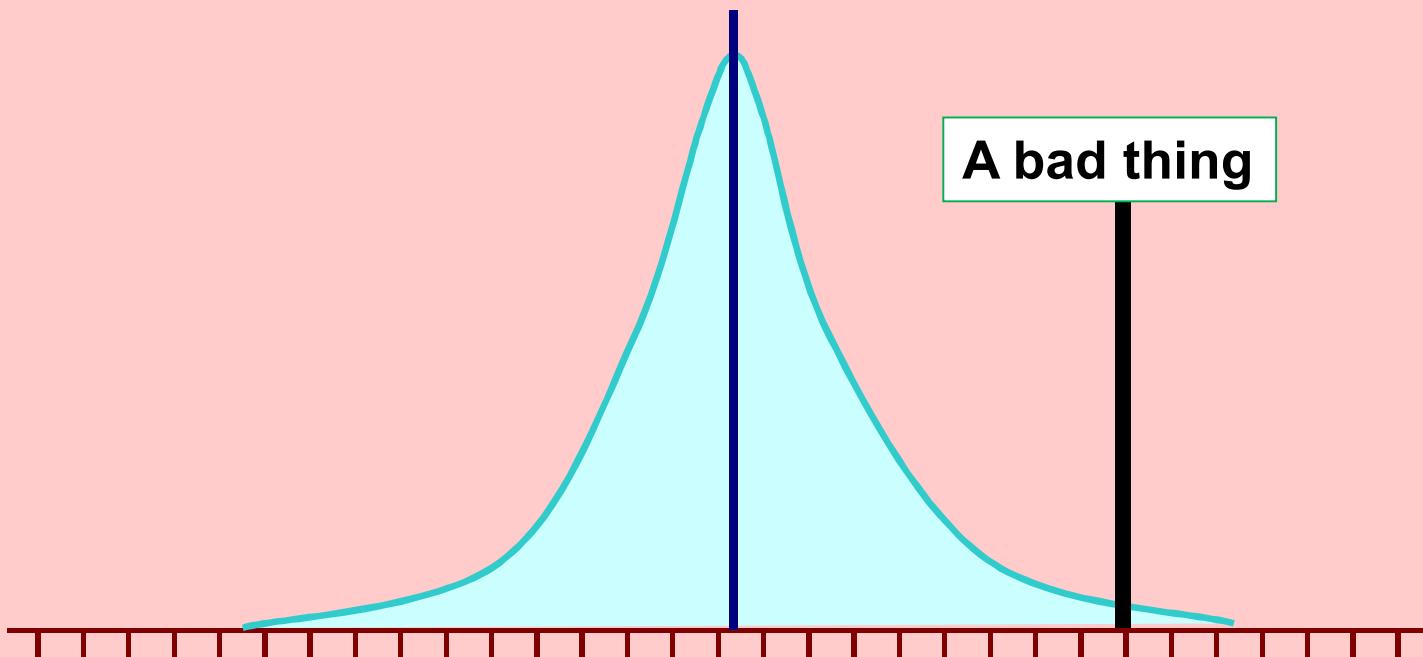
Sandia
National
Laboratories

The Prediction of Minimum Error Variance



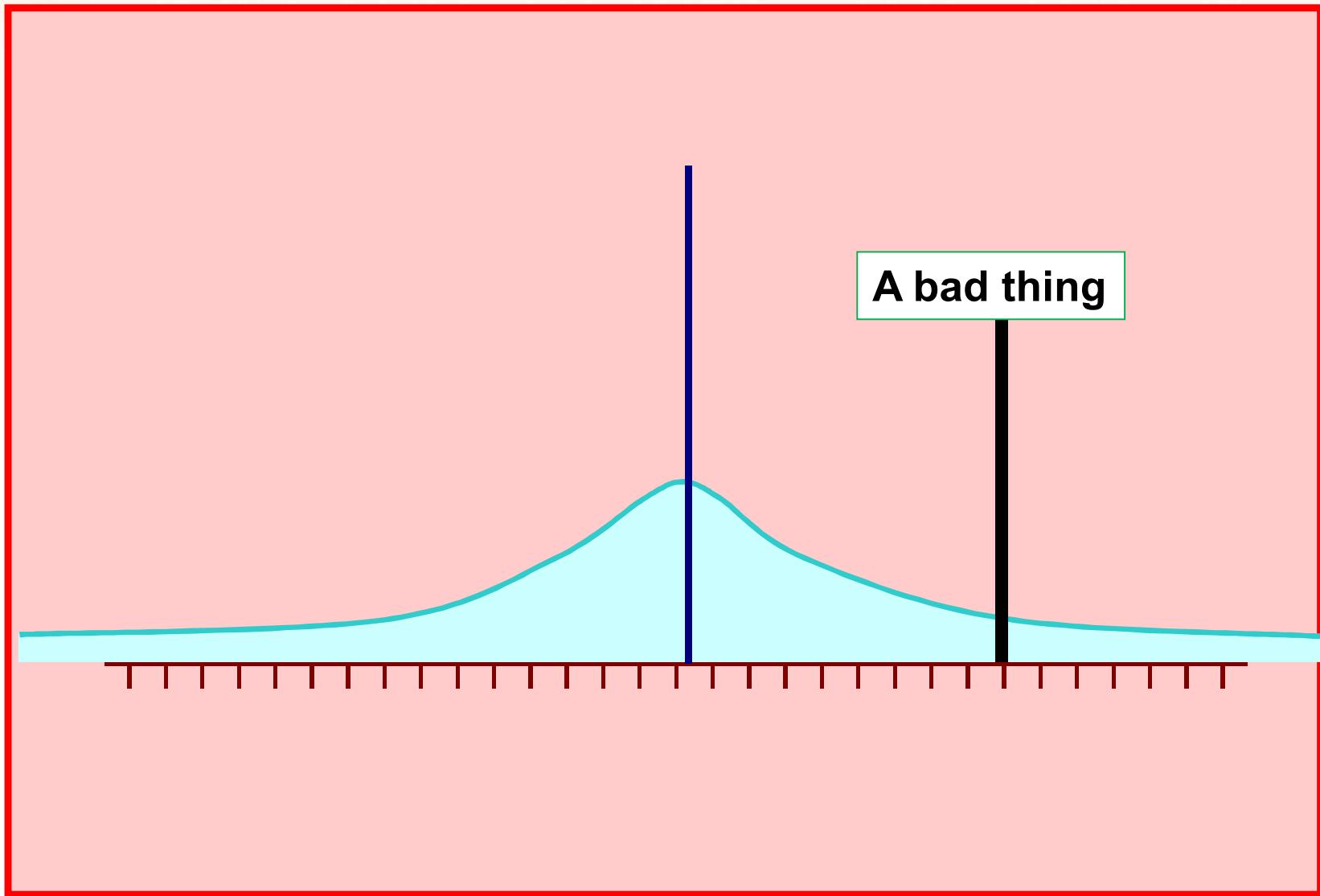
Sandia
National
Laboratories

Confidence of Adverse-Occurrence Avoidance

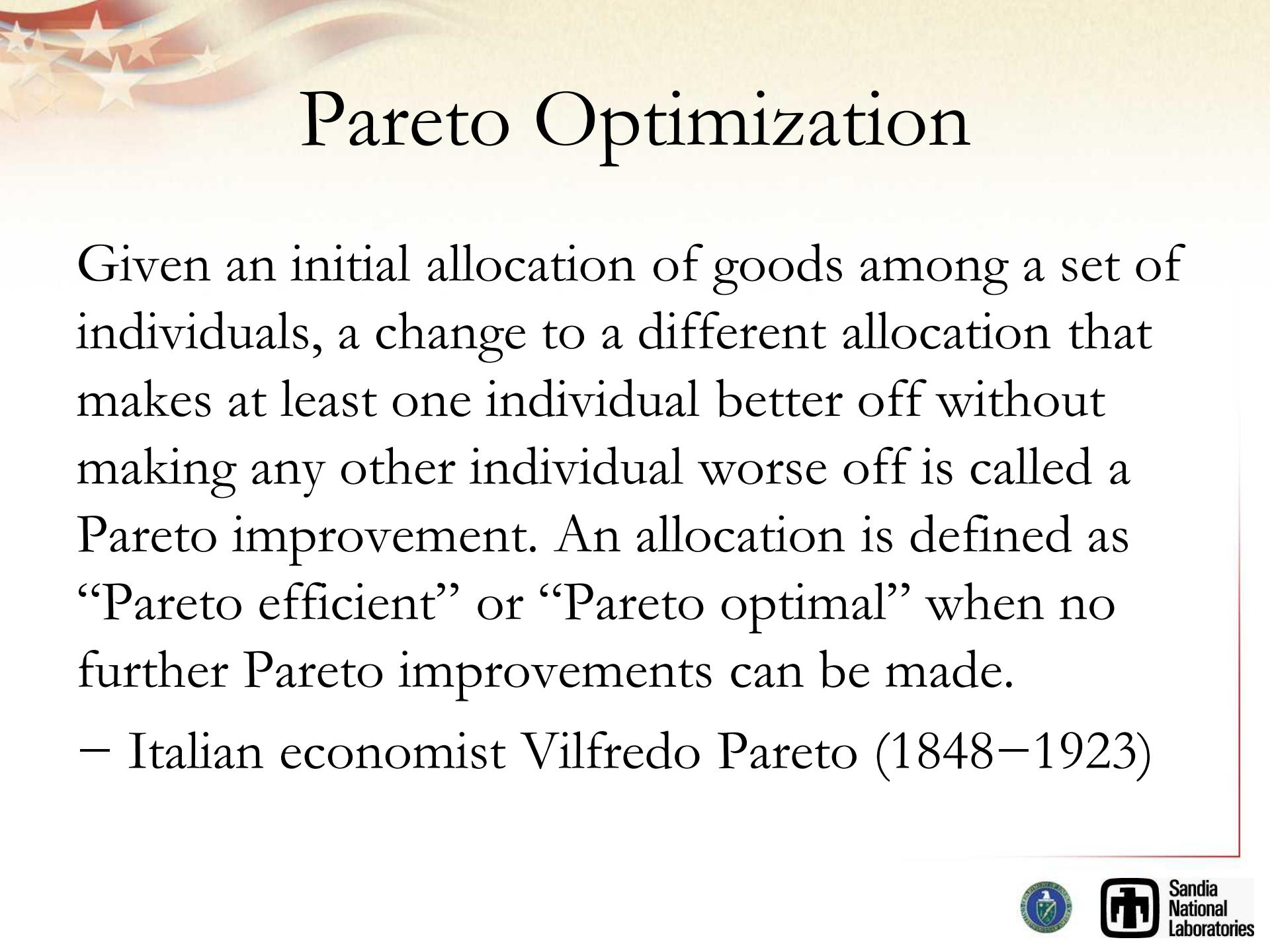


Sandia
National
Laboratories

Confidence of Adverse-Occurrence Avoidance



Sandia
National
Laboratories

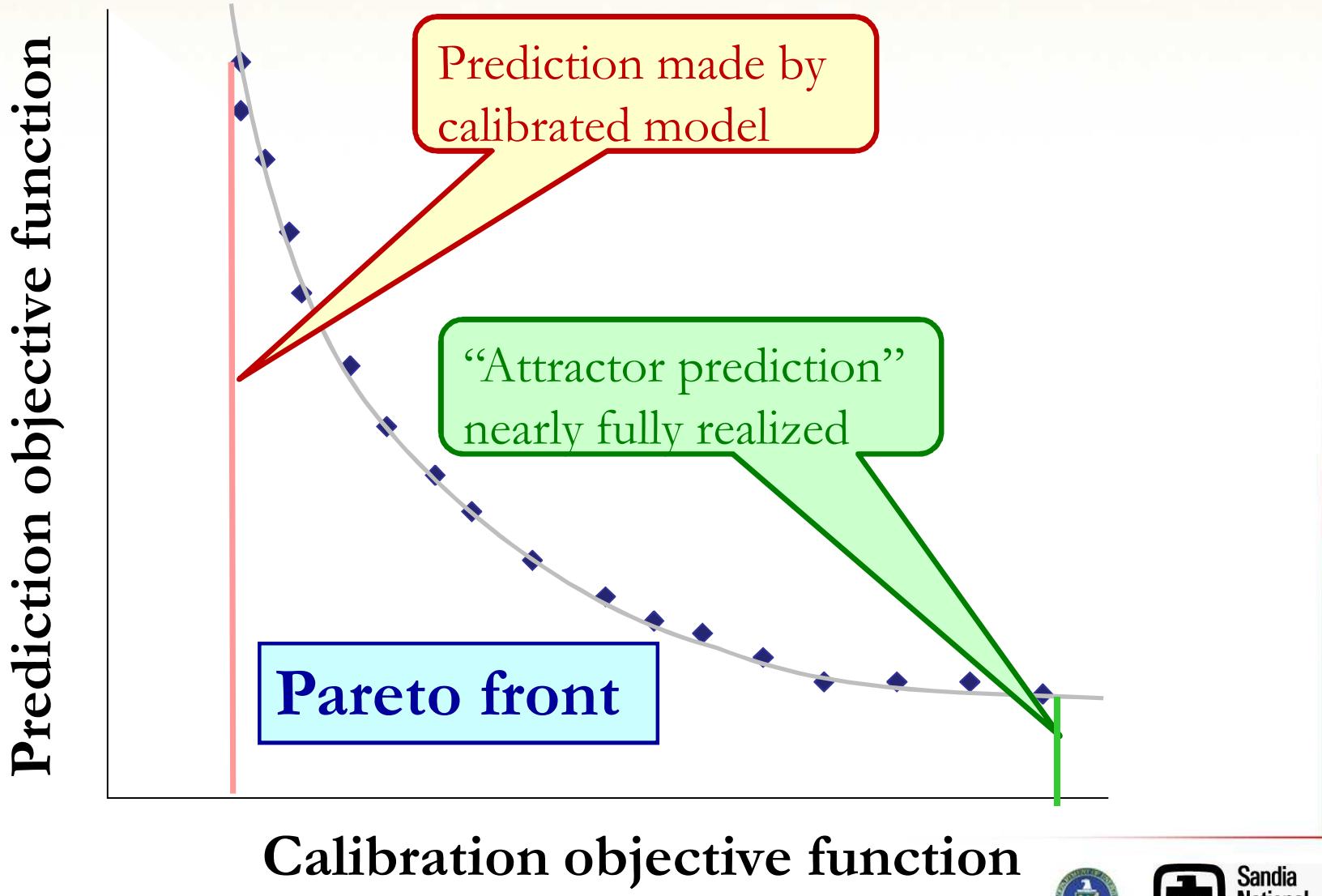


Pareto Optimization

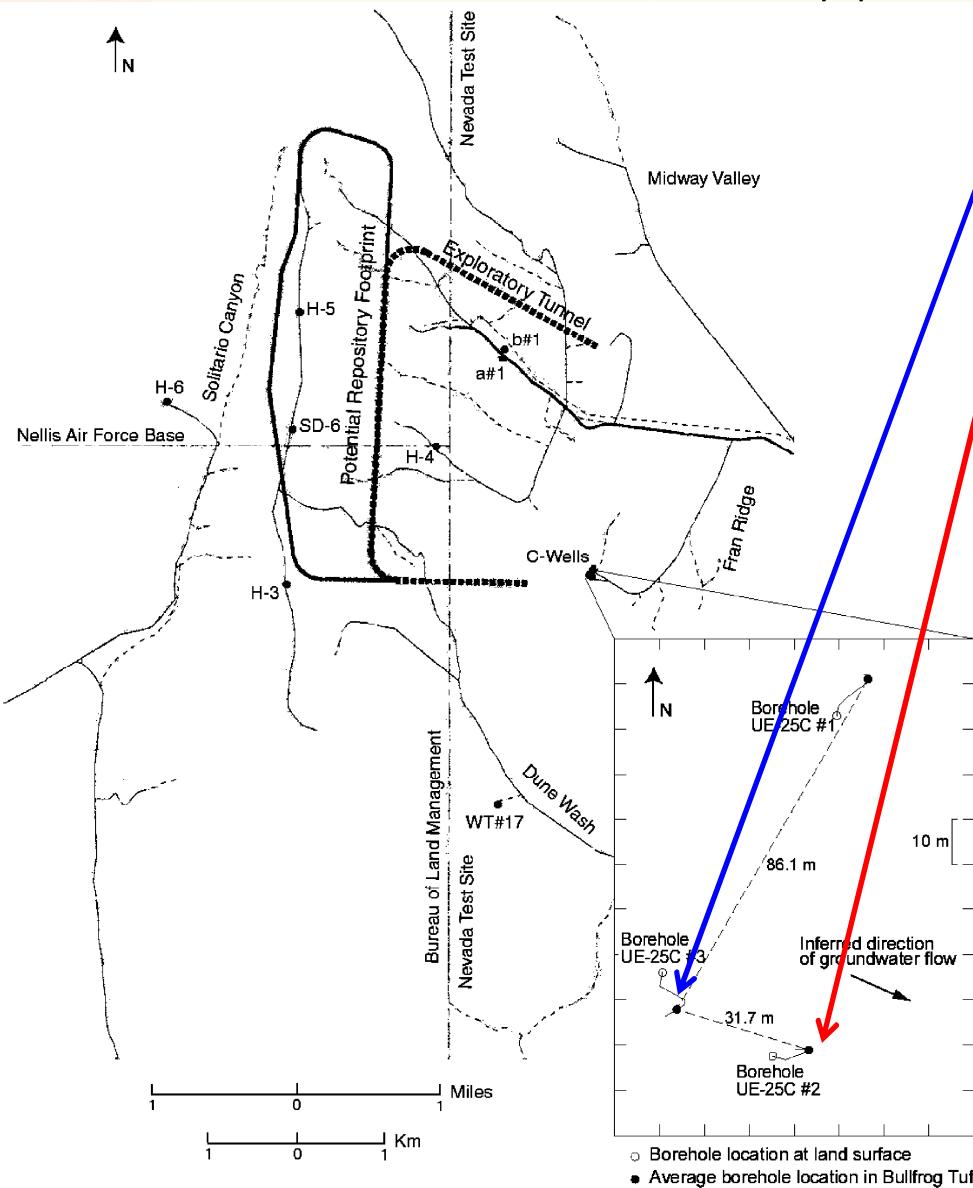
Given an initial allocation of goods among a set of individuals, a change to a different allocation that makes at least one individual better off without making any other individual worse off is called a Pareto improvement. An allocation is defined as “Pareto efficient” or “Pareto optimal” when no further Pareto improvements can be made.

– Italian economist Vilfredo Pareto (1848–1923)

Pareto Optimization



The C-Wells Test

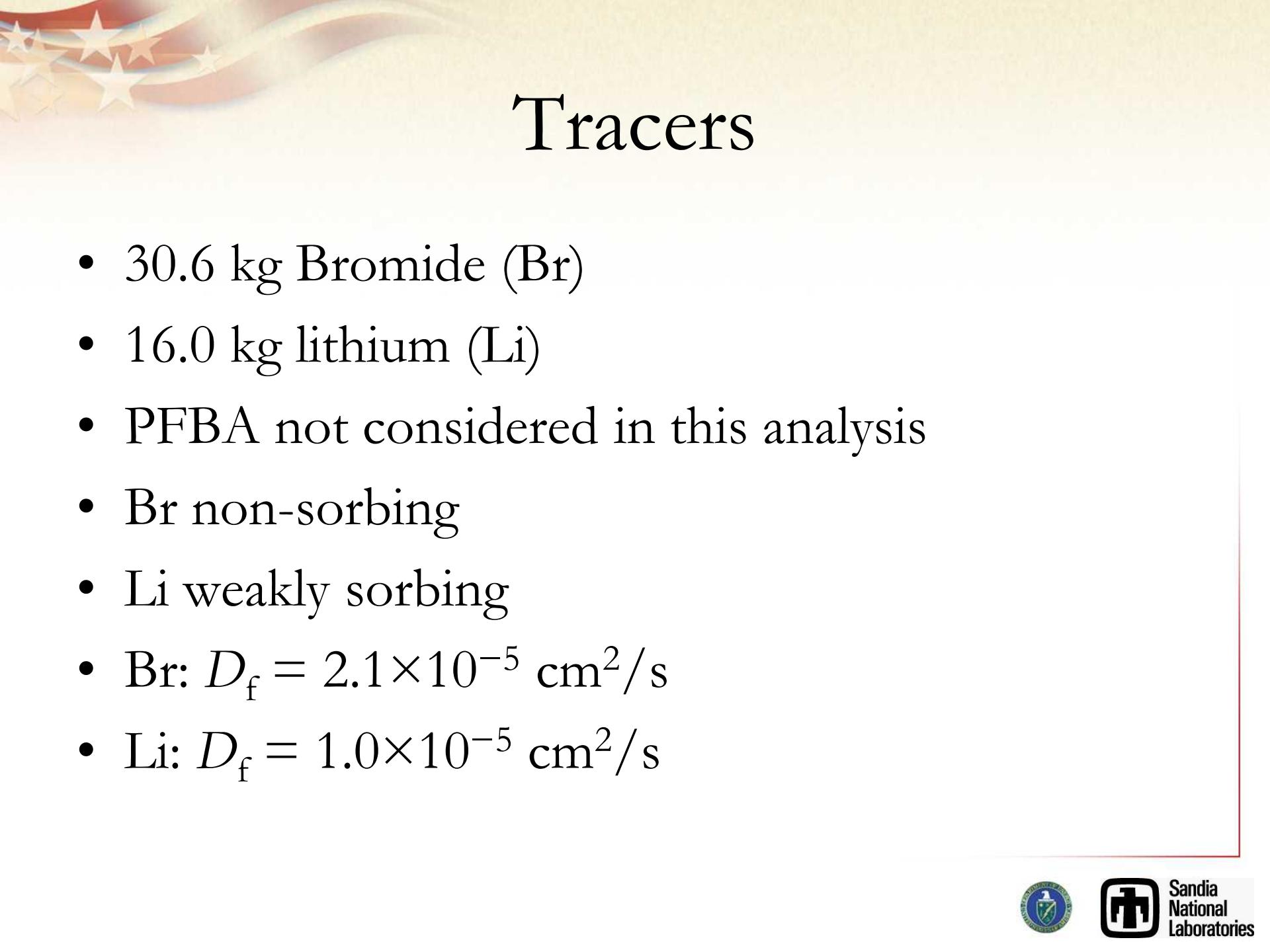


Injection at well UE25C#3

Withdrawal at well UE25C#2

- Dipole established along the inferred groundwater flow direction.
- Wells separated by 31.7 m.
- Three tracers injected:
 - PFBA
 - Bromide
 - Lithium

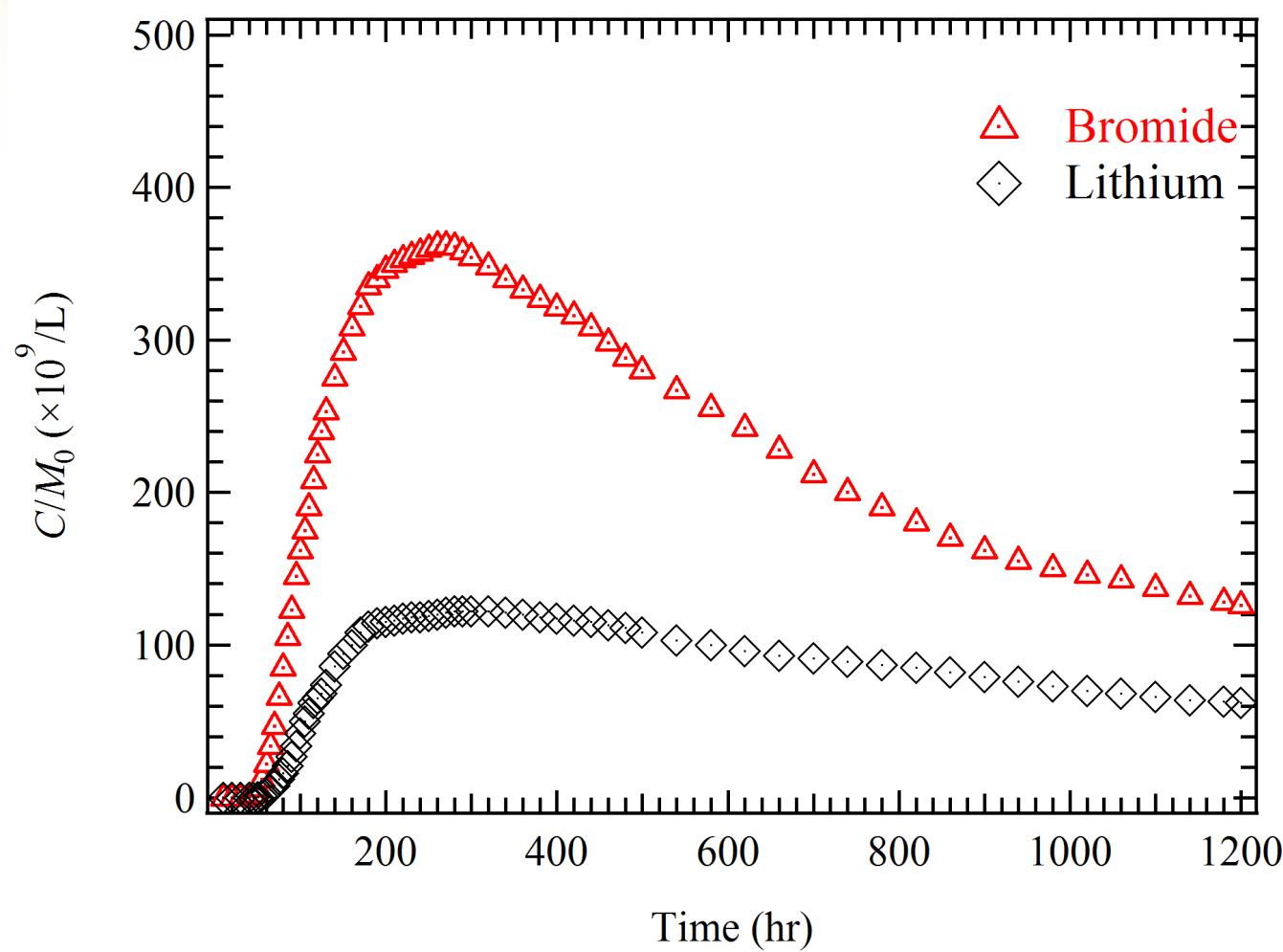
Sandia
National
Laboratories



Tracers

- 30.6 kg Bromide (Br)
- 16.0 kg lithium (Li)
- PFBA not considered in this analysis
- Br non-sorbing
- Li weakly sorbing
- Br: $D_f = 2.1 \times 10^{-5} \text{ cm}^2/\text{s}$
- Li: $D_f = 1.0 \times 10^{-5} \text{ cm}^2/\text{s}$

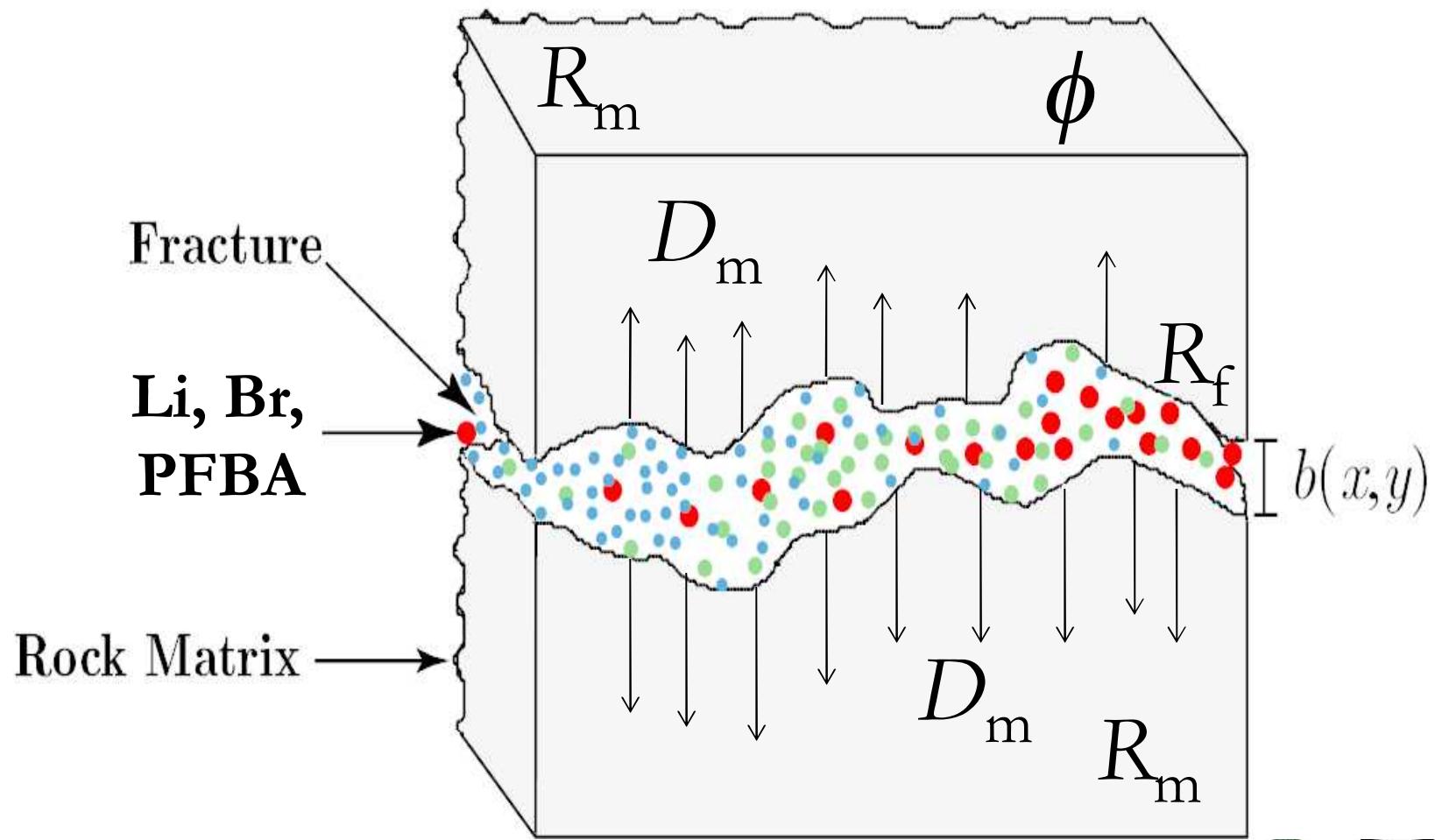
Breakthrough Data

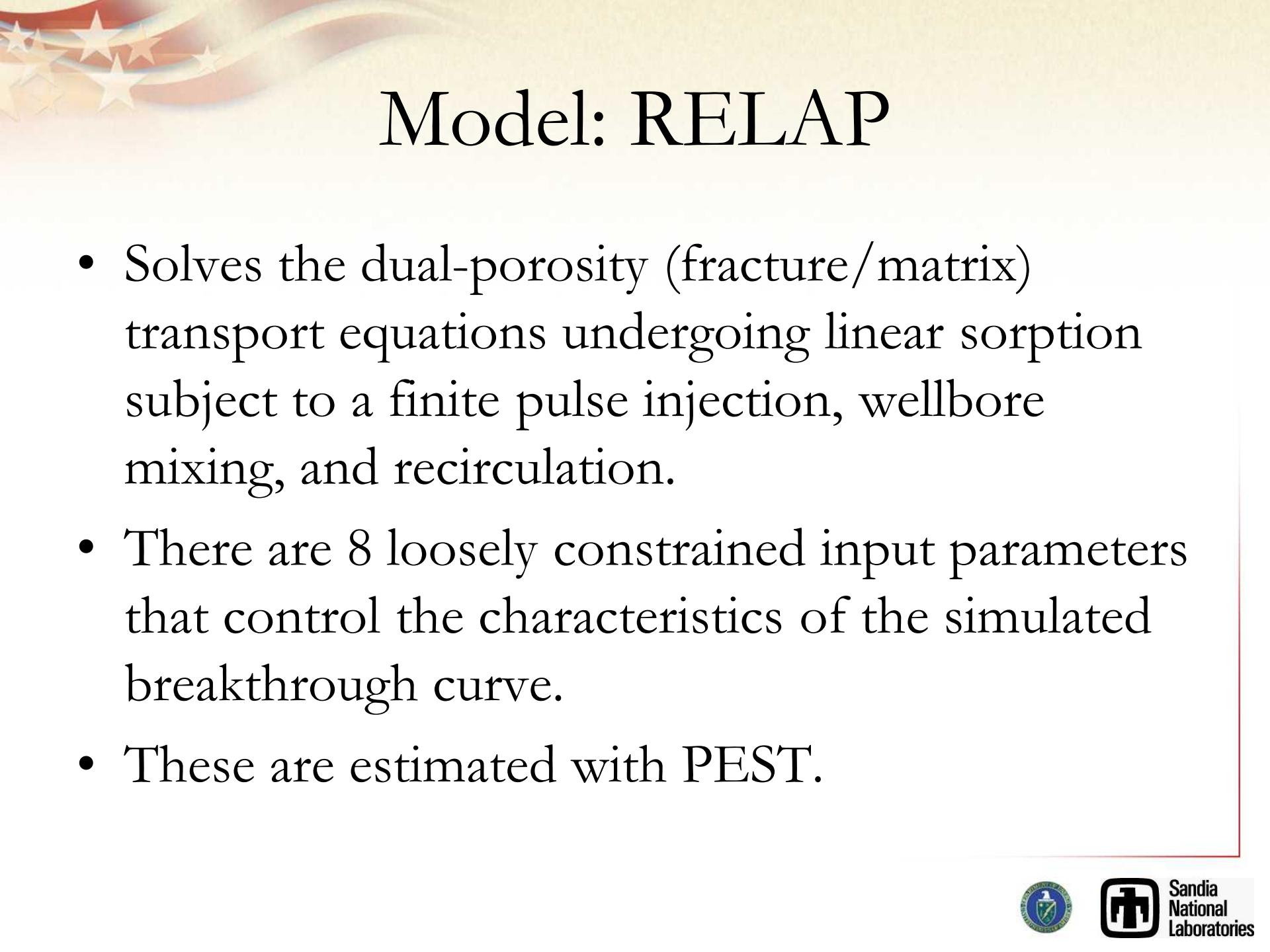


PFBA is not considered in this example uncertainty assessment.

Conceptual Model

Advective flow, τ and Pe





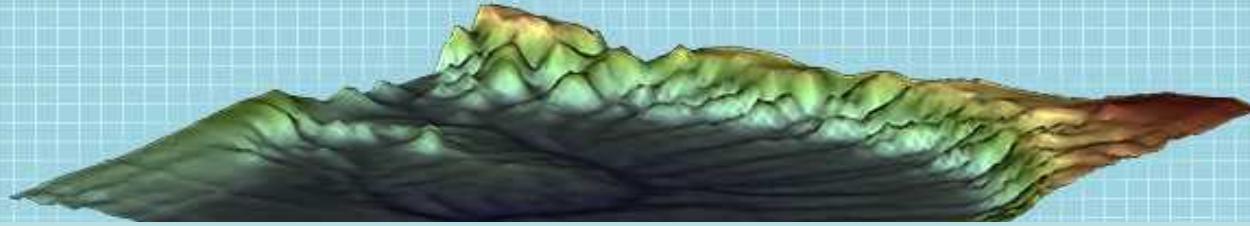
Model: RELAP

- Solves the dual-porosity (fracture/matrix) transport equations undergoing linear sorption subject to a finite pulse injection, wellbore mixing, and recirculation.
- There are 8 loosely constrained input parameters that control the characteristics of the simulated breakthrough curve.
- These are estimated with PEST.

Adjustable Parameter Ranges

- Mass fraction of tracers in the test: $f = 0.2, 0.6, 1.0$ (–)
- Li fracture retardation factor: $R_f = 1, 5, 10$ (–)
- Li matrix retardation factor: $R_m = 1, 25, 50$ (–)
- Fracture aperture: $b = 0.01, 0.15, 1.0$ (cm)
- Porosity: $\phi = 0.1, 0.2, 0.4$ (–)
- Matrix diffusion coefficient: $D_m = 0.03, 3.1, 6 \times 10^{-6}$ (cm²/s)
- Mean fluid residence time in fractures: $\tau = 200, 320, 8000$ (hr)
- Péclét number: $Pe = 0.05, 8.4, 10$ (–)

Initial values (lots of uncertainty)



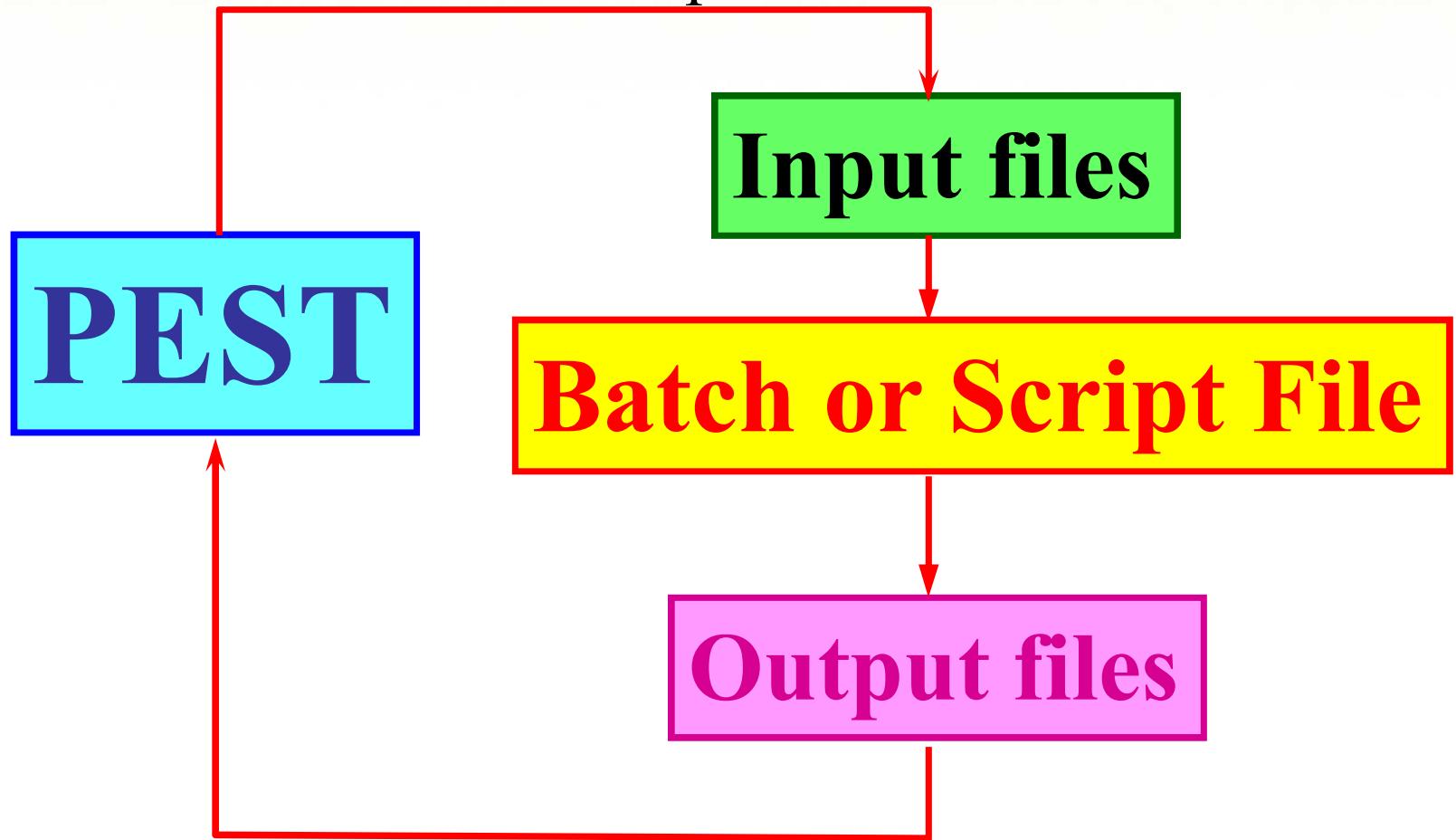
- Model-independent Parameter ESTimation
- Powerful gradient-based optimization code
- Parameter “identifiability”
- Linear and nonlinear uncertainty analyses
- Optimization of data acquisition
- Parameter contribution to predictive uncertainty
- Null-space Monte Carlo (calibration-constrained predictive uncertainty)
- New Pareto mode for predictive uncertainty assessment

**Model-Independent Parameter Estimation
and Uncertainty Analysis**

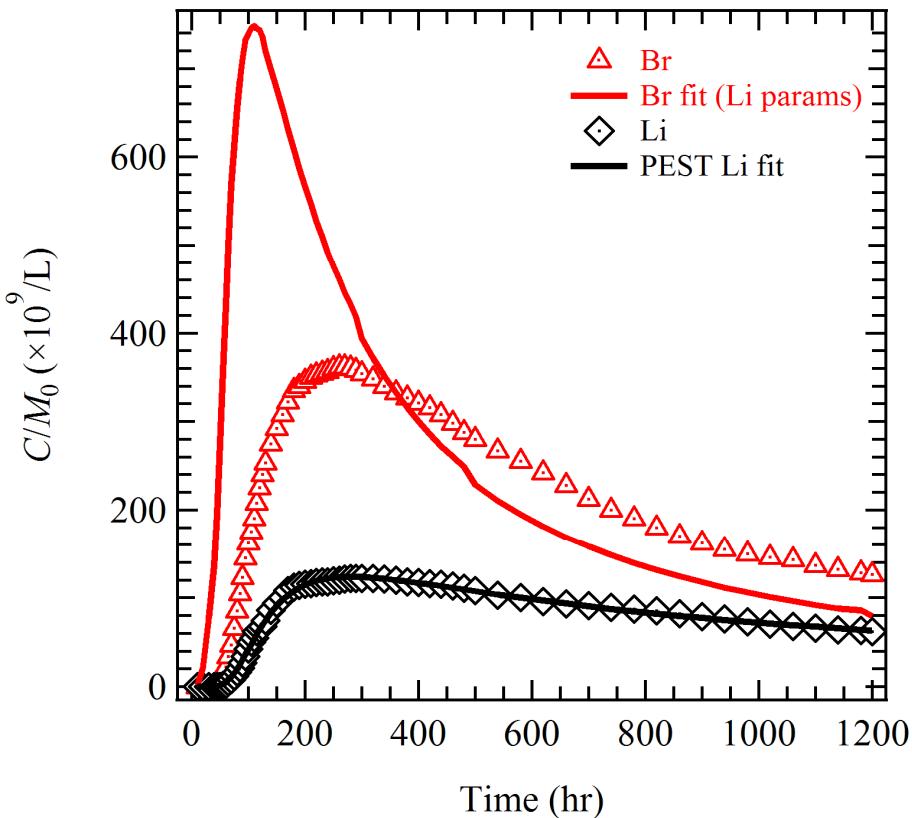
Welcome to the PEST web pages.

Model Independent

writes model input files

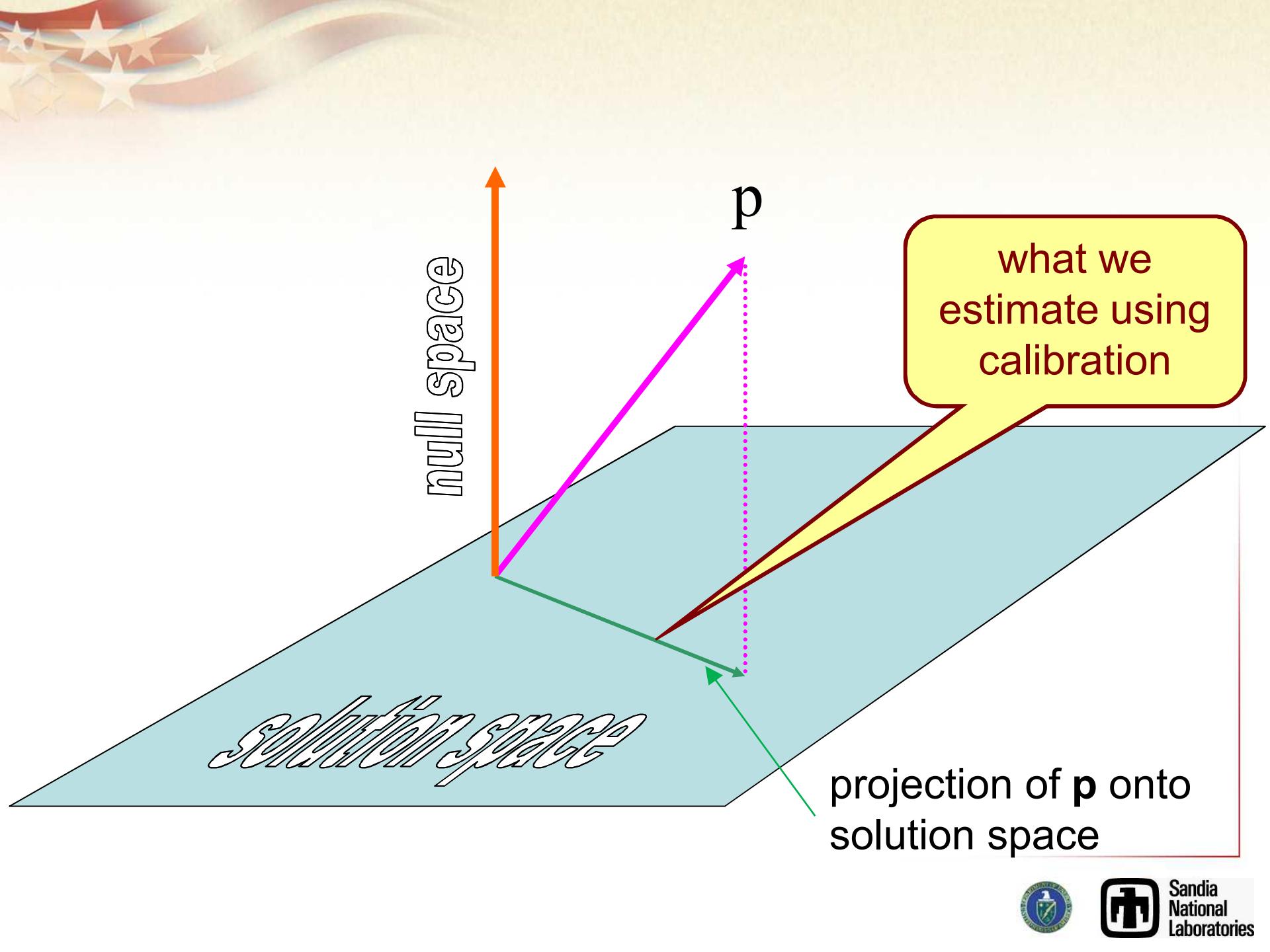


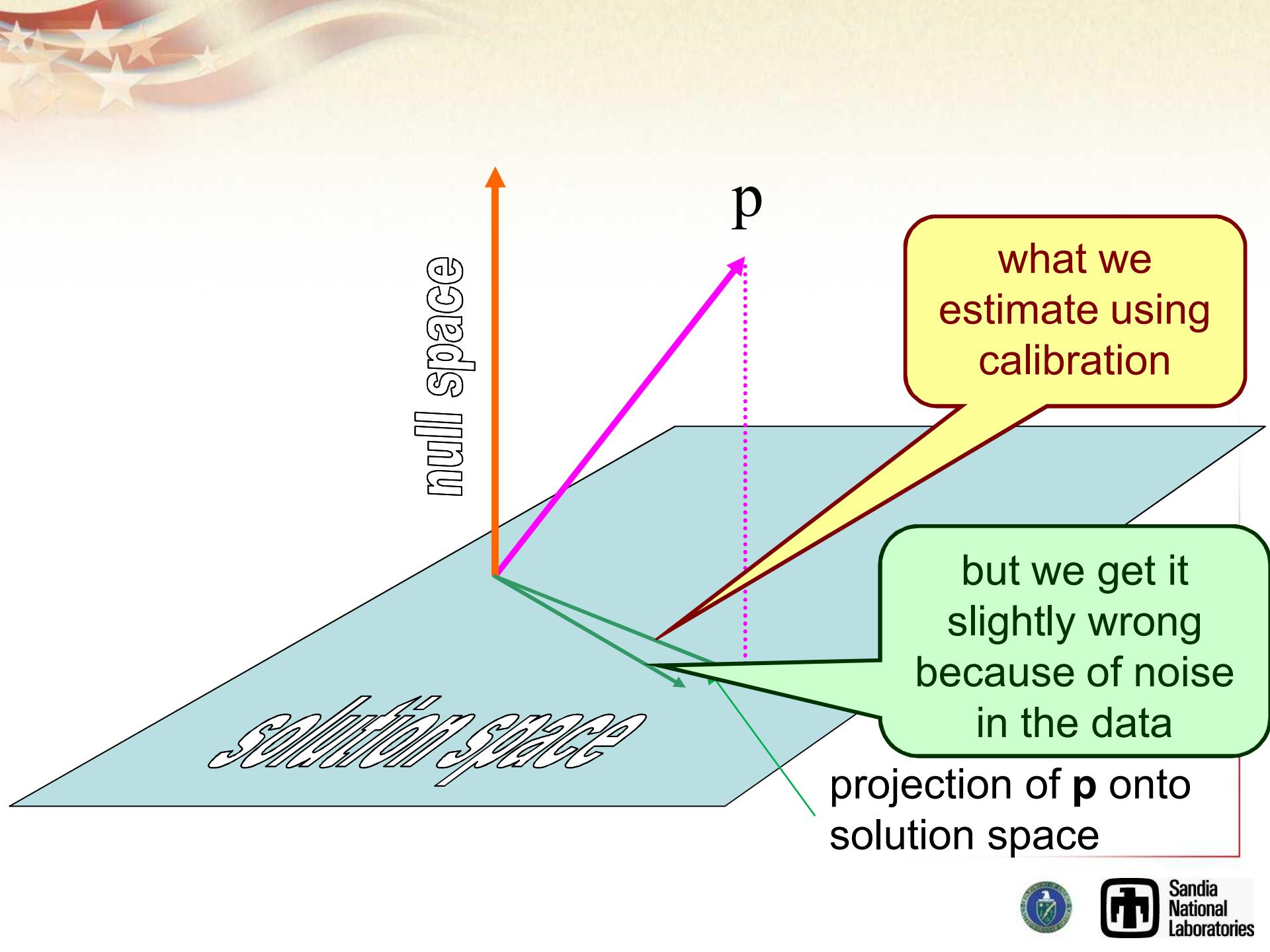
Fit to Conservative Li Only

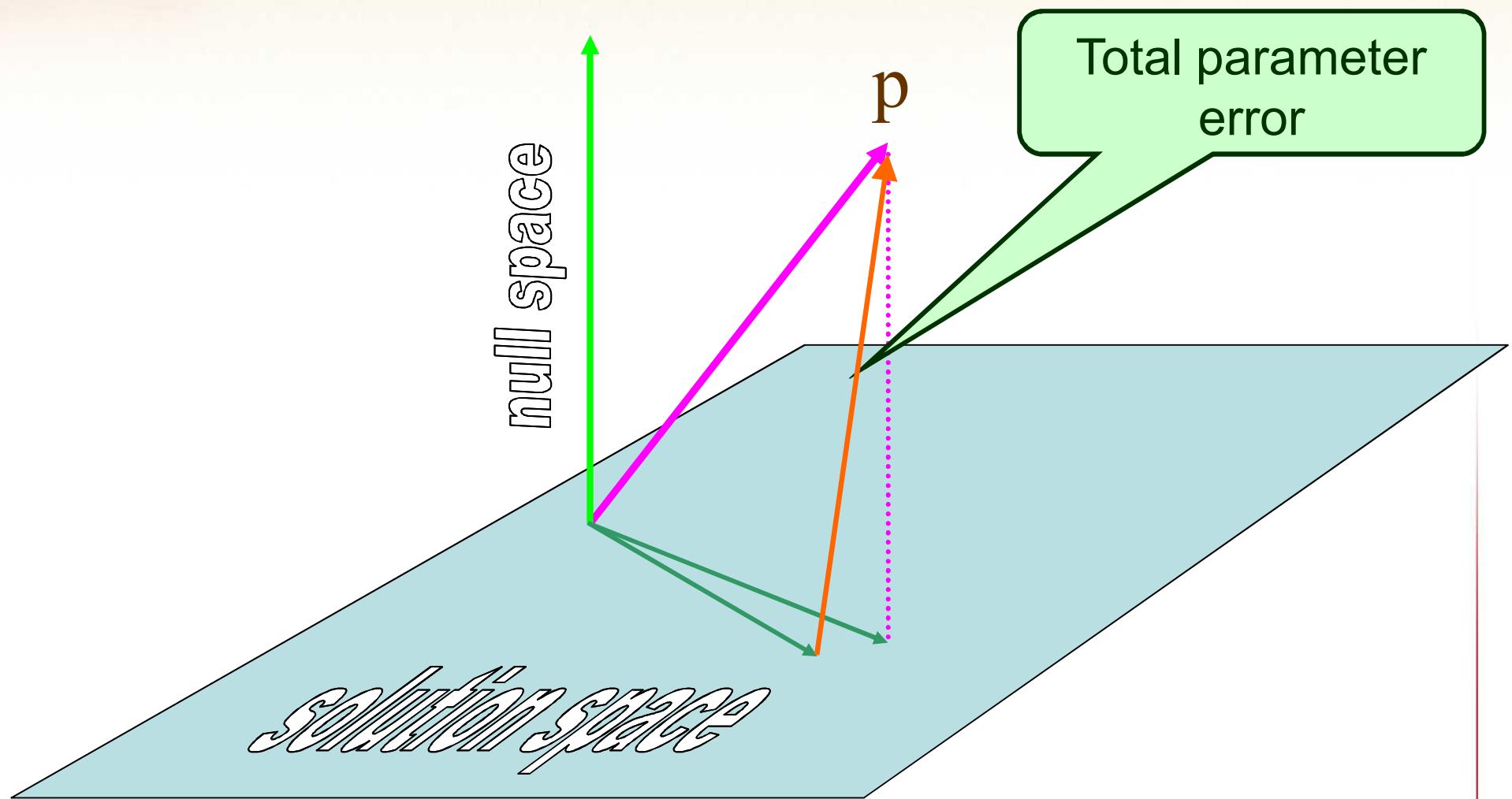


- $f = 0.6 \rightarrow 0.49$ (-)
- $R_f = 5 \rightarrow 2.3$ (-)
- $R_m = 25 \rightarrow 22.8$ (-)
- $b = 0.15 \rightarrow 0.18$ (cm)
- $\phi = 0.2 \rightarrow 0.17$ (-)
- $D_m = 3.1 \rightarrow 2.83 \times 10^{-6}$ (cm²/s)
- $\tau = 320 \rightarrow 256$ (hr)
- $Pe = 8.4 \rightarrow 1.9$ (-)

Poor Bromide fit (its data were not used to constrain the parameters)

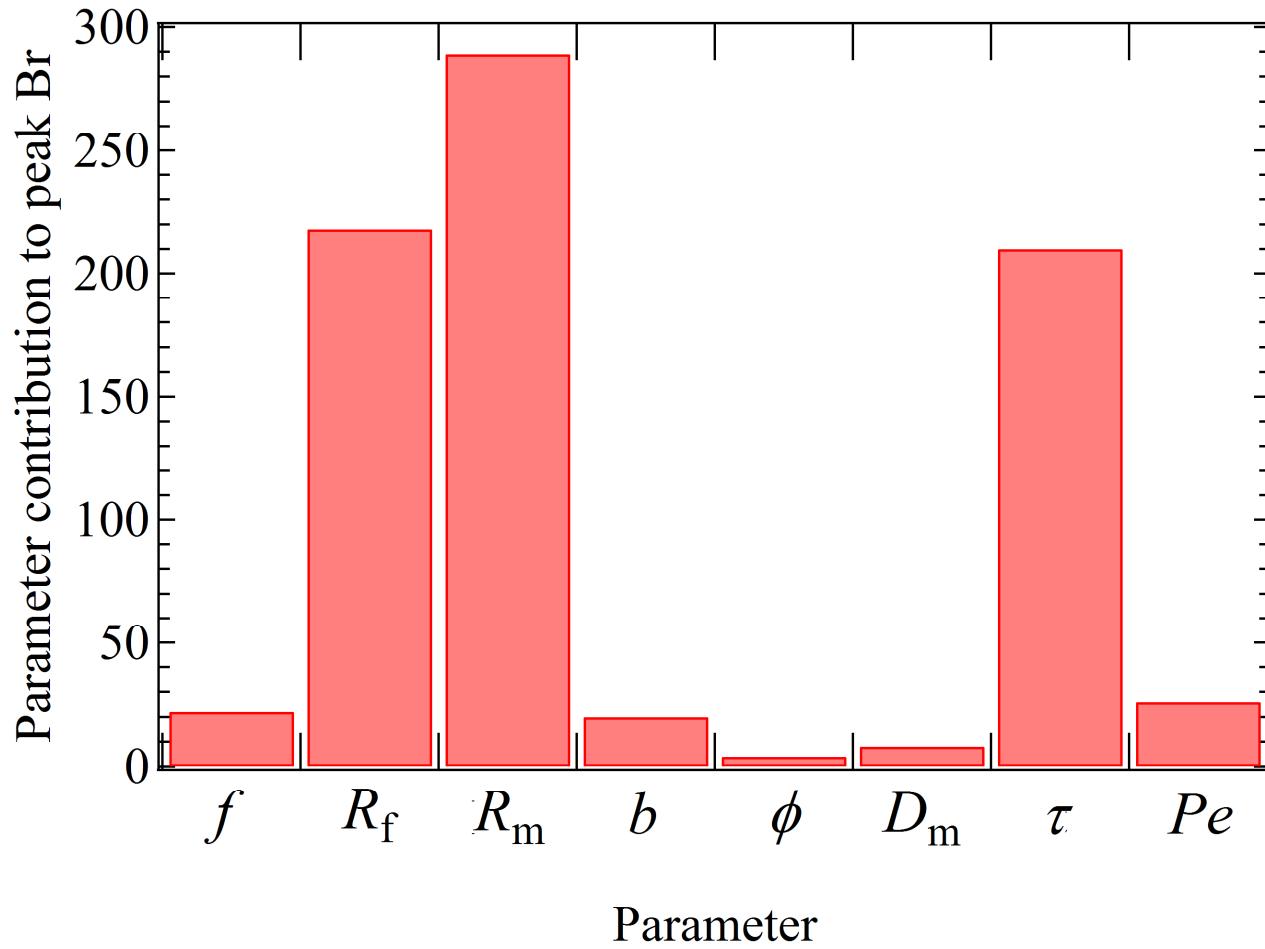






Sandia
National
Laboratories

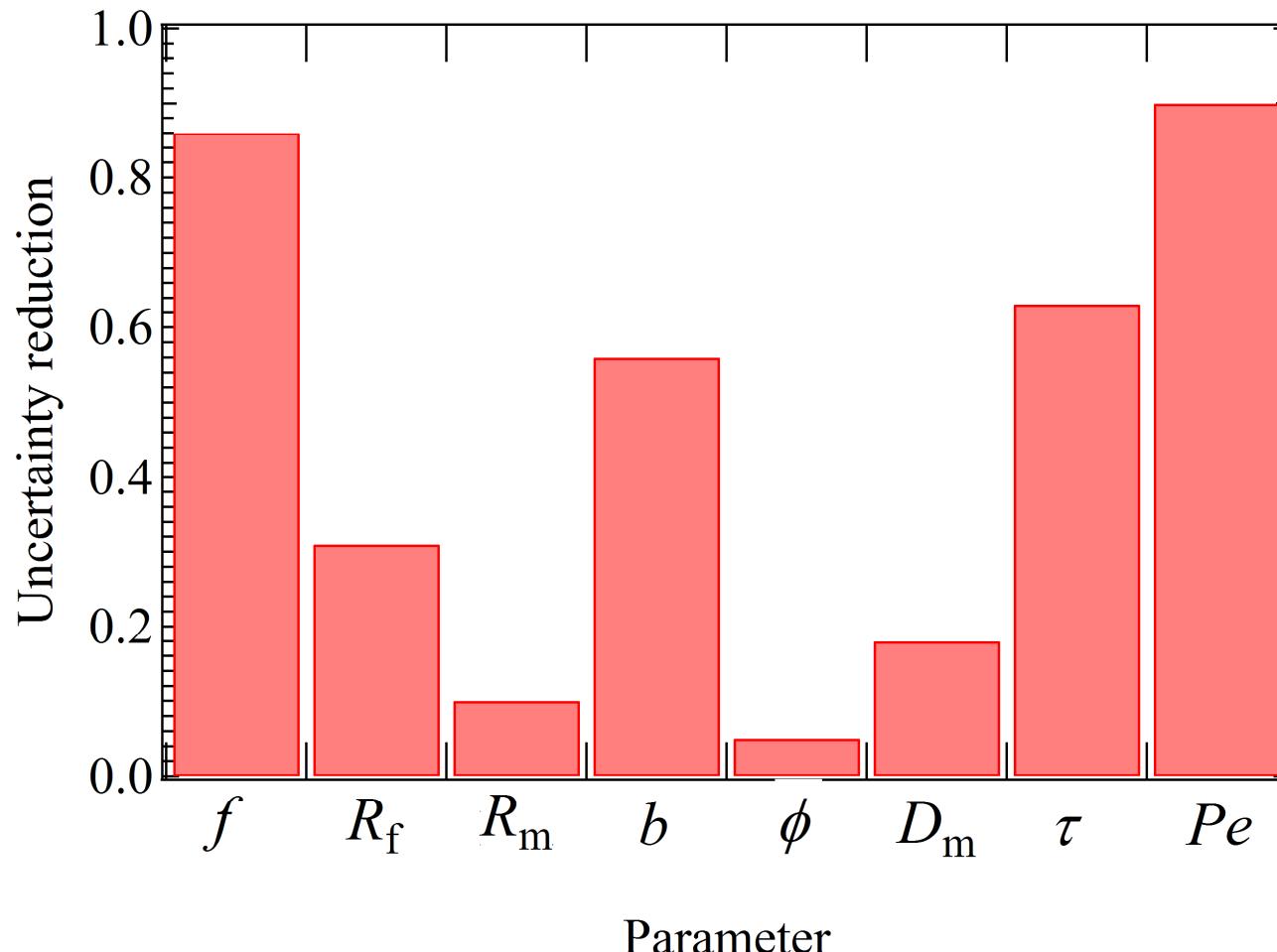
Parameter Contribution to Peak Br



Peak is 2,100

Sandia
National
Laboratories

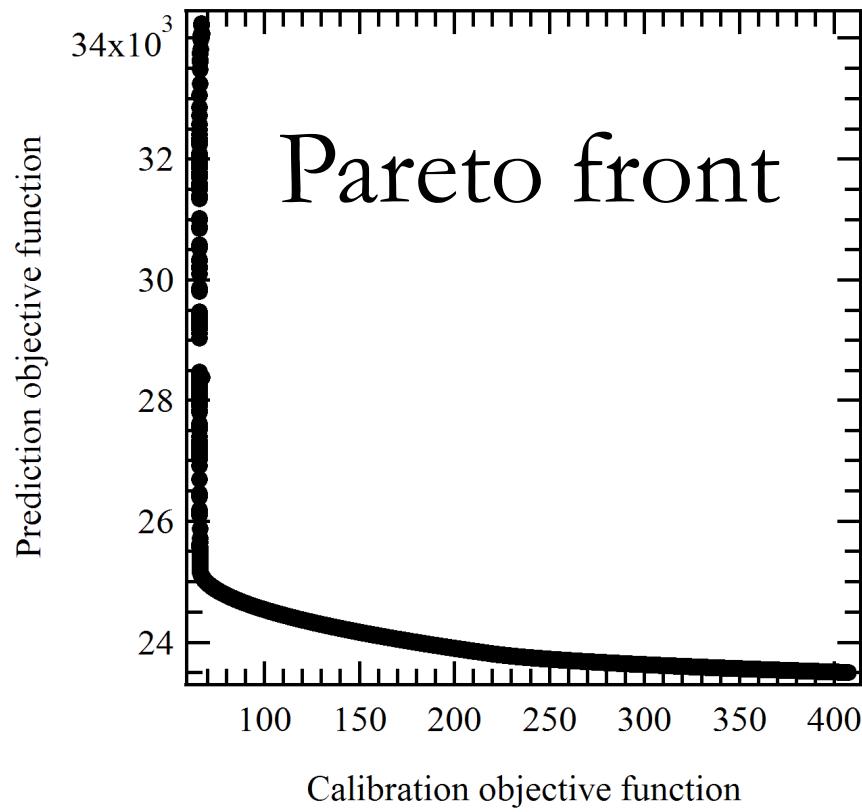
Reduction in Parameter Uncertainty



Pareto Analysis

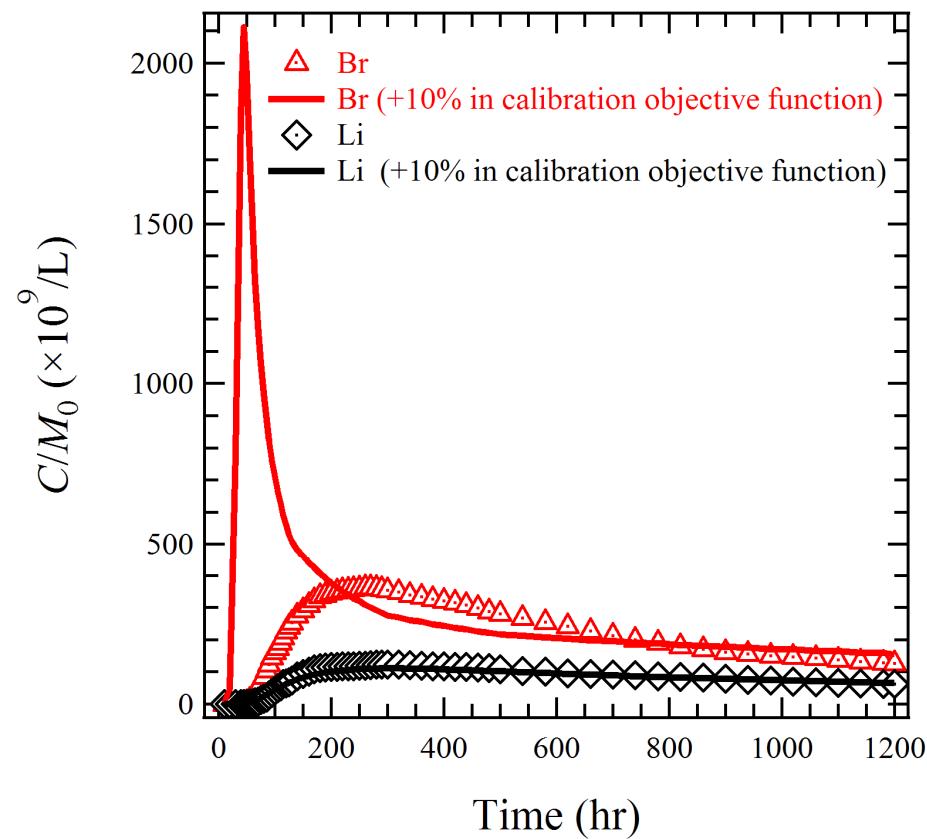
- The Br fit was poor, but how poor could it be while still honoring the Li data?
- Li (calibration) objective function:
Minimize the sum of squared differences between Li data and RELAP simulation.
- New Br (prediction) objective function:
Maximize peak Br.
- Allow an arbitrary 10% increase in the Li objective function.

Pareto Results

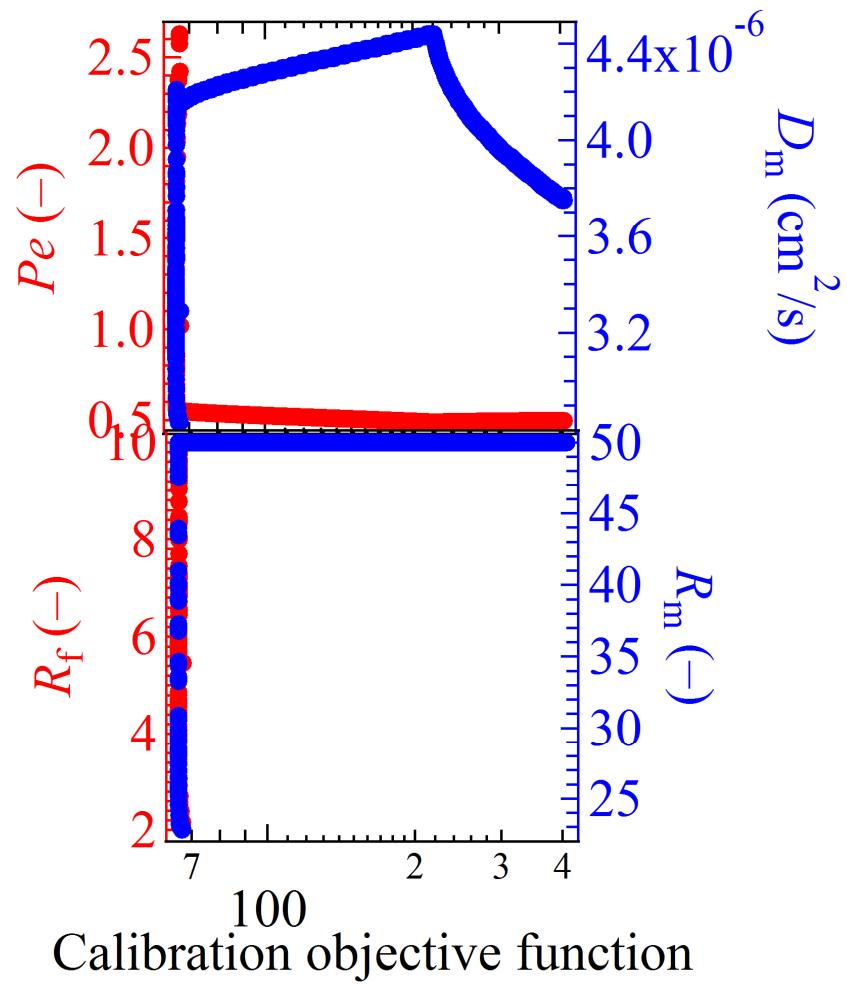
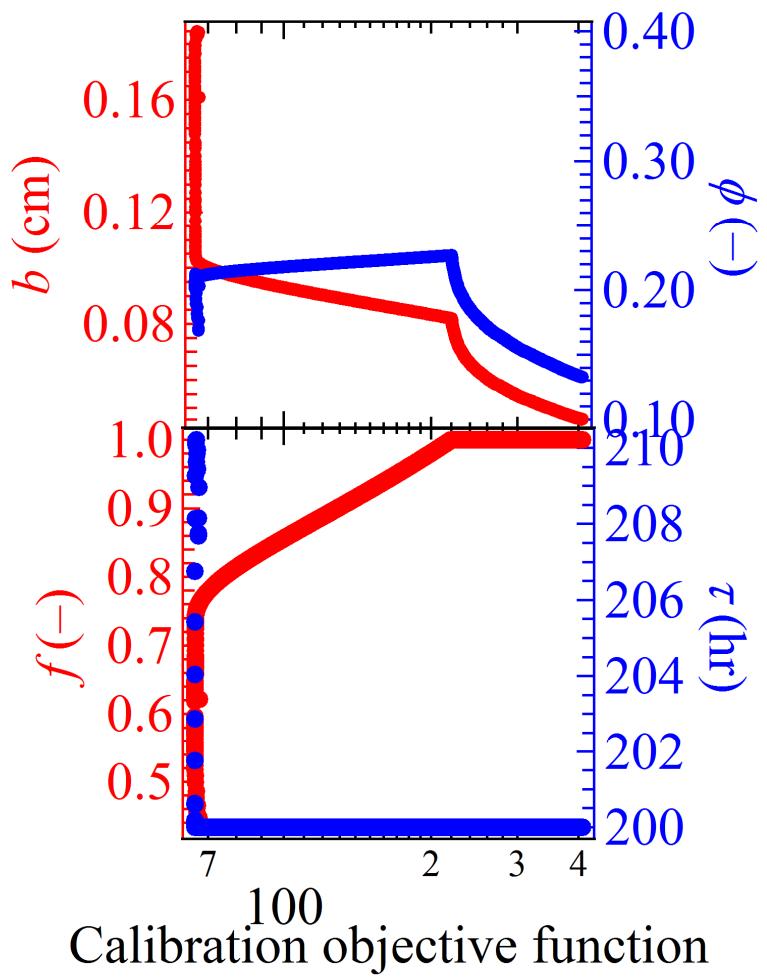


Sharp decrease in prediction objective function indicates that there are many values of parameters that can maximize peak Br and still fit Li well.

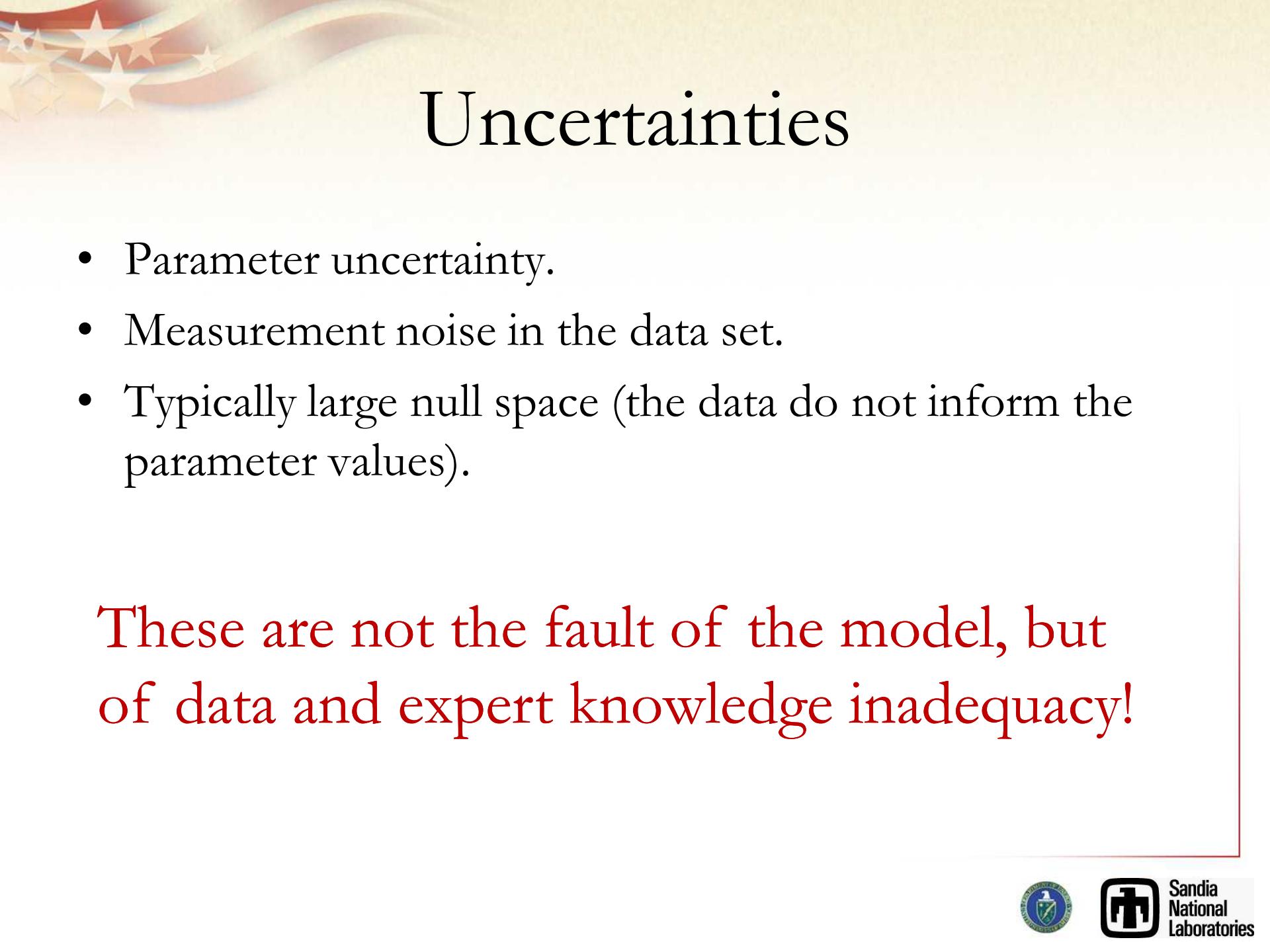
Peak increased from 740 to 2,100!



Parameters



Note the log axis and confluence of points on left of the x -axis.



Uncertainties

- Parameter uncertainty.
- Measurement noise in the data set.
- Typically large null space (the data do not inform the parameter values).

These are not the fault of the model, but
of data and expert knowledge inadequacy!

If Not a Correct Prediction Then?

- The correct prediction lies within model-computed uncertainty intervals.
- These intervals are reduced to as close to their theoretical minimum as possible (strictly a function of information content of data and expert knowledge).

Take Home Message

This example should instill decision makers with the concept that all models should be thoroughly interrogated as to their predictive uncertainties. Even as seemingly excellent fits are made to data, non-uniqueness can allow for significantly different predictions for a calibration objective function that is not too far from its minimum.

