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Uncertainty in Network Models

@ Network ODE models typically rely on empirically-based
parameters/inputs

@ Uncertain parameters/inputs
@ Uncertain network structure

@ Need for dynamical analysis methods that

@ Can handle uncertainty
@ Provide model reduction with quantified fidelity

— accounting for uncertainty
@ Uncertain ODE systems, x(t) € R"

dx
e f(x;\)
X0 = X
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Intro

Deterministic Nonlinear ODE System Analysis

@ Computational Singular Perturbation (CSP) analysis

@ Jacobian eigenvalues provide first-order estimates of the
time-scales of system dynamics: 7 ~ 1/

@ Jacobian right/left eigenvectors provide first-order
estimates of the CSP vectors/covectors that define
decoupled fast/slow subspaces

@ With chosen thresholds, have M “fast" modes

@ M algebraic constraints define a slow manifold
@ Fast processes constrain the system to the manifold
@ System evolves with slow processes along the manifold

@ CSP time-scale-aware Importance indices provide means
for elimination of “unimportant” network nodes and
connections for a selected observable
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Analysis of Uncertain ODE Systems

@ Handle uncertainties using probability theory

@ Every random instance of the uncertain inputs provides a
“sample” ODE system

— Uncertainties in fast subspace lead to uncertainty
in manifold geometry

— Uncertainties in slow subspace lead to uncertain
slow time dynamics

@ One can analyze/reduce each system realization
— Statistics of x(t; \) trajectories

@ This can be expensive!

@ Explore alternate means
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Dynamical Analysis of the Galerkin PC System

Key questions:

@ How do the eigenvalues and eigenvectors of the Galerkin
system relate to those of the sampled original system
@ What can we learn about the sampled dynamics of the
original system from analysis of the Galerkin system
— fast/slow subspaces
— slow manifolds
@ Can CSP analysis of the Galerkin system be used for
analysis and reduction of the original uncertain system
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Spectral Stochastic Representations

Let (€2, 0, p) be a probability space.

Let£:Q — R™be an L2 RV.

Let (E,s 1) = (2, 0,p).

Let {pa(£) : @ =0,1,2,...} be an orthonormal basis of L?(Z).
Let X : A x Q — R be an L?(Q2) A-process. Its closest
representative in L%(Z) is

X(@aw) = Xa(@) pa((w))
where

Xa(@) = /Q X(2.0) ga (@) 0p(w) = (Pa:X).

Take m = 1 for simplicity. m > 1 holds by tensor product
arguments.
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Dyn
Galerkin Reformulation

Consider an ODE
x=1(&x) X 0) =x(&)
with x(t,w) € R". Represent x as

X&) = Xal(t) palf)

where
Xa(t) = (pa(§), X(€ 1))

and so these coefficients have dynamics

o= (a0 XED)

= (a(§), (&%)
Xo = g(X*)
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Jacobian of Sampled System

The dynamical system can be locally characterized by the
eigenstructrure of the Jacobian matrix. The enteries of the
Jacobian matrix J of the sampled system is given by

HE = TiExE D)

At each value of time, J(¢,t) is a random matrix.
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Jacobian Matrix of Reformulated System

The Jacobian matrix of the coefficient system can be thought of
as a block matrix with blocks

Tas(t) = Dy, / F(€.X(6,1)) 0 (€) du(€)
- / 20 (€) I(E1) 95(6) du(€)

= (Pa;J0g)

Truncate the representation so that o, 5 =0,...,P.
Jisthenan(P+ 1) x n(P + 1) matrix.
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Essential Numerical Range of J

The numerical range of a matrix M is
W(M) = {V"Mv: v e C™ v'v=|v|?=1}.

Note that
spect(M) C W(M).

The essential numerical range of J(¢) is
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Dyn
n-dimensional system — Key Results

© The spectrum of 7" is contained in the convex hull of the
essential range of the random matrix J.

spect(J*) C conv(W(J))
@ For any orthonormal basis {¢, }°°
As P — oo, the eigenvalues of 7P (t) converge weakly, i.e.
in the sense of measures, toward J,,.(, spect(J(w)).

Sonday et al., SISC, in press
Berry et al., in review

@ Interpolating Galerkin system eigenvalues approximates
random eigenvalues

@ Eigenpolynomials and Eigenvalues can be used to
construct the PCE for the random eigenvalue.
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1D Example

|
|
g
|
|
!
\
!

X(&,t) = al@)x(E, 1), &(w) ~U[-1,1];

- [ £€+1 for £€>0,
‘]_a(f):{g—l for ¢<0.

W) =[-2,-1JU[L2; conv(W®))=[-22.
LU PC: eigenvalues of 7" shown for P = 10, 15, 20, 25, 45
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Dyn
Eigenvectors

Let \ia, Vio be an eigenvalue/vector pair of 7°:
jvia = )\iavioz-
Alternatively,

(905(6)7 (‘](6) - )\ia) Uia(é» =0 for6=0...P

where vj,(£) in an n-vector with components

P
ol (€) = DV 0.(6)
v=0
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Dyn

Stochastic Vectors composed of Galerkin eigenvectors
approximate the stochastic eigenvectors well
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CO Oxidation Example

The oxidation of CO on a surface can be modeled as
(Makeev et al., JCP, 2002)

U= az— cu — 4duv

v = 2bZ — 4duv
W =ez—fw

Zz=1—-u—-v—w
a=16b=2075+ .45¢,c=0.04, d=10e=0.36,f =0.016

u(0) = 0.1,v(0) = 0.2,w(0) = 0.7
exhibits Hopf bifurcations for b € [20.3,21.2]
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CO Oxidation: Analyzing the stochastic Jacobian at
t = 300.

; 035
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CO Oxidation: PC order 10. Slow eigenvalues.

0.04 4

-0.04 ~
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CO Oxidation: PC order 10. Eigenvectors.
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DFI

Data Free Inference (DFI)

@ Input uncertainties are not well characterized in many
practical network models
@ May have nominal parameter values and bounds
@ No information on correlations
@ No joint PDF on parameters
@ Joint PDF structure can have a drastic effect on resulting
uncertainties in predictions
@ When original raw data is available, Bayesian inference
provides the requisite posterior
@ When original data is not available, what can be done?

@ DFI: discover a consensus joint PDF on the parameters

consistent with given information
(Berry et al., JCP, in review)

@ Demonstrate on a chemical ignition problem (ODE)
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DFI

Generate ignition "data" using a detailed model+noise

@ Ignition using a detailed
chemical model for

methane-air chemistry a3 E
@ Ignition time versus Initial . [ GRI
Temperature 8 I =
L . . 8 GRI+noise
® Multiplicative noise error = | i
model 2
k)

@ 11 data points:

di - tiGgfi?l(l + O‘6i) 0.01f A ! A | s =
1000 1100 1200 1300
e N(O, 1) Initial Temperature (K)
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DFI

Fitting with a simple chemical model

@ Fit a global single-step %
irreversible chemical sl ]
model L32p

CH4 + 205 — COs + 2H,0

R = [CHyJ[O]ks
kk = Aexp(—E/R°T)

@ Infer 3-D parameter

vector (InA,InE,Ino) ;’
@ Good mixing with ; ;g: o
adaptive MCMC when 0 A0 s 0 10w

start at MLE
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DFI

Bayesian Inference Posterior and Nominal Prediction

— GRI
== GRI+noise
Fit Model

7

| GRI+noise

o
[

Ignition time (sec)

0.01,

. | . | B
® # % ® 3“ * 1000 1100 1200 1300
Initial Temperature (K)

Marginal joint posterior on

(InA,InE) exhibits strong Nominal fit model is con-
correlation sistent with the true model
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DFI

Marginal Posteriors on InA and InE

0.8 15
0.6
10
Zoal 4 g
[=% o
5 —
0.2+ =
0 L 1 L 0 L | L |
30 |32 34 10.6 10.7 10.8 10.9
nA

INA=3215+3 x 0.61 INE = 10.73 + 3 x 0.032
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DFI

Data Free Inference Challenge

Discarding initial data, reconstruct marginal (InA, InE) posterior
using the following information

@ Form of fit model

@ Range of initial temperature

@ Nominal fit parameter values of InA and InE

@ Marginal 5% and 95% quantiles on InA and InE

Further, for now, presume
@ Multiplicative Gaussian errors
@ N = 8 data points
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DFI

DFI Algorithm Structure

Basic idea:
@ Explore the space of hypothetical data sets
@ Accept data sets that lead to posteriors that are consistent
with the given information
@ Evaluate pooled posterior from all acceptable posteriors

Algorithm uses two nested MCMC chains
@ An outer chain on the data, (2N + 1)—dimensional
— N data points (X,y;) + o
— Likelihood function captures constraints on
parameter nominals+bounds
@ An inner chain on the model parameters

— Likelihood based on fit-model
— parameter vector (InA,InE,Ino)
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DFI

Short sample from outer/data chain
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True Posterior

10.8

10.78

10.76

10.74
InE
10.72

10.7

10.68

a0 10.66
31 315 32 325 33 335

InA

NET Uncertain Networks



DFI

True + DFI posterior based on a 1000-long data chain

10.8
10.78

10.76

10.74
InE
10.72
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a0 10.66
31 315 32 325 33 335

InA
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DFI

True + DFI posterior based on a 5000-long data chain
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DFI

Marginal Posteriors on InA and InE
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Closure
Closure

@ Analysis of uncertain network model dynamics:
@ Outlined relationship between eigen-analysis of a sampled
stochastic ODE system and the Galerkin PC system.
@ Galerkin system eigenvalues/eigenvectors can be used to
analyze the dynamics of the stochastic system
@ Work in progress on
— associated stochastic model reduction strategies
— structural uncertainty in network models

@ Data Free Inference:

@ Developed a DFI procedure for estimation of self-consistent
parametric posteriors in the absence of data

@ Demonstrated effective and convergent estimation of
missing posterior in a chemical ignition problem

@ In progress: algorithm optimization and generalization to
handle a range of different constraints
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