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Abstract 

The MDPD method provides a mesoscale description of the liquid-gas interface where mole-
cules can be thought of as grouped in particles with modeled Brownian and dissipative effects. 
No liquid-gas interface is explicitly defined; surface properties, such as surface tension, result 
from the MDPD interaction parameters. In this paper, the mesoscale character of MDPD is dem-
onstrated in the context of jet pinch-off by comparison with the asymptotic scaling predictions 
for large, intermediate and low Ohnesorge numbers. The predominant behavior at a large Oh 
number tends to be dominated by thermal fluctuations, whereas at smaller Oh a viscous-inertial 
and even an inviscid flow behavior can appear. One MDPD simulation in particular displays all 
the three regimes. The fact that the final stage leading to pinch-off is always stochastic – tradi-
tionally excluded in continuum discretizations – can have important consequences in spray mod-
eling. This paper also shows how MDPD results can be assessed to be independent from the 
coarse-graining level. The thickness of the micro-bridge that forms just before capillary pinch-
off is discussed in light of this convergence study. An example of modification of the jet pinch-
off behavior due to the interaction with a still gas concludes this work.  
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Introduction 
Continuum-scale hydrodynamic simula-

tion has had rather impressive success in 
studying the behavior of fluids; nevertheless, 
there are still many problems for which such 
simulations have difficulties. In the study of 
free-surface flows, the advantage of methods 
like Dissipative Particle Dynamics (DPD) re-
sides in the simplicity of the underlying algo-
rithm of particle interaction under a soft repul-
sive potential.  

While substantially less expensive than 
Molecular Dynamics (MD), DPD can be for-
mally constructed from coarse-graining of 
Lennard-Jones clusters [1]. DPD has been 
used to investigate phase separation in immis-
cible binary liquid mixtures [2], [3] [4], drop-
let deformation and rupture in shear flow [5], 
and droplets on surfaces under the influence of 
shear flow [6]. The standard DPD method pre-
sents, however, a fundamental limitation, in 
that the repulsive soft potential alone cannot 
reproduce surface tension in single-species 
fluid flows. The DPD potential leads to a pre-
dominantly quadratic pressure-density equa-
tion of state (EOS) [7], while a higher-order 
pressure-density curve is necessary for the co-
existence of the liquid and vapor phases. 

Single-species phase coexistence in a liq-
uid occurs in the range of densities ρV < ρ < ρL 
where ρV and ρL are the pure vapor and liquid 
number densities. In that state, surface tension 
emerges from the asymmetry of the intermo-
lecular forces acting on a layer of molecules at 
the liquid-vapor interface. As this asymmetry 
causes larger intermolecular distances in the 
outer layer than in the liquid bulk, the forces 
in the layer act to contract the interface. 

The Many-body DPD (MDPD) method by 
Pagonabarraga and Frenkel [8] adds an attrac-
tive force to DPD. The amplitude of the soft 
repulsion is made proportional to the local 
density of the particles, thus achieving a cubic 
pressure-density relation. A similar approach 
has been introduced by Nugent and Posch in 

the context of Smoothed Particle Hydrody-
namics (SPH) [9]. The MDPD method was 
also extensively investigated by Warren [10] 
and Trofimov et al. [11]. The dependence of 
surface tension on the interaction parameters 
and the relation with the bulk density of the 
fluid were explored by Arienti et al. [12].  

In this paper, the MDPD technique is ap-
plied to the study of liquid thread pinch-off. 
After outlining the workings of MDPD, an 
example illustrates the link between the inter-
action forces and the fluid properties. The 
sense in which an MDPD simulation can con-
verge to a time-dependent solution is also ex-
plained is this introductory section. The main 
body of the paper demonstrates the ability of 
MDPD to capture the complete sequence of 
scaling behavior – inviscid, inertial-viscous 
and stochastically dominated – that asymptotic 
analysis has identified. Simulations are carried 
out for different viscosities of the fluid and in 
the presence of a DPD gas.     

 
MDPD scheme  

MDPD inherits the three pairwise-additive 
inter-particle forces formulation of the stan-
dard DPD scheme. The conservative, dissipa-
tive and random forces are defined, respec-
tively, as  

€ 

Fij
C = Fij

C (rij )ˆ r ij    (1) 

€ 

Fij
D = −ωD (rij )(vij ⋅ ˆ r ij )ˆ r ij  (2) 

€ 

Fij
R = −ξωR (rij )ˆ r ij   (3) 

where 

€ 

ˆ r ij = rij /rij  and 

€ 

vij = vi − v j . 
Warren’s approach [13] is pursued for the 

conservative term. The repulsive force de-
pends on a weighted average of the local den-
sity, whereas the attractive force is density-
independent: 

     

€ 

Fij
C = Aijω c (rij ) + Bij (ρ i + ρ j )ω d (rij )       (4)  

The weight functions ωc(r) = (1 − r/rc) and 
ωd(r) = (1 − r/rd) vanish for r > rc and r > rd, 



respectively. Since a DPD method with a sin-
gle range may not have a stable interface [9], 
in Equation (4) the repulsive contribution is 
set to act at a shorter range rd < rc than the soft 
pair attractive potential. The many-body re-
pulsion is chosen in the form of a self-energy 
per particle which is quadratic in the local 
density, 

€ 

Bij (ρ i + ρ j )ω d (rij ), where B > 0. The 
density for each particle is defined as 

€ 

ρ i = ωρ (rij )
j≠ i
∑       (5) 

and its weight function ωρ is defined as  

 

€ 

ωρ (r) =
15

2π rd
3 (1− r /rd )2.  (6) 

The kernel vanishes for r > rd and for conven-
ience it is normalized:

€ 

d3∫ rωρ r( ) =1.  
The DPD thermostat consists of random 

and dissipative forces, which maintain the 
equilibrium temperature T through the condi-
tion posed by the fluctuation-dissipation theo-
rem  

€ 

ξ2 = 2γkBT ,   (8) 

where kB is the Boltzmann constant. The 
weight function for the dissipative force is 

€ 

ωD (r) = (1− r /rc )
2   (9) 

Details about the choice of ξ and γ can be 
found in [13]. The simulations presented in 
this work are carried out with the velocity 
Verlet algorithm of Groot and Warren [13] 
using the empirical parameter value of 1/2. 

Since the random and dissipative forces of 
MDPD are common with DPD, particles from 
the two schemes can be easily combined. This 
enables the simulation of more complex flows, 
for instance the inclusion of a surrounding gas 
taking part to pinch-off. Table 1 offers an ex-
ample of two different sets of parameters: the 
first row corresponds to an MDPD fluid, the 
second to a DPD gas. In the latter, the sign of 
the coefficient A is switched and there is no 
density-dependent term. An example of 

MDPD-DPD interaction will be presented 
later. 

We conclude this Section by mentioning 
that the simulations enabled by the particle 
dynamics software code LAMMPS (Large-
scale Atomic/Molecular Massively Parallel 
Simulator) [14] with the addition of a new 
MDPD class. The computationally scalable 
implementation of LAMMPS guarantees the 
optimization of the interaction calculation 
through an efficient neighbor list algorithm, 
and will not be discussed here. 

 
MDPD properties  

Conventionally, dissipative particle dy-
namics methods operate in reduced units, so 
that length is measured in units of rc and mass 
in units of m, the mass of a single particle. The 
behavior of a MDPD system can then be cap-
tured by choosing the physical units of length 
(LDPD), mass (MDPD), and time (TDPD). This 
becomes relevant if one wants to obtain a spe-
cific set of MDPD properties, for instance in 
relation with the properties of a real liquid. 

Let us consider the set of interaction pa-
rameters A = -40, B = 25, rd = 0.75, see Table 
1. The number density ρ, kinematic viscosity 
ν and the surface tension coefficient σ are not 
simulation inputs, but they can be evaluated 
with simple numerical tests. By applying the 
Young-Laplace relation to a spherical drop in 
equilibrium we find ρ = 6.1 and σ = 7.3; see 
Ref. [12] for a systematic study of the depend-
ence of surface tension on the interaction pa-
rameters. Viscosity can be assessed in a test 
where a doubly periodic Poiseuille (DPP) flow 
is established; the description of a convenient 
procedure for creating two opposite Poiseuille 
flows can be found in Ref. [15]. In this exam-
ple, the kinematic viscosity is determined by 
γ = 0.005 and ξ  = 0.1. 

If the same properties of surface tension 
coefficient, density and viscosity are ex-
pressed in physical units and labeled with an 
asterisk, dimensional analysis yields to 
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MDPD = LDPD
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d

TDPD = MDPD
σ
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LDPD
2

TDPD
=
ν *

ν

  (10) 

From these equations, the properties of 
water at ambient conditions (d* = 998 kg/m3, 
σ * = 0.0720 N/m, and ν* = 1.00 · 10−6 m/s2) 
are matched by taking MDPD = 3.94 · 10−18 kg, 
TDPD = 7.32 · 10−7 s, and LDPD = 3.18 ·10−6 m. 
The number of molecules per MDPD particle 
can now be obtained directly from MDPD di-
vided by the mass of a water molecule; it is n 
= 1.47 · 107. The set of equations (10) reveals 
the link between the viscosity of the system 
and LDPD: everything else being the same, the 
smaller is ν*, the greater is the coarse grain-
ing. 

It is to be noted that other properties, such 
as the non-dimensional isothermal compressi-
bility κ−1 = (∂P/∂ρ)T /kBT, do not generally co-
incide with the properties of water. For this 
MDPD fluid, we find κ−1 ≈ 50 (based on the 
generalized equation of state proposed by 
Warren [10]), whereas the actual value for wa-
ter κ−1 = 16. Thus, the operation of matching 
surface tension coefficient, density and kine-
matic viscosity of a liquid may lead to differ-
ent interaction parameters than the ones ob-
tained by imposing equal compressibility. 

We close this section by noting that the 
MDPD kinematic viscosity can be decreased 
by reducing γ, as shown on Table 2. This op-
eration can be carried out while keeping the 
temperature of the fluid the same, as long as ξ 
is varied according to Equation (8). Of the 
values listed on Table 2, the viscosity γ = 288 
was calculated for the DPD parameters A = 
10, B = 0, rd = 0, and with particle mass m = 
0.00647; see the bottom row on Table 1. At 
these conditions, the number density is of ρG = 
0.935 particles per unit cube and the com-
pressibility is κ−1 ≈ 1 + 0.202 ρG / kBT  = 1.19. 

 

Table 1. Example of parameter sets for DPD and 
MDPD fluids. 

m A rc B rd 

1 -40 1 25 0.75 

0.00647 10 1 0 0 
 

 

Table 2. Kinematic viscosity of DPD and MDPD fluids 
at kBT = 1. 

γ 2 72 0.5 0.005 

ν 0.96 2.8 0.93 0.072 

 
 

MDPD coarse-graining 
MDPD is proposed as a truly mesoscopic 

method that can bridge the gap between the 
atomistic scale (in the range of nanometers 
and nanoseconds) that is accessible by mo-
lecular dynamics (MD) simulations and the 
macroscopic scale (in the range of microme-
ters and milliseconds) considered by contin-
uum descriptions. To this end, it is important 
to define in what sense the method is scalable.  

Let us consider a system whose particle 
number N has been scaled by a factor φ while 
keeping the domain size constant. Denoting 
with a prime the new equivalent system, so 
that N ′ = N/φ and m′ = m φ, the scaling rela-
tions in three dimensions are rc′ = rc φ1/3 and t′ 
= t φ1/3. The first relation maintains the frac-
tional particle overlap in the change of the 
coarse-graining level, while the second en-
sures that velocity increments calculated dur-
ing one time step are the same for the two sys-
tems. The approach proposed by Füchslin [16] 
for DPD requires the modification of the in-
teraction parameters as a function of the 
coarse-graining level. For the same argument, 
the scaled force parameters are 

€ 

A'= A φ 2 / 3    (11) 

€ 

γ '= γ φ 2 / 3     (12) 



€ 

ξ'= ξ φ 2 / 3
.    (13) 

This procedure can be extended to MDPD 
by adding the primed parameters [12] 

€ 

rd '= rd  φ1/ 3    (14) 

€ 

B'= B φ 5 / 3 .   (15) 

From the relations above, scale independ-
ence holds for bulk interactions because the 
energy associated with an individual MDPD 
particle is made proportional to the number of 
molecules it represents. It is noted, however, 
that, while the stress tensor terms are unaf-
fected by coarse-graining, the kinematic vis-
cosity scales like φ1/3. Thus, for an increased 
coarse-graining N′/N > 1 (so that φ < 1), the 
viscosity, ν′ = ν φ1/3, decreases. Similarly, 
even if σ’ = σ φ1/3, the surface tension is in-
variant (φ 1−1/3−2/3 = φ 0).  

Coarse-graining is illustrated in Figure 1, 
with the same calculation repeated for φ = 1/8 
in frame (b), φ = 1/64 in frame (c), and φ = 
1/512 in frame (d). Details of the numerical 
setting of the simulation will be explained 
later; for the moment it suffices to say that 
snapshots show a slice of a liquid jet immedi-
ately after pinch-off. The simulation in frame 
(a) includes 287 particles and takes less than a 
minute to run on a single-core CPU. The 
number of particles increases by a factor 8 in 
each following calculations, while the interac-
tion parameters correspondingly decrease ac-
cording to Equations (11) to (15).  

The jet, repeated periodically in the axial 
direction, is 10 DPD units long. This length 
corresponds to 31.8 µm in the physical units 
from the previous section. The initial diameter 
is 7.07 µm. As coarse graining is reduced, the 
development of a thin liquid bridge that rap-
idly retreats toward the newly formed drops 
becomes more defined. The shape of the 
pinched thread converges at φ = 1/64. 

 
 

(a)  

(b)   

(c)   

(d)  
Figure 1. Convergence study of jet pinch-off. See text 
for details. 



 
Overall, no qualitative differences between 

the different levels of coarse-graining; particu-
larly, no satellite drops are observed for this 
configuration. A second series of calculations 
at a larger jet radius (not shown here) con-
firms that the Plateau condition on the mini-
mum surface energy for pinch-off is respected 
independently from coarse-graining: the jet 
returns to the equilibrium cylindrical shape if 
the jet radius R is larger than λ/2π, where λ is 
the wavelength of the axial perturbation.  
 
Local dynamics near pinch-off  

A number of authors have carried out local 
analyses of the Navier–Stokes, Stokes and 
Laplace equations for pinching threads; see, 
for instance, the extensive review in Ref [18]. 
To establish a connection with the theory, the 
minimum thread radius hmin from an MDPD 
simulation is plotted in this Section as a func-
tion of the time to breakup, τ. It is expected 
that hmin(τ) follows a specific power law de-
pending on the Ohnesorge number, Oh = ρ1/2ν 
/ (Rσ)1/2, even if in reality every MDPD simu-
lation has its own specific trajectory.  

In the absence of an outer fluid, breakup 
asymptotically proceeds according to a solu-
tion that balances surface tension, viscous, and 
inertial forces. However, for sufficiently small 
values of Oh, viscosity must drop out of the 
description; taking the characteristic length 
scale to be the minimum radius, it follows 
from dimensional analysis that hmin ~ 
(σ τ 

2/ρ)1/3. Viscous effects eventually become 
important as the minimum radius continues to 
decrease and becomes of order Oh2. At that 
point the flow then transitions to an inertial-
viscous scaling regime, where hmin ∼ τ.  

On even smaller scales, it can be postu-
lated that the driving force leading to pinch-
off consists of thermal fluctuations at the mo-
lecular level. The relevant length scale appears 
from the comparison of the thermal energy 
with the surface energy,   

   

€ 

T = kBT σ .   (16) 

The domain concerned by thermal fluctuations 
(up to a few hundreds of nanometers) has been 
probed only recently by Molecular Dynamics 
simulations of nanojets [19]. A set of one-
dimensional dynamical equations can also be 
derived from the Navier-Stokes equations in 
the limit of a thin layer of liquid where inertia, 
the component of velocity normal to the sur-
face, and the in-plane derivatives are ne-
glected. These “lubrication equations” are 
fully deterministic, but stress fluctuations can 
be added via a stochastic term [21]. The flow 
obeying to the Stochastic Lubrication Equa-
tions exhibits a characteristic self-similar pro-
file resembling two cones joined at their 
apexes (called the double-cone profile) and 
leading to a symmetric pinch-off. The relation 
between hmin and τ is described by a power 
law with exponent 0.418 [20].  

According to theory then, it should be pos-
sible to observe in a logarithmic plot of 
hmin(τ), the 2/3 slope first, then the slope 1, 
and finally the 0.418 slope. However, span-
ning the three scaling behaviors in a single 
pinch-off simulation has so far proven pro-
hibitive from a computational point of view. 
As mentioned earlier, the first transition from 
inviscid behavior depends on Oh, but the sec-
ond occurs for hmin ~ Oh2, at sub-micron 
scales for most liquids. In the following ex-
ample we will demonstrate that such a simula-
tion is possible with MDPD. To this end, in-
stead of changing the domain scale, we take a 
constant reference jet radius, as well as given 
fixed values of surface tension and density and 
modify the viscosity.  

The effect of viscosity on the shape of the 
jet near pinch-off is shown in Figure 2 for two 
cases at low and high viscosity. A small axial 
perturbation is applied to the jet with wave-
length λ = 40. The jet radius is chosen so that 
λ/R = 9.01. This length-to-radius ratio corre-
sponds to the fastest growing rate of capillary 
instability according to linear analysis.  



In the low-viscosity case, with ν = 0.072, 
the extended thin long thread before pinch-off 
is in agreement with the deterministic ap-
proximation to the Navier-Stokes equations. It 
can be shown that this profile is in fact a uni-
versal solution (i.e., independent of initial 
conditions) of the deterministic lubrication 
equations. The high viscosity case, with ν = 
2.8, is instead closer to the double-cone self-
similar profile of the Stochastic Lubrication 
Equations [21]. This shape is typically ob-
served in MD simulations of nanojets [19].  
 
 
 
 
 
 
 
 
 

(a)   

(b)  
Figure 2. Effect of increasing viscosity on pinch-off: 
(a) ν = 0.072; (b) ν = 2.8. 

A more quantitative analysis is provided 
by the logarithmic behavior of hmin(τ). To 
track the minimum jet radius as a function of 
time, it is necessary to post-process several 
snapshots of particles position according to 
the following procedure. The computational 
domain is first axially divided into 50 bins; 
then the center of mass of each slice of the jet 
is calculated. This is a crucial step in measur-
ing the radius profile because the liquid thread 
can oscillate during the pinch-off process. For 
each bin, a number density histogram is con-
structed in annular rings with a radial incre-
ment of 10-3 units. Finally, the surface of the 
liquid slice is identified at a position such that 
1% or less of the particles of the bin lie out-
side the surface. This small number of parti-
cles is assumed to belong to the vapor phase – 
a threshold consistent with a simulation with 
almost no vapor phase. For each simulation, 
the pinch-off time is established as the instant 
when one of the bins becomes empty. The 
time to pinch-off τ is normalized by the capil-
lary time scale (ρR3/σ)1/2, whereas hmin is 
normalized by R. 

The log-log plot of hmin(τ) in Figure 3 corre-
sponds to the largest viscosity ν = 2.8. It 
shows a noise-dominated behavior where most 
of the tracked points are aligned along the 
slope 0.418. At a smaller value of viscosity, ν 
= 0.93, the inertial-viscous slope 1 begins to 
appear (Figure 3); the transition to stochastic 
behavior is roughly located at hmin/R ~ 0.1. At 
an even smaller viscosity, ν = 0.072, the 2/3 
power inviscid scaling also appears, albeit 
briefly (Figure 5). The transition from inviscid 
to viscous-inertial takes place at hmin/R ~ 1, 
whereas the transition to stochastic remains at 
hmin/R ~ 1.  

From a practical point of view, this set of 
MDPD simulations suggests that, for a liquid 
with the properties of water, stochastic effects 
begin to appear when the liquid thread reaches 
a radius of 0.1 R, corresponding to 1.2 µm. 
Equation (16) also gives   

€ 

T = 0.37  DPD units, 
that is,   

€ 

T =1.2 µm.  



    
Figure 3.  Variation of hmin with τ when Oh = 1.2. 

(ν = 2.8). 

    
Figure 4.  Variation of hmin with τ when Oh = 0.40 

(ν = 0.93). 

 

    
 Figure 5.  Variation of hmin with τ when Oh = 0.031  

(ν = 0.072). 

 

 
Figure 6. MDPD fluid pinch-off in a still DPD gas. 

 

    
Figure 7. Variation of hmin with τ when Oh = 0.031 in 

the presence of a DPD gas (νG/ νL = 13). 

 
The effect of the ambient gas on the dy-

namics of pinch-off can be neglected until hmin 
~ M Oh2, where M is the ratio of the viscosity 
of the ambient gas to that of the liquid. We 
add now a DPD gas with the parameters listed 
on Table 1, bottom row. The values are se-
lected to obtain the density ratios of water 
with respect to air: (mρ)G / (mρ)L = 998. The 
dissipation parameters are set so that νG / νL = 
13. The inter-particle DPD-MDPD parameters 
are the same as the DPD parameters: A = 10, 
rc = 1, B = 0, rd = 0, γ = 2 and ξ  = 2. The re-
pulsive force coefficient between the liquid 
and the gas is the smaller possible value to 
avoid inter-penetration of the two species, but 



no studies are presently available to define 
what the correct values should be. 

A snapshot of the simulation is shown in 
Figure 6 whereas hmin(τ) in shown in Figure 7. 
Both plots indicate that the effective behavior 
of the MDPD fluid is more viscous in the 
presence of a still gas even if the Oh number 
is small. 
 
Conclusions 

The spatial and temporal meso-scales 
(within 10 and 1000 nm, and within 1 ns and 
10 ms) that are captured by coarse-graining 
particle techniques can significantly extend 
the reach of molecular dynamics (MD) simu-
lations while keeping the fundamental view-
point that fluid properties arise from elemen-
tary particle interactions. In particular, the 
MDPD scheme provides a viable mesoscale 
description of free-surface flow.  

This papers shows how matching the sur-
face tension coefficient, the density and the 
kinematic viscosity of a given liquid with the 
properties of a system of MDPD particles de-
termines all the interaction parameters. In a 
convergence study applied to jet pinch-off, the 
occurrence and shape of a thin liquid thread 
are shown to be independent from the level of 
coarse-graining.  

MDPD simulations also agree with asymp-
totic scaling predictions at large, intermediate 
and low Oh number. The predominant behav-
ior at large Oh is more dominated by thermal 
fluctuations, whereas at smaller Oh a viscous-
inertial and even an inviscid flow behavior can 
appear. One simulation in particular displays 
all three regimes, proving the truly 
mesoscopic range of MDPD.  

A simple demonstration of a two-species 
flow concludes this work. It is in fact natural 
to use MDPD to model a liquid and DPD to 
model a gas, since both techniques use the 
same thermostat. Future work will concentrate 
on imposing a flow rate on the gas field, so 
that pinch-off under shear can be simulated.   
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