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Not So New Perspectiver

“All models are wrong, but some are useful.”

George BEdward Pelham Box, Robustness in the

3 strategy of scientific model building, 1n
“Robustness in Statistics,” R.L. Launer
and G.N. Wilkinson, Editors,
Academic Press: New York, 1979.

“...We have a large reservoir of engineers (and scientists) with a vast
background of engineering know how. They need to learn statistical
methods that can tap into the knowledge. Statistics used as a catalyst to
engineering creation will, I believe, always result in the fastest and most
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All 2 Model Can Promise

* The correct prediction lies within model-
computed uncertainty intervals (quantify
predictive uncertainty)

* These intervals are reduced to as close to
their theoretical minimum as possible
(strictly a function of information content of
data and expert knowledge).

A model cannot promise the correct prediction!
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e
The Prediction of Minimum Error Variance
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e
The Prediction of Minimum Error Variance

The most that we
can promise from a
calibrated model
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Confidence of Adverse-Occurrence Avoidance

A bad thing
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Pareto Optimization

Given an initial allocation of goods among a set of
individuals, a change to a different allocation that
makes at least one individual better off without
making any other individual worse off is called a
Pareto improvement. An allocation 1s defined as
“Pareto efficient” or “Pareto optimal” when no
further Pareto improvements can be made.

— Italian economist Vilfredo Pareto (1848—1923)
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Pareto Optimization

<
Prediction made by

calibrated model )

. [“Attractor prediction”
* | nearly fully realized

Pareto front

Prediction objective function
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The C-Wells Test

Injection at well UE25C#3
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Tracers

30.6 kg Bromide (Br)

16.0 kg lithium (L1)

PEFBA not considered in this analysis
Br non-sorbing

Li weakly sorbing

Br: D; = 2.1X107> cm?/s

Li: D, = 1.0X107 cm?/s
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PEFBA is not considered in this example uncertainty assessment.

Breakthrough Data
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Conceptual Model

Advective flow, T and Pe
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Model: RELAP

* Solves the dual-porosity (fracture/matrix)
transport equations undergoing linear sorption
subject to a finite pulse injection, wellbore
mixing, and recirculation.

* There are 8 loosely constrained input parameters
that control the characteristics of the simulated
breakthrough curve.

e These are estimated with PEST.
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Adjustable Parameter Ranges

* Mass fraction of tracers in the test: f = 0.2, 0.6, 1.0 (—)

* Li fracture retardation factor: R,= 1, 5, 10 (—)

* Limatrix retardation factor: R, =1, 25, 50 (—)

* Fracture aperture: b = 0.01, 0.15, 1.0 (cm)

* Porosity: ¢ = 0.1,0.2, 0.4 (—)

e Matrix diffusion coefficient: D, = 0.03, 3.1, 6X107¢ (cm?/s)
* Mean fluid residence time in fractures: T = 200, 320, 8000 (hr)
e Péclét number: Pe = 0.05, 8.4, 10 (—)

Initial values (lots of uncertainty)
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Model-independent Parameter ESTimation

Powertul gradient-based optimization code

Parameter “identifiability”

Linear and nonlinear uncertainty analyses

Optimization of data acquisition
* Parameter contribution to predictive uncertainty

* Null-space Monte Carlo (calibration-constrained
predictive uncertainty)

* New Pareto mode for predictive uncertainty assessment

Model-Independent Parameter Estimation
and Unecertainty Analysis

Welcome to the PEST web pages.



Model Independent

writes model input files

l
Input files

l

PEST

Batch or Script File

|

Output files
|

reads model output files — !




Fit to Conservative 11 Only

i A LAY
AT Ry=5—2.3 (-)
e R =25—228(-)
* b =0.15—-0.18 (cm)
* ¢=0.2—-0.17 (-)
e D =31-2.83%x107° (cm?/s)
> T = 320—256 (hr)
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\
€ what we

estimate using
calibration
e

null space

Yo

projection of p onto
solution space
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t Total parameter
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Parameter Contribution to Peak Br
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Reduction in Parameter Uncertainty

Uncertainty reduction

Parameter
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Pareto Analysis

The Br fit was poor, but how poor could
it be while still honoring the Li data?

Li (calibration) objective function:
Minimize the sum of squared differences
between Li data and RELAP simulation.

New Br (prediction) objective function:
Maximize peak Br.

Allow an arbitrary 10% increase in the L1

objective function.
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Prediction objective function

Pareto Results

Peak increased from 740 to 2,100!
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Calibration objective function

Sharp decrease in prediction objective
function indicates that there are many
values of parameters that can

maximize peak Br and still fit L1 well.
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L 100 .
Calibration objective function

Note the log axis and confluence of points on left of the x-axis.
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Uncertainties

* Parameter uncertainty.
e Measurement noise in the data set.

* Typically large null space (the data do not inform the
parameter values).

These are not the fault of the model, but
of data and expert knowledge inadequacy!
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If Not a Correct Prediction Then?

* The correct prediction lies within model-
computed uncertainty intervals.

* These intervals are reduced to as close to
their theoretical minimum as possible
(strictly a function of information content
of data and expert knowledge).
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Take Home Message

This example should instill decision makers with
the concept that all models should be
thoroughly interrogated as to their predictive
uncertainties. Even as seemingly excellent fits
are made to data, non-uniqueness can allow for
significantly different predictions for a
calibration objective function that 1s not too far
from 1ts minimum.
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= Br fit (L1 params)
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= PEST Li fit
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