

SAND2011-2058C

Analysis of Uncertain Dynamical Network Models

R.D. Berry¹ H.N. Najm¹ B. Sonday¹
B.J. Debusschere¹ H. Adalsteinsson¹ Y.M. Marzouk²

¹Sandia National Laboratories, Livermore, CA

²Mass. Inst. of Tech., Cambridge, MA

Stochastic Multiscale Methods: Bridging the Gap Between Mathematical Analysis
and Scientific and Engineering Applications

BANF International Research Station, BANF, Canada
March 27 – April 1, 2011

Acknowledgement

R.G. Ghanem — Univ. Southern California, Los Angeles, CA

O.M. Knio — Johns Hopkins Univ., Baltimore, MD

This work was supported by:

- The US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics program, 2009 American Recovery and Reinvestment Act.
- The DOE Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences.
- BS acknowledges DOE Computational Science Graduate Fellowship support, which is provided under grant number DE-FG02-97ER25308.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

Outline

- 1 Introduction
- 2 Dynamical Analysis for Model Reduction
- 3 Data Free Inference
- 4 Closure

Uncertainty in Network Models

- Network ODE models typically rely on empirically-based parameters/inputs
 - Uncertain parameters/inputs
 - Uncertain network structure
- Need for dynamical analysis methods that
 - Can handle uncertainty
 - Provide model reduction with quantified fidelity
 - *accounting* for uncertainty
- Uncertain ODE systems, $x(t) \in \mathbb{R}^n$

$$\begin{aligned}\frac{dx}{dt} &= f(x; \lambda) \\ x(0) &= x_0\end{aligned}$$

Deterministic Nonlinear ODE System Analysis

- Computational Singular Perturbation (CSP) analysis
- Jacobian eigenvalues provide first-order estimates of the time-scales of system dynamics: $\tau_i \sim 1/\lambda_i$
- Jacobian right/left eigenvectors provide first-order estimates of the CSP vectors/covectors that define decoupled fast/slow subspaces
- With chosen thresholds, have M "fast" modes
 - M algebraic constraints define a slow manifold
 - Fast processes constrain the system to the manifold
 - System evolves with slow processes along the manifold
- CSP *time-scale-aware* Importance indices provide means for elimination of "unimportant" network nodes and connections for a selected observable

Analysis of Uncertain ODE Systems

- Handle uncertainties using probability theory
- Every random instance of the uncertain inputs provides a "sample" ODE system
 - Uncertainties in fast subspace lead to uncertainty in manifold geometry
 - Uncertainties in slow subspace lead to uncertain slow time dynamics
- One can analyze/reduce each system realization
 - Statistics of $x(t; \lambda)$ trajectories
- This can be expensive!
- Explore alternate means

Dynamical Analysis of the Galerkin PC System

Key questions:

- How do the eigenvalues and eigenvectors of the Galerkin system relate to those of the sampled original system
- What can we learn about the sampled dynamics of the original system from analysis of the Galerkin system
 - fast/slow subspaces
 - slow manifolds
- Can CSP analysis of the Galerkin system be used for analysis and reduction of the original uncertain system

Spectral Stochastic Representations

Let (Ω, σ, ρ) be a probability space.

Let $\xi : \Omega \rightarrow \mathbb{R}^m$ be an L^2 RV.

Let $(\Xi, s, \mu) = \xi_{\sharp}(\Omega, \sigma, \rho)$.

Let $\{\varphi_{\alpha}(\xi) : \alpha = 0, 1, 2, \dots\}$ be an orthonormal basis of $L^2(\Xi)$.

Let $X : A \times \Omega \rightarrow \mathbb{R}$ be an $L^2(\Omega)$ A -process. Its closest representative in $L^2(\Xi)$ is

$$X(a, \omega) \simeq \sum_{\alpha} X_{\alpha}(a) \varphi_{\alpha}(\xi(\omega))$$

where

$$X_{\alpha}(a) = \int_{\Omega} X(a, \omega) \varphi_{\alpha}(\xi(\omega)) d\rho(\omega) = \langle \varphi_{\alpha}, X \rangle.$$

Take $m = 1$ for simplicity. $m > 1$ holds by tensor product arguments.

Galerkin Reformulation

Consider an ODE

$$\dot{x} = f(\xi, x) \quad x(\xi, 0) = x_0(\xi)$$

with $x(t, \omega) \in \mathbb{R}^n$. Represent x as

$$x(\xi, t) = \sum_{\alpha} x_{\alpha}(t) \varphi_{\alpha}(\xi)$$

where

$$x_{\alpha}(t) = \langle \varphi_{\alpha}(\xi), x(\xi, t) \rangle$$

and so these coefficients have dynamics

$$\dot{x}_{\alpha} = \left\langle \varphi_{\alpha}(\xi), \frac{d}{dt} x(\xi, t) \right\rangle$$

$$= \langle \varphi_{\alpha}(\xi), f(\xi, x) \rangle$$

$$\dot{x}_{\alpha} = g(x_{*})$$

Jacobian of Sampled System

The dynamical system can be locally characterized by the eigenstructure of the Jacobian matrix. The entries of the Jacobian matrix J of the sampled system is given by

$$J_{ij}(\xi, t) = \frac{\partial f^i}{\partial x^j}(\xi, x(\xi, t))$$

At each value of time, $J(\xi, t)$ is a random matrix.

Jacobian Matrix of Reformulated System

The Jacobian matrix of the coefficient system can be thought of as a block matrix with blocks

$$\begin{aligned}
 \mathcal{J}_{\alpha\beta}(t) &= D_{x_\beta} \int_{\Xi} f(\xi, x(\xi, t)) \varphi_\alpha(\xi) d\mu(\xi) \\
 &= \int_{\Xi} \varphi_\alpha(\xi) J(\xi, t) \varphi_\beta(\xi) d\mu(\xi) \\
 &= \langle \varphi_\alpha, J \varphi_\beta \rangle
 \end{aligned}$$

Truncate the representation so that $\alpha, \beta = 0, \dots, P$.
 \mathcal{J} is then a $n(P + 1) \times n(P + 1)$ matrix.

Essential Numerical Range of J

The numerical range of a matrix M is

$$W(M) = \{v^*Mv : v \in \mathcal{C}^m, v^*v = \|v\|^2 = 1\}.$$

Note that

$$\text{spect}(M) \subset W(M).$$

The essential numerical range of $J(\xi)$ is

$$\tilde{W}(J) = \bigcup_{\text{a.e. } \xi} W(J(\xi)).$$

n -dimensional system – Key Results

- 1 The spectrum of \mathcal{J}^P is contained in the convex hull of the essential range of the random matrix J .

$$\text{spect}(\mathcal{J}^P) \subset \text{conv}(\tilde{W}(J))$$

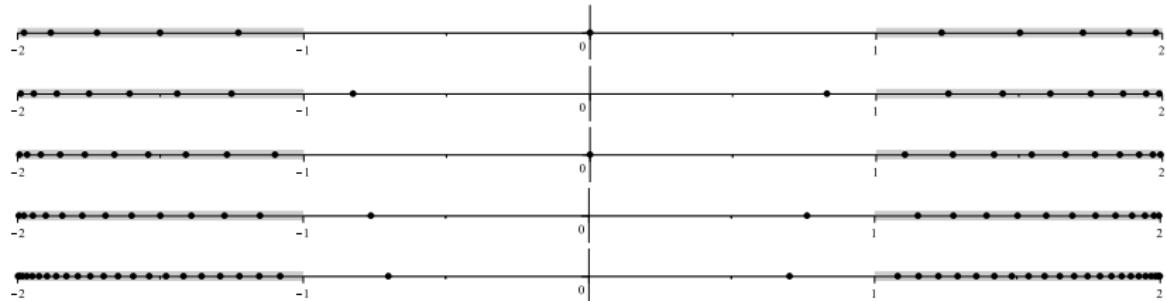
- 2 For any orthonormal basis $\{\phi_\alpha\}_{\alpha=0}^\infty$:

As $P \rightarrow \infty$, the eigenvalues of $\mathcal{J}^P(t)$ converge weakly, *i.e.* in the sense of measures, toward $\bigcup_{\omega \in \Omega} \text{spect}(J(\omega))$.

Sonday *et al.*, SISC, in press
 Berry *et al.*, in review

- Interpolating Galerkin system eigenvalues approximates random eigenvalues
- Eigenpolynomials and Eigenvalues can be used to construct the PCE for the random eigenvalue.

1D Example



$$\dot{x}(\xi, t) = a(\xi)x(\xi, t); \quad \xi(\omega) \sim U[-1, 1];$$

$$J = a(\xi) \equiv \begin{cases} \xi + 1 & \text{for } \xi \geq 0, \\ \xi - 1 & \text{for } \xi < 0. \end{cases}$$

$$\tilde{W}(J) = [-2, -1] \cup [1, 2]; \quad \text{conv}(\tilde{W}(J)) = [-2, 2].$$

LU PC: eigenvalues of \mathcal{J}^P shown for $P = 10, 15, 20, 25, 45$

Eigenvectors

Let $\lambda_{i\alpha}$, $v_{i\alpha}$ be an eigenvalue/vector pair of \mathcal{J}^P :

$$\mathcal{J} v_{i\alpha} = \lambda_{i\alpha} v_{i\alpha}.$$

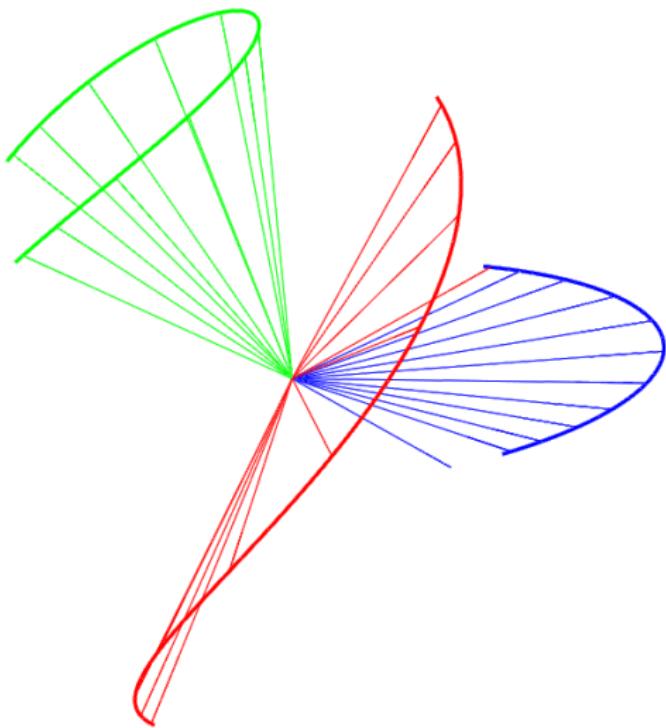
Alternatively,

$$\langle \varphi_\beta(\xi), (J(\xi) - \lambda_{i\alpha}) v_{i\alpha}(\xi) \rangle = 0 \quad \text{for } \beta = 0 \dots P$$

where $v_{i\alpha}(\xi)$ is an n -vector with components

$$v_{i\alpha}^k(\xi) = \sum_{\gamma=0}^P v_{i\alpha}^{k\gamma} \varphi_\gamma(\xi).$$

Stochastic Vectors composed of Galerkin eigenvectors approximate the stochastic eigenvectors well



CO Oxidation Example

The oxidation of CO on a surface can be modeled as
(Makeev et al., JCP, 2002)

$$\dot{u} = az - cu - 4duv$$

$$\dot{v} = 2bz^2 - 4duv$$

$$\dot{w} = ez - fw$$

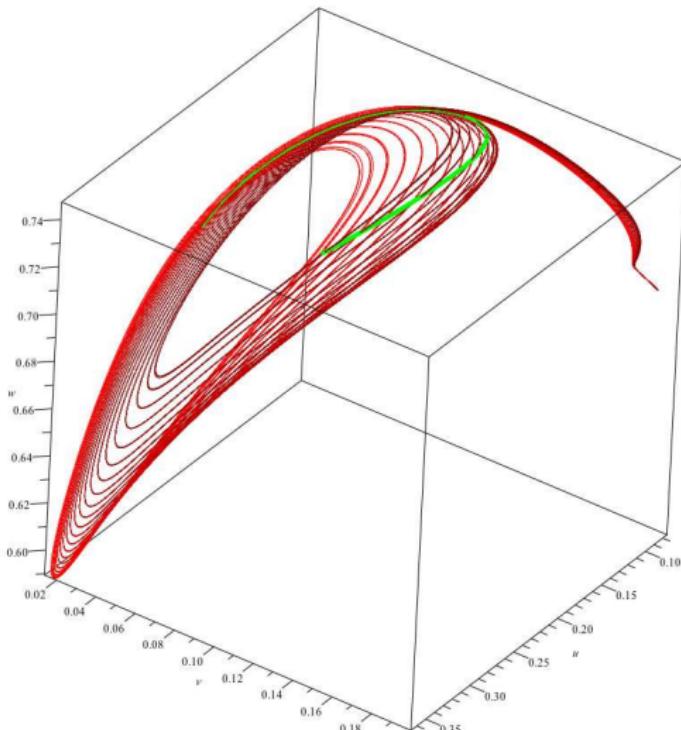
$$z = 1 - u - v - w$$

$$a = 1.6, b = 20.75 + .45\xi, c = 0.04, \quad d = 1.0, e = 0.36, f = 0.016$$

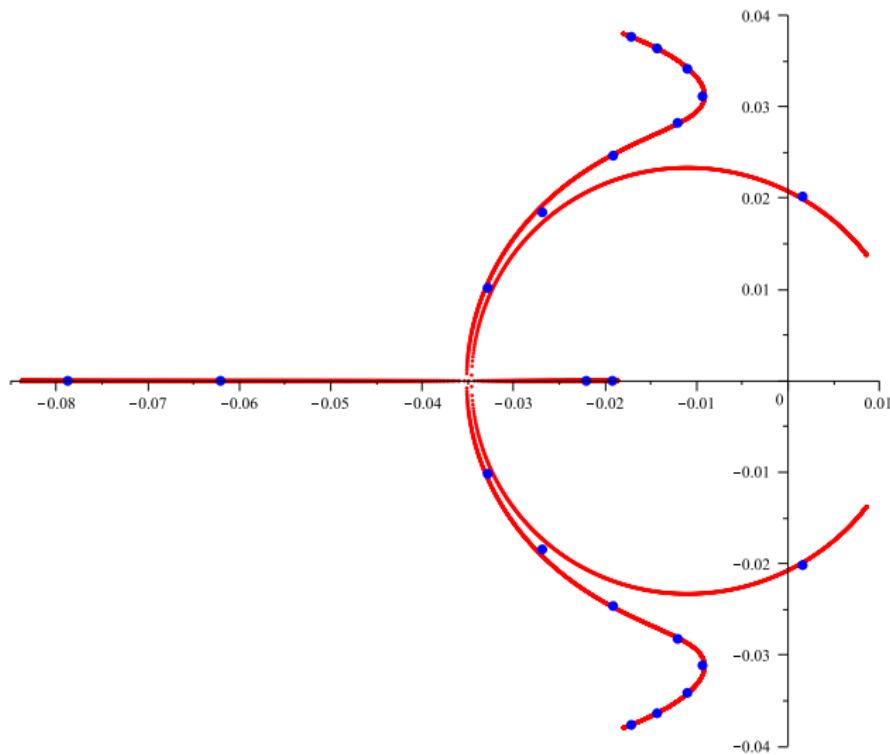
$$u(0) = 0.1, v(0) = 0.2, w(0) = 0.7$$

exhibits Hopf bifurcations for $b \in [20.3, 21.2]$

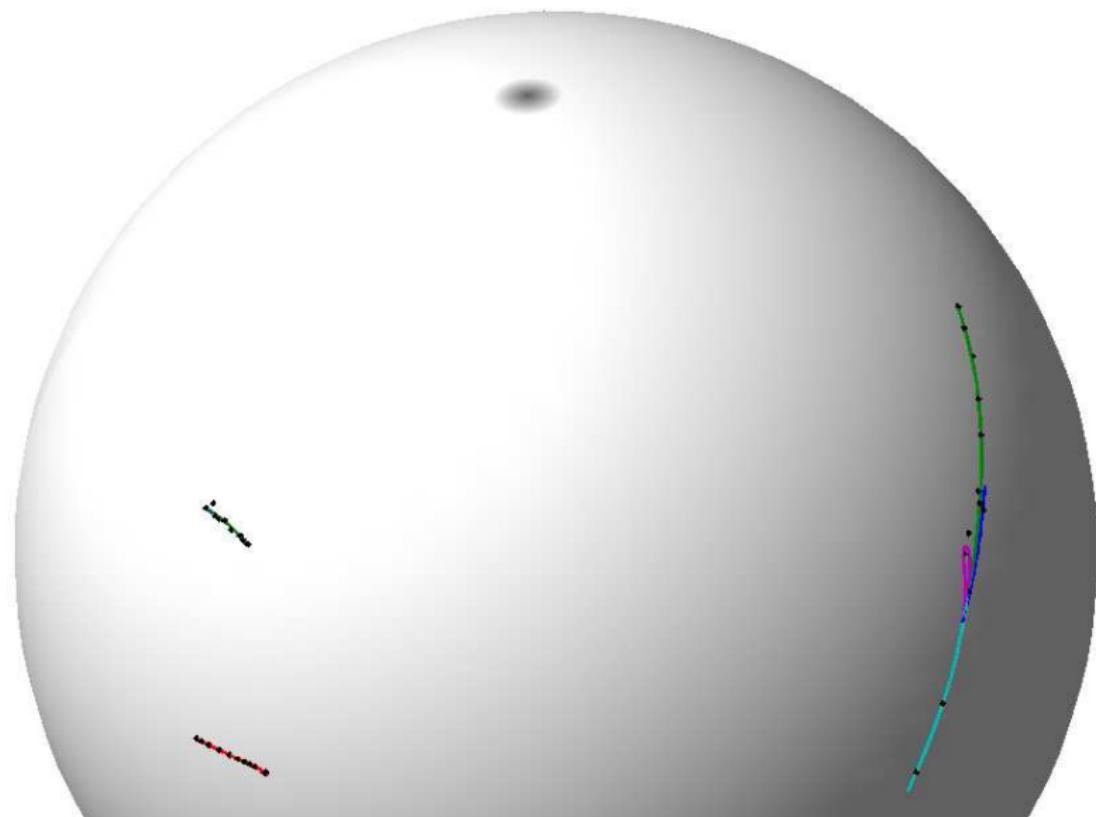
CO Oxidation: Analyzing the stochastic Jacobian at $t = 300$.



CO Oxidation: PC order 10. Slow eigenvalues.



CO Oxidation: PC order 10. Eigenvectors.



Data Free Inference (DFI)

- Input uncertainties are not well characterized in many practical network models
- May have nominal parameter values and bounds
 - No information on correlations
 - No joint PDF on parameters
- Joint PDF structure can have a drastic effect on resulting uncertainties in predictions
- When original raw data is available, Bayesian inference provides the requisite posterior
- When original data is **not** available, what can be done?
 - DFI: discover a consensus joint PDF on the parameters consistent with given information

(Berry *et al.*, JCP, in review)

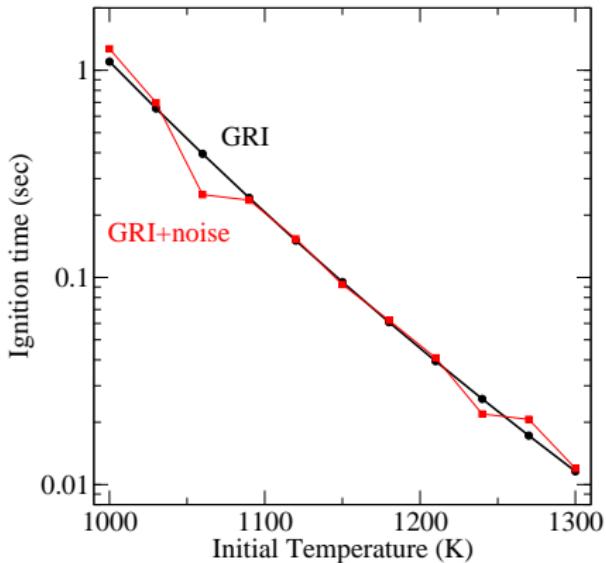
- Demonstrate on a chemical ignition problem (ODE)

Generate ignition "data" using a detailed model+noise

- Ignition using a detailed chemical model for methane-air chemistry
- Ignition time versus Initial Temperature
- Multiplicative noise error model
- 11 data points:

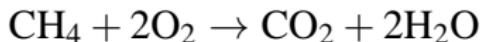
$$d_i = t_{ig,i}^{\text{GRI}} (1 + \sigma \epsilon_i)$$

$$\epsilon \sim N(0, 1)$$



Fitting with a simple chemical model

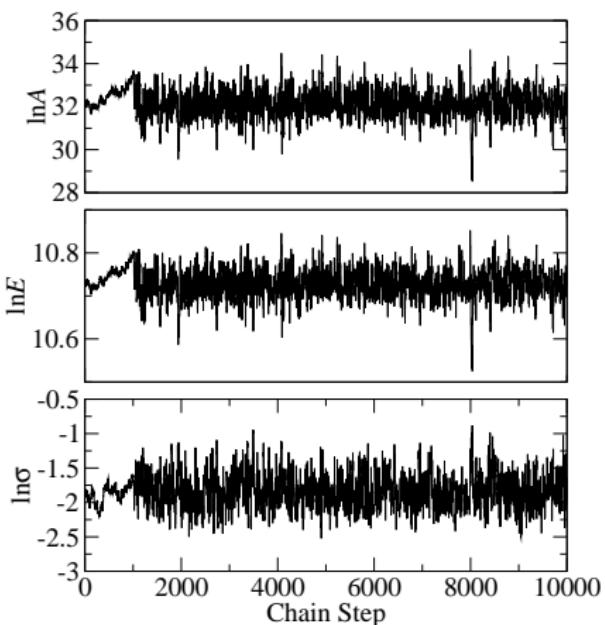
- Fit a global single-step irreversible chemical model



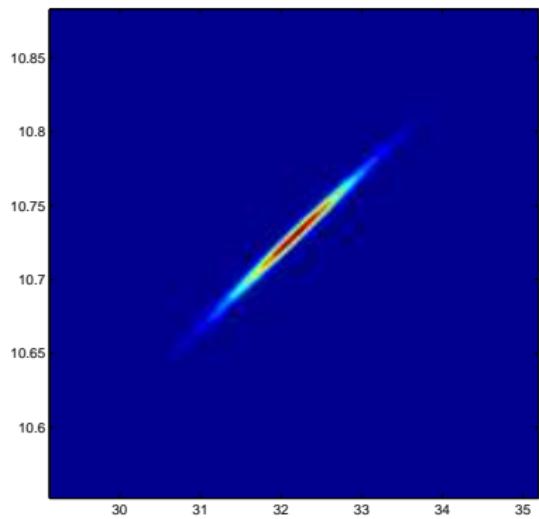
$$\mathfrak{R} = [\text{CH}_4][\text{O}_2]k_f$$

$$k_f = A \exp(-E/R^o T)$$

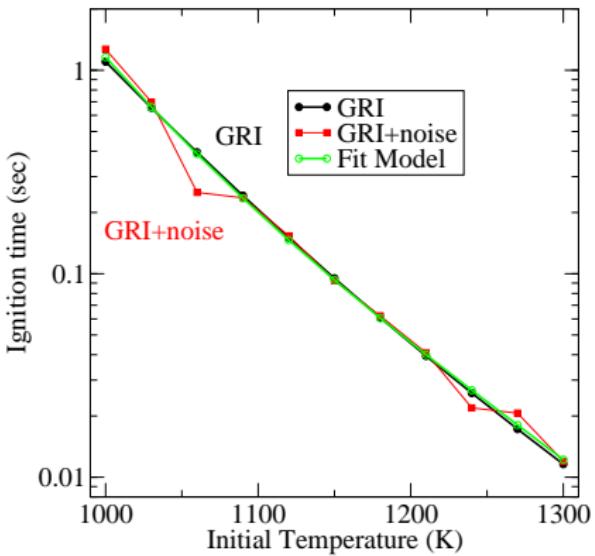
- Infer 3-D parameter vector ($\ln A$, $\ln E$, $\ln \sigma$)
- Good mixing with adaptive MCMC when start at MLE



Bayesian Inference Posterior and Nominal Prediction

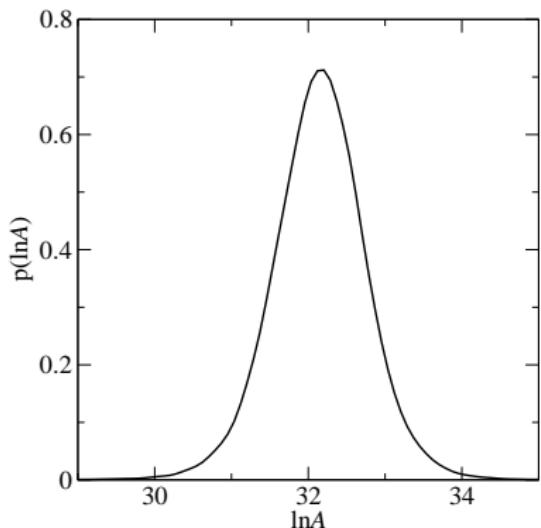


Marginal joint posterior on $(\ln A, \ln E)$ exhibits strong correlation

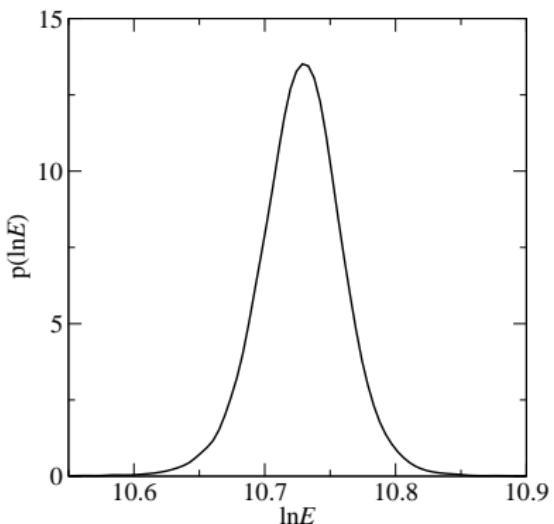


Nominal fit model is consistent with the true model

Marginal Posteriors on $\ln A$ and $\ln E$



$$\ln A = 32.15 \pm 3 \times 0.61$$



$$\ln E = 10.73 \pm 3 \times 0.032$$

Data Free Inference Challenge

Discarding initial data, reconstruct marginal ($\ln A$, $\ln E$) posterior using the following information

- Form of fit model
- Range of initial temperature
- Nominal fit parameter values of $\ln A$ and $\ln E$
- Marginal 5% and 95% quantiles on $\ln A$ and $\ln E$

Further, for now, presume

- Multiplicative Gaussian errors
- $N = 8$ data points

DFI Algorithm Structure

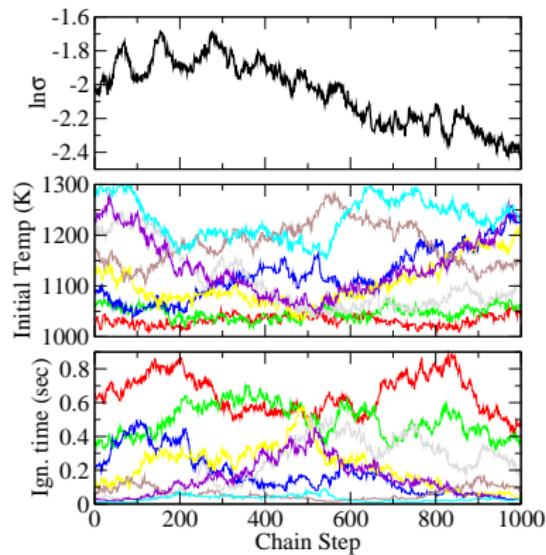
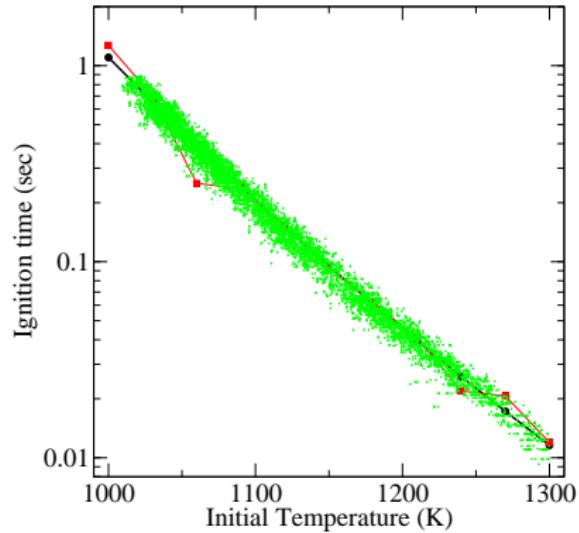
Basic idea:

- Explore the space of hypothetical data sets
- Accept data sets that lead to posteriors that are consistent with the given information
- Evaluate pooled posterior from all acceptable posteriors

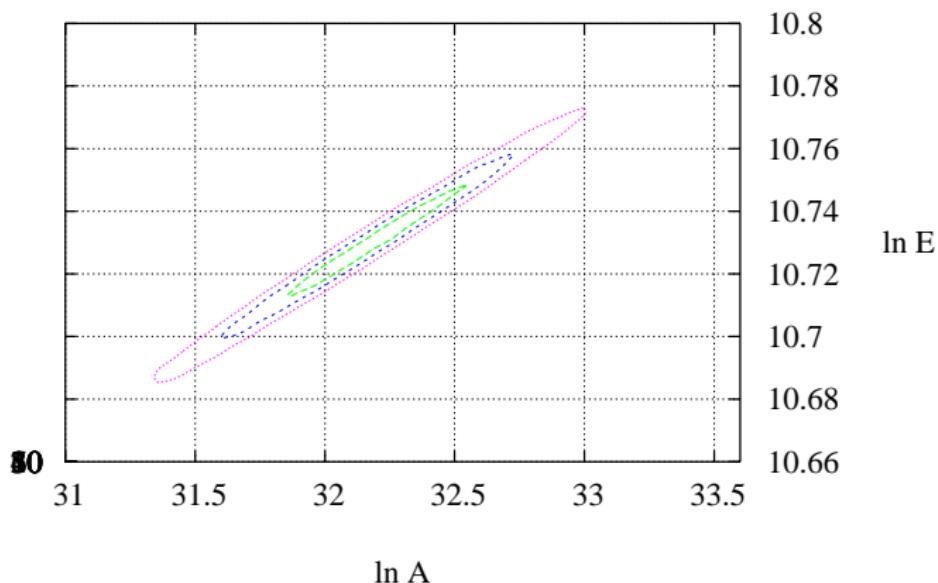
Algorithm uses two nested MCMC chains

- An outer chain on the data, $(2N + 1)$ -dimensional
 - N data points $(x_i, y_i) + \sigma$
 - Likelihood function captures constraints on parameter nominals+bounds
- An inner chain on the model parameters
 - Likelihood based on fit-model
 - parameter vector $(\ln A, \ln E, \ln \sigma)$

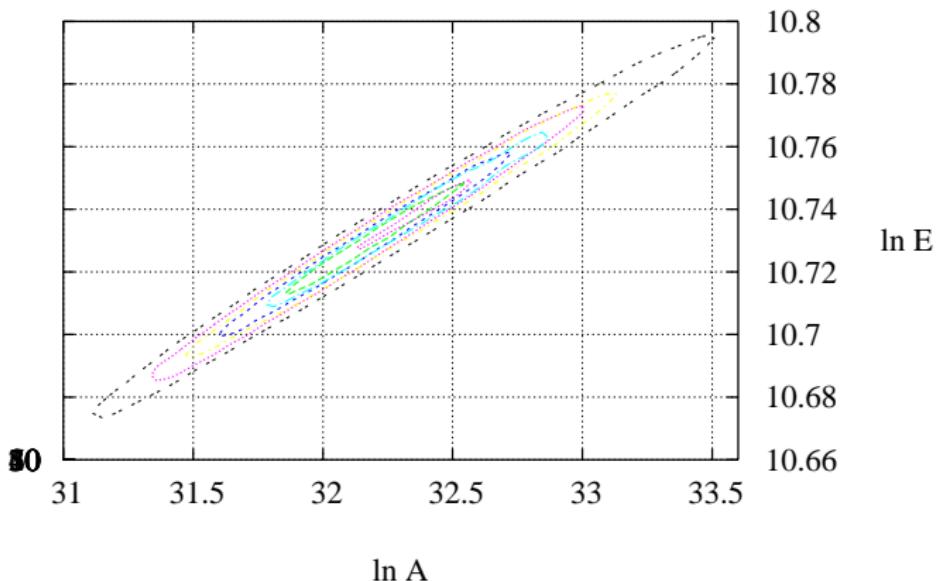
Short sample from outer/data chain



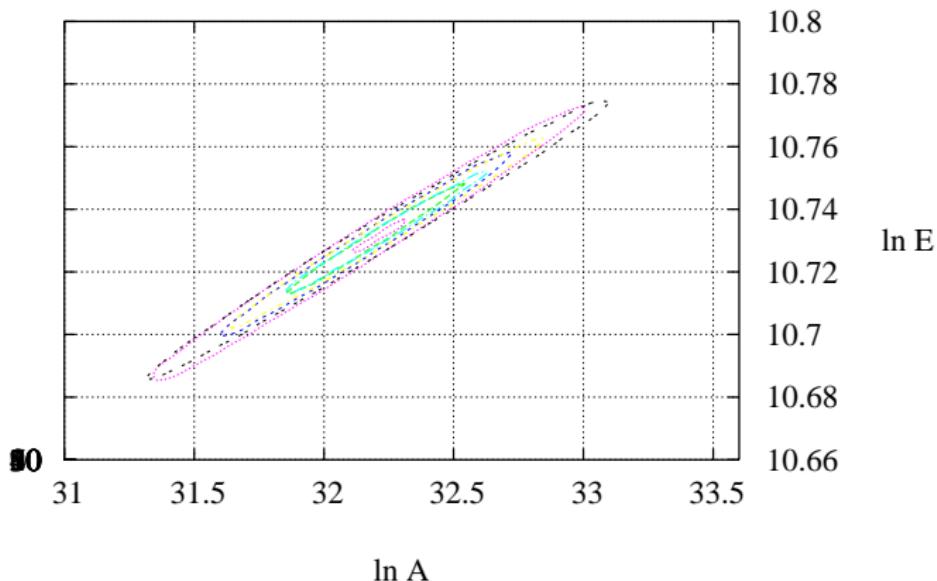
True Posterior



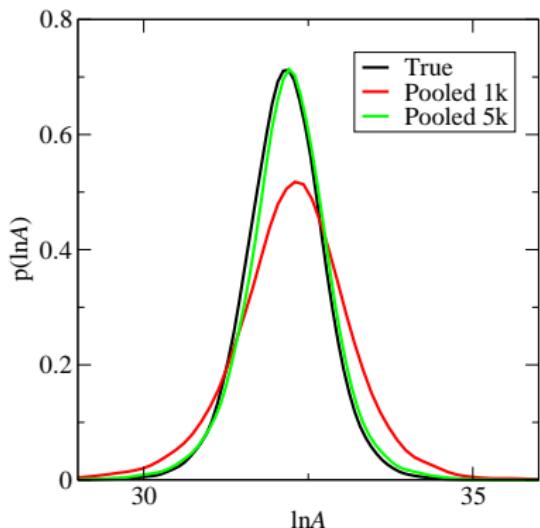
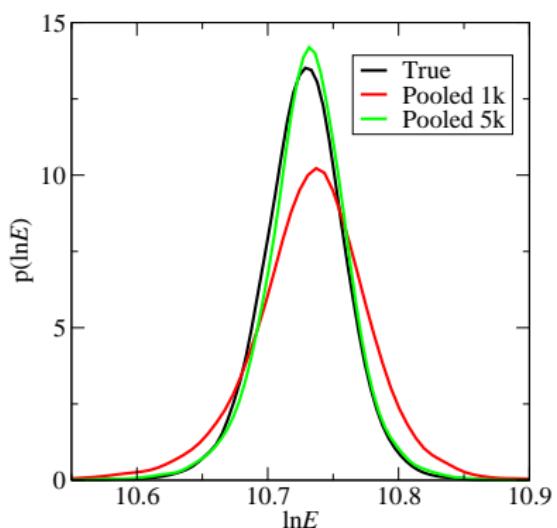
True + DFI posterior based on a 1000-long data chain



True + DFI posterior based on a 5000-long data chain



Marginal Posteriors on $\ln A$ and $\ln E$



Closure

- Analysis of uncertain network model dynamics:
 - Outlined relationship between eigen-analysis of a sampled stochastic ODE system and the Galerkin PC system.
 - Galerkin system eigenvalues/eigenvectors can be used to analyze the dynamics of the stochastic system
 - Work in progress on
 - associated stochastic model reduction strategies
 - structural uncertainty in network models
- Data Free Inference:
 - Developed a DFI procedure for estimation of self-consistent parametric posteriors in the absence of data
 - Demonstrated effective and convergent estimation of missing posterior in a chemical ignition problem
 - In progress: algorithm optimization and generalization to handle a range of different constraints