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Uncertainty in Network Models

Network ODE models typically rely on empirically-based
parameters/inputs

Uncertain parameters/inputs
Uncertain network structure

Need for dynamical analysis methods that
Can handle uncertainty
Provide model reduction with quantified fidelity

– accounting for uncertainty

Uncertain ODE systems, x(t) ∈ R
n

dx
dt

= f (x;λ)

x(0) = x0
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Deterministic Nonlinear ODE System Analysis

Computational Singular Perturbation (CSP) analysis

Jacobian eigenvalues provide first-order estimates of the
time-scales of system dynamics: τi ∼ 1/λi

Jacobian right/left eigenvectors provide first-order
estimates of the CSP vectors/covectors that define
decoupled fast/slow subspaces
With chosen thresholds, have M “fast" modes

M algebraic constraints define a slow manifold
Fast processes constrain the system to the manifold
System evolves with slow processes along the manifold

CSP time-scale-aware Importance indices provide means
for elimination of “unimportant" network nodes and
connections for a selected observable
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Analysis of Uncertain ODE Systems

Handle uncertainties using probability theory

Every random instance of the uncertain inputs provides a
“sample" ODE system

– Uncertainties in fast subspace lead to uncertainty
in manifold geometry

– Uncertainties in slow subspace lead to uncertain
slow time dynamics

One can analyze/reduce each system realization
– Statistics of x(t;λ) trajectories

This can be expensive!

Explore alternate means
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Dynamical Analysis of the Galerkin PC System

Key questions:

How do the eigenvalues and eigenvectors of the Galerkin
system relate to those of the sampled original system

What can we learn about the sampled dynamics of the
original system from analysis of the Galerkin system

– fast/slow subspaces
– slow manifolds

Can CSP analysis of the Galerkin system be used for
analysis and reduction of the original uncertain system
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Spectral Stochastic Representations

Let (Ω, σ, ρ) be a probability space.
Let ξ : Ω → R

m be an L2 RV.
Let (Ξ, s, µ) = ξ♯(Ω, σ, ρ).
Let {ϕα(ξ) : α = 0, 1, 2, . . .} be an orthonormal basis of L2(Ξ).
Let X : A × Ω → R be an L2(Ω) A-process. Its closest
representative in L2(Ξ) is

X(a, ω) ≃
∑

α

Xα(a)ϕα(ξ(ω))

where

Xα(a) =
∫

Ω

X(a, ω)ϕα(ξ(ω)) dρ(ω) = 〈ϕα,X〉.

Take m = 1 for simplicity. m > 1 holds by tensor product
arguments.

SNL Najm Uncertain Networks 8 / 33



Intro Dyn DFI Closure

Galerkin Reformulation

Consider an ODE

ẋ = f (ξ, x) x(ξ, 0) = x0(ξ)

with x(t, ω) ∈ R
n. Represent x as

x(ξ, t) =
∑

α

xα(t)ϕα(ξ)

where
xα(t) = 〈ϕα(ξ), x(ξ, t)〉

and so these coefficients have dynamics

ẋα =

〈
ϕα(ξ),

d
dt

x(ξ, t)

〉

= 〈ϕα(ξ), f (ξ, x)〉

ẋα = g(x∗)
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Jacobian of Sampled System

The dynamical system can be locally characterized by the
eigenstructrure of the Jacobian matrix. The enteries of the
Jacobian matrix J of the sampled system is given by

Jij(ξ, t) =
∂f i

∂xj (ξ, x(ξ, t))

At each value of time, J(ξ, t) is a random matrix.
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Jacobian Matrix of Reformulated System

The Jacobian matrix of the coefficient system can be thought of
as a block matrix with blocks

Jαβ(t) = Dxβ

∫

Ξ

f (ξ, x(ξ, t))ϕα(ξ) dµ(ξ)

=

∫

Ξ

ϕα(ξ) J(ξ, t)ϕβ(ξ) dµ(ξ)

= 〈ϕα, Jϕβ〉

Truncate the representation so that α, β = 0, . . . ,P.
J is then a n(P + 1)× n(P + 1) matrix.
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Essential Numerical Range of J

The numerical range of a matrix M is

W(M) = {v∗Mv : v ∈ Cm, v∗v = ‖v‖2 = 1}.

Note that
spect(M) ⊂ W(M).

The essential numerical range of J(ξ) is

W̃(J) =
⋃

a.e. ξ

W(J(ξ)).
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n-dimensional system – Key Results

1 The spectrum of J P is contained in the convex hull of the
essential range of the random matrix J.

spect(J P) ⊂ conv(W̃(J))
2 For any orthonormal basis {φα}

∞

α=0:

As P → ∞, the eigenvalues of J P(t) converge weakly, i.e.
in the sense of measures, toward

⋃
ω∈Ω spect(J(ω)).

Sonday et al., SISC, in press
Berry et al., in review

Interpolating Galerkin system eigenvalues approximates
random eigenvalues

Eigenpolynomials and Eigenvalues can be used to
construct the PCE for the random eigenvalue.
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1D Example

ẋ(ξ, t) = a(ξ)x(ξ, t); ξ(ω) ∼ U[−1, 1];

J = a(ξ) ≡

{
ξ + 1 for ξ ≥ 0,
ξ − 1 for ξ < 0.

W̃(J) = [−2,−1] ∪ [1, 2]; conv(W̃(J)) = [−2, 2].

LU PC: eigenvalues of J P shown for P = 10, 15, 20, 25, 45
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Eigenvectors

Let λiα, viα be an eigenvalue/vector pair of J P:

J viα = λiαviα.

Alternatively,

〈ϕβ(ξ), (J(ξ) − λiα) viα(ξ)〉 = 0 for β = 0 . . . P

where viα(ξ) in an n-vector with components

v
k
iα(ξ) =

P∑

γ=0

vkγ
iα ϕγ(ξ).
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Stochastic Vectors composed of Galerkin eigenvectors
approximate the stochastic eigenvectors well
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CO Oxidation Example

The oxidation of CO on a surface can be modeled as
(Makeev et al., JCP, 2002)

u̇ = az − cu − 4duv v̇ = 2bz2 − 4duv

ẇ = ez − fw z = 1 − u − v − w

a = 1.6, b = 20.75 + .45ξ, c = 0.04, d = 1.0, e = 0.36, f = 0.016

u(0) = 0.1, v(0) = 0.2,w(0) = 0.7
exhibits Hopf bifurcations for b ∈ [20.3, 21.2]
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CO Oxidation: Analyzing the stochastic Jacobian at
t = 300.
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CO Oxidation: PC order 10. Slow eigenvalues.
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CO Oxidation: PC order 10. Eigenvectors.
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Data Free Inference (DFI)

Input uncertainties are not well characterized in many
practical network models
May have nominal parameter values and bounds

No information on correlations
No joint PDF on parameters

Joint PDF structure can have a drastic effect on resulting
uncertainties in predictions

When original raw data is available, Bayesian inference
provides the requisite posterior
When original data is not available, what can be done?

DFI: discover a consensus joint PDF on the parameters
consistent with given information

(Berry et al., JCP, in review)

Demonstrate on a chemical ignition problem (ODE)
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Generate ignition "data" using a detailed model+noise

Ignition using a detailed
chemical model for
methane-air chemistry

Ignition time versus Initial
Temperature

Multiplicative noise error
model

11 data points:
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Fitting with a simple chemical model

Fit a global single-step
irreversible chemical
model

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = A exp(−E/RoT)

Infer 3-D parameter
vector (ln A, ln E, lnσ)

Good mixing with
adaptive MCMC when
start at MLE
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
(ln A, ln E) exhibits strong
correlation

Nominal fit model is con-
sistent with the true model
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Marginal Posteriors on ln A and ln E
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ln A = 32.15 ± 3 × 0.61 ln E = 10.73 ± 3 × 0.032
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Data Free Inference Challenge

Discarding initial data, reconstruct marginal (ln A, ln E) posterior
using the following information

Form of fit model

Range of initial temperature

Nominal fit parameter values of ln A and ln E

Marginal 5% and 95% quantiles on ln A and ln E

Further, for now, presume

Multiplicative Gaussian errors

N = 8 data points
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DFI Algorithm Structure

Basic idea:

Explore the space of hypothetical data sets

Accept data sets that lead to posteriors that are consistent
with the given information

Evaluate pooled posterior from all acceptable posteriors

Algorithm uses two nested MCMC chains

An outer chain on the data, (2N + 1)–dimensional
– N data points (xi, yi) + σ
– Likelihood function captures constraints on

parameter nominals+bounds

An inner chain on the model parameters
– Likelihood based on fit-model
– parameter vector (ln A, ln E, lnσ)
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Short sample from outer/data chain
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True Posterior
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True + DFI posterior based on a 1000-long data chain
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True + DFI posterior based on a 5000-long data chain
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Marginal Posteriors on ln A and ln E
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Closure

Analysis of uncertain network model dynamics:
Outlined relationship between eigen-analysis of a sampled
stochastic ODE system and the Galerkin PC system.
Galerkin system eigenvalues/eigenvectors can be used to
analyze the dynamics of the stochastic system
Work in progress on

– associated stochastic model reduction strategies
– structural uncertainty in network models

Data Free Inference:
Developed a DFI procedure for estimation of self-consistent
parametric posteriors in the absence of data
Demonstrated effective and convergent estimation of
missing posterior in a chemical ignition problem
In progress: algorithm optimization and generalization to
handle a range of different constraints
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