

Prediction of Formation Constants of $\text{NdHB}_4\text{O}_7^{2+}$ up to 200°C

**International High-Level Radioactive Waste Management
Conference, Albuquerque, New Mexico, April 10-14, 2011**

Yongliang Xiong¹, Marian Borkowski², Larry Brush¹

¹Sandia National Laboratories

Carlsbad Programs Group

Carlsbad, NM 88220

²Los Alamos National Laboratory

Carlsbad Operations

Carlsbad, NM 88220

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the United States
Department of Energy's National Nuclear Security Administration under
Contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of
Environmental Management (EM) of the U.S. Department of Energy

Outline of Presentation

- **Introduction**
- **Objective**
- **One-term Isocoulombic Approach**
- **Sample Isocoulombic Reactions**
- **Results**
- **Conclusions**

INTRODUCTION

- Recent experimental work indicates that borate could form a relatively strong complex with Nd(III) ($\log \beta_1 = 4.99 \pm 0.30$) at 25°C (Borkowski et al., 2010), an analog to Am(III).
- Borosilicate glass is proposed as a waste form for high-level radioactive waste.
- Up to 65 mmol/L of boron can be leached out in long-term alteration experiments of a simulated nuclear-waste borosilicate glass in water at 90°C (Advocat et al., 2001; Curti et al., 2009).
- Therefore, dissolved borate could be important to complexation with Am(III) at elevated temperatures.

Advocat, T., Jollivet, P., Crovisier, J.L., del Nero, M., 2001. Long-term alteration mechanisms in water for SON68 radioactive borosilicate glass. *Journal of Nuclear Materials* 298, 55-62.

Borkowski, M., Richmann, M., Reed, D.T., and Xiong, Y.-L., 2010. Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine. *Radiochimica Acta* 98, 577-582.

Curti, E., Dahn, R., Farges, F., and M. Vespa, M., 2009. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study. *Geochimica et Cosmochimica Acta* 73, 2283-2298

Objective of This Study

The objective of this study is to estimate the formation constant of $\text{NdHB}_4\text{O}_7^{2+}$ to 200°C using the one-term isocoulombic approach.

- To guide and stimulate further experimental work on borate complexation with Nd(III) and actinide(III)**

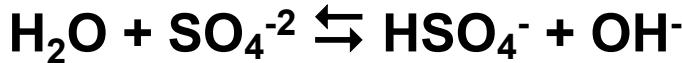
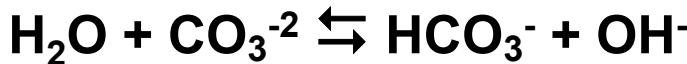
One-Term Isocoulombic Approach

- One-term isocoulombic extrapolation (Gu et al., 1994):

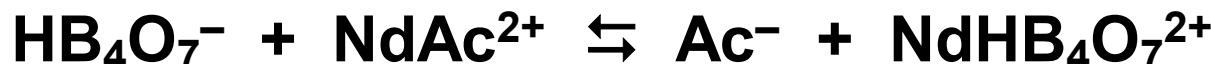
$$\Delta G^\circ_T = \Delta G^\circ_{Tr} = -RT \times \ln K_T$$

- This extrapolation method is found to have an average error of ± 0.5 logarithmic units (10-based logarithmic units) to temperature of 200°C .
- Theory behind this approach: A well-balanced isocoulombic reaction should minimize the changes in both heat capacity and entropy, leaving a free energy of reaction which is nearly constant.

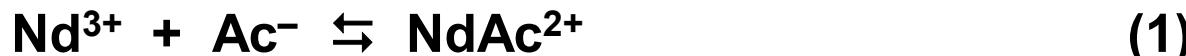
Gu, Y., Gammons, C., Bloom, M.S., 1994, A one-term extrapolation method for estimating equilibrium constants of aqueous reactions at elevated temperatures. *Geochimica et Cosmochimica Acta* 58, 3545-3560.



Isocoulombic Reactions

The following are ideal isocoulombic reactions:



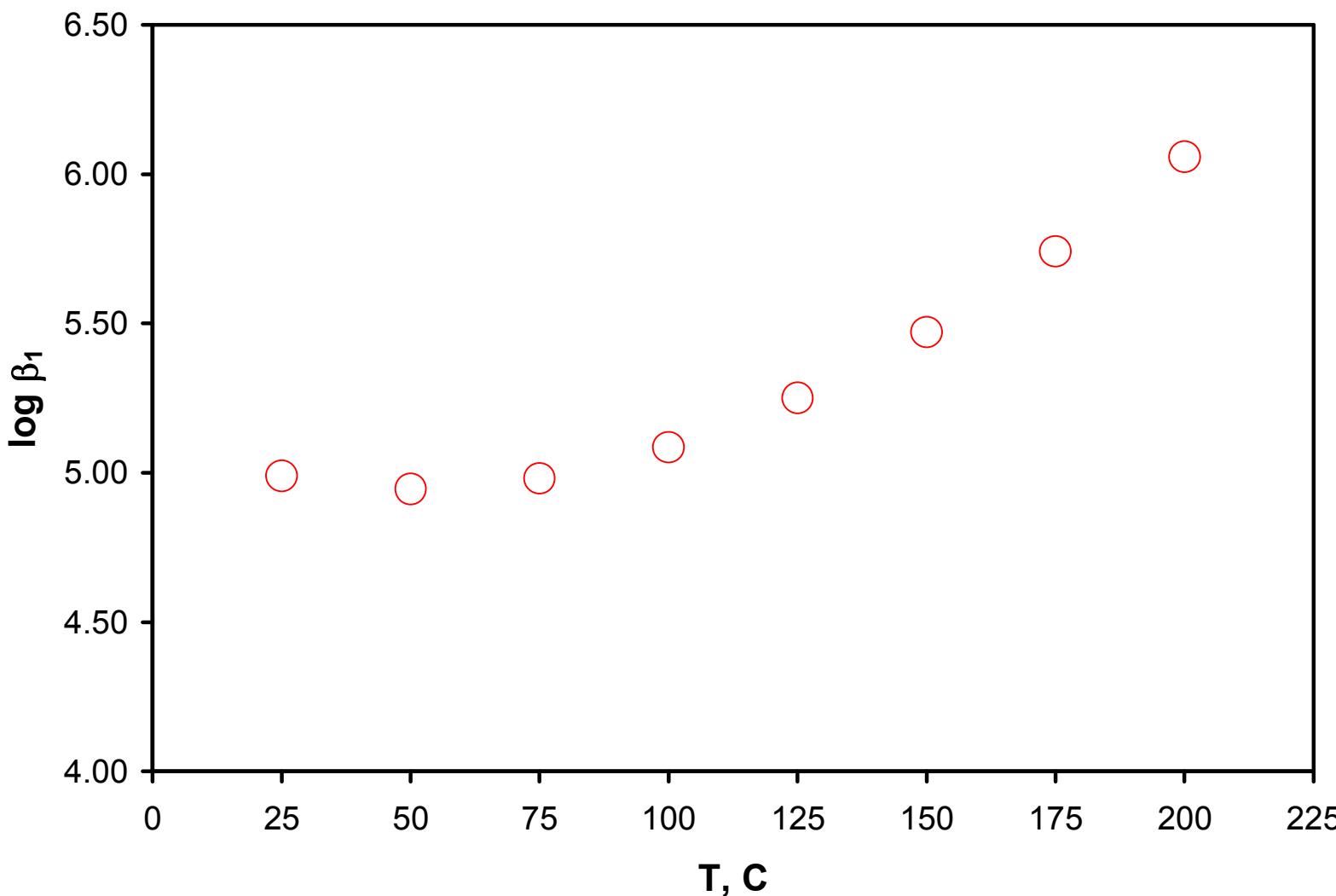
The following are semi-ideal isocoulombic reactions:



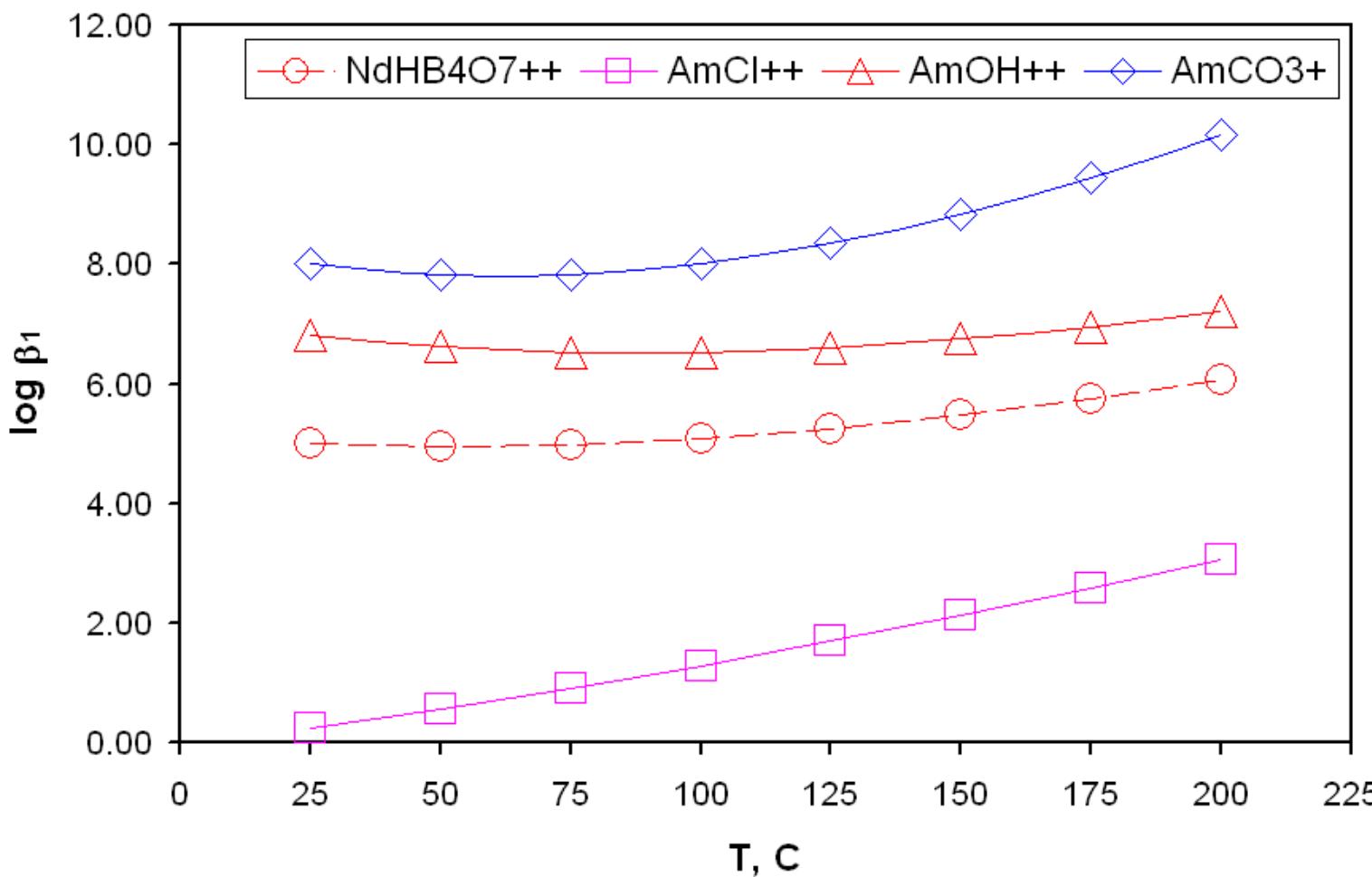
Isocoulombic Reaction Used by This Study

which is the combination of the following reactions:

- $\log \beta_1$'s for Reaction (1) at elevated temperatures are from Wood et al. (2000).
- $\log \beta_1$ for Reaction (2) at 25°C, which is 4.99, is from Borkowski et al. (2010).


Wood, S.A., Wesolowski, D.J., and Palmer, D.A., 2000. The aqueous geochemistry of the rare earth elements IX. A potentiometric study of Nd^{3+} complexation with acetate in 0.1 molal NaCl solution from 25°C to 225°C. Chemical Geology 167, 231-253.

log β_1 's for Reaction (1) from Wood et al. (2000)



T, K	T, C	log β_1
298.15	25	2.61
323.15	50	2.75
348.15	75	2.94
373.15	100	3.18
398.15	125	3.47
423.15	150	3.80
448.15	175	4.16
473.15	200	4.56

Results for $\text{Nd}^{3+} + \text{HB}_4\text{O}_7^- \rightleftharpoons \text{NdHB}_4\text{O}_7^{2+}$

Comparison with Other Inorganic Complexes

Simplified Alteration Solution

Element M

Li 2.90E-02

Na 2.06E-02

K 4.00E-04

Σ B 6.50E-02

Σ Si 4.60E-03

OH^- 8.00E-04

MoO_4^{2-} 7.00E-04

HPO_4^{2-} 2.00E-05

C(total) 1.00E-05

CO_3^{2-} 1.50E-06

pH 9.10

**Simplified solution
resulting from alteration
of simulated borosilicate
waste in pure water at
90°C (from Curti et al.,
2009)**

Implications

- It is expected that borate would play an important role in complexation with Am(III) because of its potentially high concentrations in solution.
- Although β_1 for the carbonate complex is about four orders of magnitude higher than β_1 for the borate complex, the latter is expected to compete with the carbonate complex owing to its much higher concentrations.

CONCLUSIONS

- The formation constants of the neodymium-borate complex are estimated up 200°C by using the isocoulombic approach.
- The strength of this complex is stronger than AmCl^{2+} by about four orders of magnitude, and is similar to that of AmOH^{2+} , at 200°C.
- This complex is expected to strongly compete with AmCO_3^+ because of the potentially higher concentrations of borate anticipated in solutions resulting from alteration of borosilicate waste forms.