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Abstract

The MDPD method provides a mesoscale description of the liquid-gas interface where mole-
cules can be thought of as grouped in particles with modeled Brownian and dissipative effects.
No liquid-gas interface is explicitly defined; surface properties, such as surface tension, result
from the MDPD interaction parameters. In this paper, the mesoscale character of MDPD is dem-
onstrated in the context of jet pinch-off by comparison with the asymptotic scaling predictions
for large, intermediate and low Ohnesorge numbers. The predominant behavior at a large Oh
number tends to be dominated by thermal fluctuations, whereas at smaller Oh a viscous-inertial
and even an inviscid flow behavior can appear. One MDPD simulation in particular displays all
the three regimes. The fact that the final stage leading to pinch-off is always stochastic — tradi-
tionally excluded in continuum discretizations — can have important consequences in spray mod-
eling. This paper also shows how MDPD results can be assessed to be independent from the
coarse-graining level. The thickness of the micro-bridge that forms just before capillary pinch-
off is discussed in light of this convergence study. An example of modification of the jet pinch-
off behavior due to the interaction with a still gas concludes this work.



Introduction

Continuum-scale hydrodynamic simula-
tion has had rather impressive success in
studying the behavior of fluids; nevertheless,
there are still many problems for which such
simulations have difficulties. In the study of
free-surface flows, the advantage of methods
like Dissipative Particle Dynamics (DPD) re-
sides in the simplicity of the underlying algo-
rithm of particle interaction under a soft repul-
sive potential.

While substantially less expensive than
Molecular Dynamics (MD), DPD can be for-
mally constructed from coarse-graining of
Lennard-Jones clusters [1]. DPD has been
used to investigate phase separation in immis-
cible binary liquid mixtures [2], [3] [4], drop-
let deformation and rupture in shear flow [5],
and droplets on surfaces under the influence of
shear flow [6]. The standard DPD method pre-
sents, however, a fundamental limitation, in
that the repulsive soft potential alone cannot
reproduce surface tension in single-species
fluid flows. The DPD potential leads to a pre-
dominantly quadratic pressure-density equa-
tion of state (EOS) [7], while a higher-order
pressure-density curve is necessary for the co-
existence of the liquid and vapor phases.

Single-species phase coexistence in a lig-
uid occurs in the range of densities py < p < pr
where py and p; are the pure vapor and liquid
number densities. In that state, surface tension
emerges from the asymmetry of the intermo-
lecular forces acting on a layer of molecules at
the liquid-vapor interface. As this asymmetry
causes larger intermolecular distances in the
outer layer than in the liquid bulk, the forces
in the layer act to contract the interface.

The Many-body DPD (MDPD) method by
Pagonabarraga and Frenkel [8] adds an attrac-
tive force to DPD. The amplitude of the soft
repulsion is made proportional to the local
density of the particles, thus achieving a cubic
pressure-density relation. A similar approach
has been introduced by Nugent and Posch in

the context of Smoothed Particle Hydrody-
namics (SPH) [9]. The MDPD method was
also extensively investigated by Warren [10]
and Trofimov et al. [11]. The dependence of
surface tension on the interaction parameters
and the relation with the bulk density of the
fluid were explored by Arienti et al. [12].

In this paper, the MDPD technique is ap-
plied to the study of liquid thread pinch-off.
After outlining the workings of MDPD, an
example illustrates the link between the inter-
action forces and the fluid properties. The
sense in which an MDPD simulation can con-
verge to a time-dependent solution is also ex-
plained is this introductory section. The main
body of the paper demonstrates the ability of
MDPD to capture the complete sequence of
scaling behavior — inviscid, inertial-viscous
and stochastically dominated — that asymptotic
analysis has identified. Simulations are carried
out for different viscosities of the fluid and in
the presence of a DPD gas.

MDPD scheme

MDPD inherits the three pairwise-additive
inter-particle forces formulation of the stan-
dard DPD scheme. The conservative, dissipa-
tive and random forces are defined, respec-
tively, as

Fj = Fj (), (1)
D A \A

Fj =-0,()(v; 1)r, )
F; = -Ewy (rij)f.ij 3)

where f, =1, /r;and v, =v, -V ,.
Warren’s approach [13] is pursued for the
conservative term. The repulsive force de-
pends on a weighted average of the local den-

sity, whereas the attractive force is density-
independent:

Fi? = Ao (1) + By(p; + p ), (1) “4)

The weight functions w.(r) = (1 — r/r.) and
wq(r) = (1 — r/ry) vanish for » > r. and r > ry,



respectively. Since a DPD method with a sin-
gle range may not have a stable interface [9],
in Equation (4) the repulsive contribution is
set to act at a shorter range r; < r, than the soft
pair attractive potential. The many-body re-
pulsion is chosen in the form of a self-energy
per particle which is quadratic in the local
density, B;(p,+p,)w,(r;), where B > 0. The

density for each particle is defined as

P, = 20,(r) (5)
Jj=i
and its weight function o, is defined as
15
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a)p(r)=2 (I-r/r)>. (6)

The kernel vanishes for » > r; and for conven-
ience it is normalized: f dro,(r) =1.

The DPD thermostat consists of random
and dissipative forces, which maintain the
equilibrium temperature 7" through the condi-
tion posed by the fluctuation-dissipation theo-
rem

£ =2%k,T ®)

where k, is the Boltzmann constant. The
weight function for the dissipative force is

w,(r)=1-r/r) 9)

Details about the choice of & and y can be
found in [13]. The simulations presented in
this work are carried out with the velocity
Verlet algorithm of Groot and Warren [13]
using the empirical parameter value of 1/2.
Since the random and dissipative forces of
MDPD are common with DPD, particles from
the two schemes can be easily combined. This
enables the simulation of more complex flows,
for instance the inclusion of a surrounding gas
taking part to pinch-off. Table 1 offers an ex-
ample of two different sets of parameters: the
first row corresponds to an MDPD fluid, the
second to a DPD gas. In the latter, the sign of
the coefficient A is switched and there is no
density-dependent term. An example of

MDPD-DPD interaction will be presented
later.

We conclude this Section by mentioning
that the simulations enabled by the particle
dynamics software code LAMMPS (Large-
scale Atomic/Molecular Massively Parallel
Simulator) [14] with the addition of a new
MDPD class. The computationally scalable
implementation of LAMMPS guarantees the
optimization of the interaction calculation
through an efficient neighbor list algorithm,
and will not be discussed here.

MDPD properties

Conventionally, dissipative particle dy-
namics methods operate in reduced units, so
that length is measured in units of 7. and mass
in units of m, the mass of a single particle. The
behavior of a MDPD system can then be cap-
tured by choosing the physical units of length
(LDPD), mass (MDPD), and time (TDPD)- This
becomes relevant if one wants to obtain a spe-
cific set of MDPD properties, for instance in
relation with the properties of a real liquid.

Let us consider the set of interaction pa-
rameters 4 = -40, B = 25, r; = 0.75, see Table
1. The number density p, kinematic viscosity
v and the surface tension coefficient o are not
simulation inputs, but they can be evaluated
with simple numerical tests. By applying the
Young-Laplace relation to a spherical drop in
equilibrium we find p = 6.1 and o= 7.3; see
Ref. [12] for a systematic study of the depend-
ence of surface tension on the interaction pa-
rameters. Viscosity can be assessed in a test
where a doubly periodic Poiseuille (DPP) flow
is established; the description of a convenient
procedure for creating two opposite Poiseuille
flows can be found in Ref. [15]. In this exam-
ple, the kinematic viscosity is determined by
y=0.005and & =0.1.

If the same properties of surface tension
coefficient, density and viscosity are ex-
pressed in physical units and labeled with an
asterisk, dimensional analysis yields to
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From these equations, the properties of
water at ambient conditions (d* = 998 kg/m’,
o * =0.0720 N/m, and v* = 1.00 - 10°° m/s?%)
are matched by taking Mppp = 3.94 - 107" kg,
Toep = 7.32 - 10" s, and Lppp = 3.18 -10° m.
The number of molecules per MDPD particle
can now be obtained directly from Mppp di-
vided by the mass of a water molecule; it is n
= 1.47 - 10". The set of equations (10) reveals
the link between the viscosity of the system
and Lppp: everything else being the same, the
smaller is v*, the greater is the coarse grain-
ing.

It is to be noted that other properties, such
as the non-dimensional isothermal compressi-
bility ' = (8P/dp)r /ksT, do not generally co-
incide with the properties of water. For this
MDPD fluid, we find ¥ ' =~ 50 (based on the
generalized equation of state proposed by
Warren [10]), whereas the actual value for wa-
ter k | = 16. Thus, the operation of matching
surface tension coefficient, density and kine-
matic viscosity of a liquid may lead to differ-
ent interaction parameters than the ones ob-
tained by imposing equal compressibility.

We close this section by noting that the
MDPD kinematic viscosity can be decreased
by reducing y, as shown on Table 2. This op-
eration can be carried out while keeping the
temperature of the fluid the same, as long as &
is varied according to Equation (8). Of the
values listed on Table 2, the viscosity y = 288
was calculated for the DPD parameters 4 =
10, B =0, r; = 0, and with particle mass m =
0.00647; see the bottom row on Table 1. At
these conditions, the number density is of pg =
0.935 particles per unit cube and the com-
pressibility is k' = 1 +0.202 pg/ksT = 1.19.

Table 1. Example of parameter sets for DPD and

MDPD fluids.
m A Ve B 74
1 -40 1 25 0.75
0.00647 10 1 0 0

Table 2. Kinematic viscosity of DPD and MDPD fluids

at kBT: 1.
4 ‘ 2 72 0.5 0.005
v ‘ 0.96 2.8 0.93 0.072

MDPD coarse-graining

MDPD is proposed as a truly mesoscopic
method that can bridge the gap between the
atomistic scale (in the range of nanometers
and nanoseconds) that is accessible by mo-
lecular dynamics (MD) simulations and the
macroscopic scale (in the range of microme-
ters and milliseconds) considered by contin-
uum descriptions. To this end, it is important
to define in what sense the method is scalable.

Let us consider a system whose particle
number N has been scaled by a factor ¢ while
keeping the domain size constant. Denoting
with a prime the new equivalent system, so
that N' = N/¢ and m' = m ¢, the scaling rela-
tions in three dimensions are r.' = r. ¢1/ 3and ¢’
=t ¢'. The first relation maintains the frac-
tional particle overlap in the change of the
coarse-graining level, while the second en-
sures that velocity increments calculated dur-
ing one time step are the same for the two sys-
tems. The approach proposed by Fiichslin [16]
for DPD requires the modification of the in-
teraction parameters as a function of the
coarse-graining level. For the same argument,
the scaled force parameters are

A=A ¢2/3 (11)
v'=r¢” (12)
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This procedure can be extended to MDPD
by adding the primed parameters [12]

r'=1r ¢1/3 (14)
B'=B ¢ . (15)

From the relations above, scale independ-
ence holds for bulk interactions because the
energy associated with an individual MDPD
particle is made proportional to the number of
molecules it represents. It is noted, however,
that, while the stress tensor terms are unaf-
fected by coarse-graining, the kinematic vis-
cosity scales like ¢” 3. Thus, for an increased
coarse-graining N'/N > 1 (so that ¢ < 1), the
viscosity, v = v ¢'°, decreases. Similarly,
even if 0 = o ¢” 3, the surface tension is in-
variant (¢737%% = ¢9).

Coarse-graining is illustrated in Figure 1,
with the same calculation repeated for ¢ = 1/8
in frame (b), ¢ = 1/64 in frame (c), and ¢ =
1/512 in frame (d). Details of the numerical
setting of the simulation will be explained
later; for the moment it suffices to say that
snapshots show a slice of a liquid jet immedi-
ately after pinch-off. The simulation in frame
(a) includes 287 particles and takes less than a
minute to run on a single-core CPU. The
number of particles increases by a factor 8 in
each following calculations, while the interac-
tion parameters correspondingly decrease ac-
cording to Equations (11) to (15).

The jet, repeated periodically in the axial
direction, is 10 DPD units long. This length
corresponds to 31.8 um in the physical units
from the previous section. The initial diameter
1s 7.07 um. As coarse graining is reduced, the
development of a thin liquid bridge that rap-
idly retreats toward the newly formed drops
becomes more defined. The shape of the
pinched thread converges at ¢ = 1/64.

(2)

(b)

(©)

(d)

Figure 1. Convergence study of jet pinch-off. See text
for details.



Overall, no qualitative differences between
the different levels of coarse-graining; particu-
larly, no satellite drops are observed for this
configuration. A second series of calculations
at a larger jet radius (not shown here) con-
firms that the Plateau condition on the mini-
mum surface energy for pinch-off is respected
independently from coarse-graining: the jet
returns to the equilibrium cylindrical shape if
the jet radius R is larger than A/2s, where A is
the wavelength of the axial perturbation.

Local dynamics near pinch-off

A number of authors have carried out local
analyses of the Navier—Stokes, Stokes and
Laplace equations for pinching threads; see,
for instance, the extensive review in Ref [18].
To establish a connection with the theory, the
minimum thread radius A,,;,, from an MDPD
simulation is plotted in this Section as a func-
tion of the time to breakup, 7. It is expected
that 4,,:,(t) follows a specific power law de-
pending on the Ohnesorge number, Oh = p” v
/ (Ro)", even if in reality every MDPD simu-
lation has its own specific trajectory.

In the absence of an outer fluid, breakup
asymptotically proceeds according to a solu-
tion that balances surface tension, viscous, and
inertial forces. However, for sufficiently small
values of Oh, viscosity must drop out of the
description; taking the characteristic length
scale to be the minimum radius, it follows

from dimensional that

(o 1:2/,0)” 3. Viscous effects eventually become
important as the minimum radius continues to
decrease and becomes of order Oh”. At that
point the flow then transitions to an inertial-
viscous scaling regime, where /,,, ~ 7.

On even smaller scales, it can be postu-
lated that the driving force leading to pinch-
off consists of thermal fluctuations at the mo-
lecular level. The relevant length scale appears
from the comparison of the thermal energy
with the surface energy,

hmin ~

analysis

0, =k, T]o. (16)

The domain concerned by thermal fluctuations
(up to a few hundreds of nanometers) has been
probed only recently by Molecular Dynamics
simulations of nanojets [19]. A set of one-
dimensional dynamical equations can also be
derived from the Navier-Stokes equations in
the limit of a thin layer of liquid where inertia,
the component of velocity normal to the sur-
face, and the in-plane derivatives are ne-
glected. These “lubrication equations” are
fully deterministic, but stress fluctuations can
be added via a stochastic term [21]. The flow
obeying to the Stochastic Lubrication Equa-
tions exhibits a characteristic self-similar pro-
file resembling two cones joined at their
apexes (called the double-cone profile) and
leading to a symmetric pinch-off. The relation
between /,;,, and T is described by a power
law with exponent 0.418 [20].

According to theory then, it should be pos-
sible to observe in a logarithmic plot of
hmin(T), the 2/3 slope first, then the slope 1,
and finally the 0.418 slope. However, span-
ning the three scaling behaviors in a single
pinch-off simulation has so far proven pro-
hibitive from a computational point of view.
As mentioned earlier, the first transition from
inviscid behavior depends on Oh, but the sec-
ond occurs for A, ~ th, at sub-micron
scales for most liquids. In the following ex-
ample we will demonstrate that such a simula-
tion is possible with MDPD. To this end, in-
stead of changing the domain scale, we take a
constant reference jet radius, as well as given
fixed values of surface tension and density and
modify the viscosity.

The effect of viscosity on the shape of the
jet near pinch-off is shown in Figure 2 for two
cases at low and high viscosity. A small axial
perturbation is applied to the jet with wave-
length A = 40. The jet radius is chosen so that
MR = 9.01. This length-to-radius ratio corre-
sponds to the fastest growing rate of capillary
instability according to linear analysis.



In the low-viscosity case, with v = 0.072,
the extended thin long thread before pinch-off
is in agreement with the deterministic ap-
proximation to the Navier-Stokes equations. It
can be shown that this profile is in fact a uni-
versal solution (i.e., independent of initial
conditions) of the deterministic lubrication
equations. The high viscosity case, with v =
2.8, is instead closer to the double-cone self-
similar profile of the Stochastic Lubrication
Equations [21]. This shape is typically ob-
served in MD simulations of nanojets [19].

(b)

Figure 2. Effect of increasing viscosity on pinch-off:
(a) v=0.072; (b) v=2.8.

A more quantitative analysis is provided
by the logarithmic behavior of /4y,,(t). To
track the minimum jet radius as a function of
time, it is necessary to post-process several
snapshots of particles position according to
the following procedure. The computational
domain is first axially divided into 50 bins;
then the center of mass of each slice of the jet
is calculated. This is a crucial step in measur-
ing the radius profile because the liquid thread
can oscillate during the pinch-off process. For
each bin, a number density histogram is con-
structed in annular rings with a radial incre-
ment of 10™ units. Finally, the surface of the
liquid slice is identified at a position such that
1% or less of the particles of the bin lie out-
side the surface. This small number of parti-
cles is assumed to belong to the vapor phase —
a threshold consistent with a simulation with
almost no vapor phase. For each simulation,
the pinch-off time is established as the instant
when one of the bins becomes empty. The
time to pinch-off 7 is normalized by the capil-
lary time scale (pR3/a)” 2, whereas h,,;, 1S
normalized by R.

The log-log plot of /,,,(T) in Figure 3 corre-
sponds to the largest viscosity v = 2.8. It
shows a noise-dominated behavior where most
of the tracked points are aligned along the
slope 0.418. At a smaller value of viscosity, v
= 0.93, the inertial-viscous slope 1 begins to
appear (Figure 3); the transition to stochastic
behavior is roughly located at 4,,;,/R ~ 0.1. At
an even smaller viscosity, v = 0.072, the 2/3
power inviscid scaling also appears, albeit
briefly (Figure 5). The transition from inviscid
to viscous-inertial takes place at /,,,/R ~ 1,
whereas the transition to stochastic remains at
Amin/R ~ 1.

From a practical point of view, this set of
MDPD simulations suggests that, for a liquid
with the properties of water, stochastic effects
begin to appear when the liquid thread reaches
a radius of 0.1 R, corresponding to 1.2 um.
Equation (16) also gives ¢, =0.37 DPD units,

thatis, ¢, =1.2 um.
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Figure 3. Variation of 4,,;, with T when Oh = 1.2.

(v=2.8).
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Figure 4. Variation of 4,,;, with T when Oh = 0.40

(v=10.93).

Figure 5. Variation of 4,,;, with T when Oh = 0.031

(v=10.072).
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Figure 7. Variation of 4,,;, with T when Oh =0.031 in
the presence of a DPD gas (vg/ v, = 13).

The effect of the ambient gas on the dy-
namics of pinch-off can be neglected until 7,
~ M Oh?, where M is the ratio of the viscosity
of the ambient gas to that of the liquid. We
add now a DPD gas with the parameters listed
on Table 1, bottom row. The values are se-
lected to obtain the density ratios of water
with respect to air: (mp)g / (mp)r, = 998. The
dissipation parameters are set so that vg /v, =
13. The inter-particle DPD-MDPD parameters
are the same as the DPD parameters: 4 = 10,
re=1,B=0,r;,=0,y=2and § = 2. The re-
pulsive force coefficient between the liquid
and the gas is the smaller possible value to
avoid inter-penetration of the two species, but



no studies are presently available to define
what the correct values should be.

A snapshot of the simulation is shown in
Figure 6 whereas /() in shown in Figure 7.
Both plots indicate that the effective behavior
of the MDPD fluid is more viscous in the
presence of a still gas even if the Oh number
is small.

Conclusions

The spatial and temporal meso-scales
(within 10 and 1000 nm, and within 1 ns and
10 ms) that are captured by coarse-graining
particle techniques can significantly extend
the reach of molecular dynamics (MD) simu-
lations while keeping the fundamental view-
point that fluid properties arise from elemen-
tary particle interactions. In particular, the
MDPD scheme provides a viable mesoscale
description of free-surface flow.

This papers shows how matching the sur-
face tension coefficient, the density and the
kinematic viscosity of a given liquid with the
properties of a system of MDPD particles de-
termines all the interaction parameters. In a
convergence study applied to jet pinch-off, the
occurrence and shape of a thin liquid thread
are shown to be independent from the level of
coarse-graining.

MDPD simulations also agree with asymp-
totic scaling predictions at large, intermediate
and low Oh number. The predominant behav-
ior at large Oh is more dominated by thermal
fluctuations, whereas at smaller Oh a viscous-
inertial and even an inviscid flow behavior can
appear. One simulation in particular displays
all three regimes, proving the truly
mesoscopic range of MDPD.

A simple demonstration of a two-species
flow concludes this work. It is in fact natural
to use MDPD to model a liquid and DPD to
model a gas, since both techniques use the
same thermostat. Future work will concentrate
on imposing a flow rate on the gas field, so
that pinch-off under shear can be simulated.
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