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An Implicit Optimization Approach for Survivable
Network Design

Abstract—We consider the problem of designing a network of
minimum cost which satisfies a prescribed survivability criterion.
The survivability criterion requires that a feasible flow exists
(i.e. all demands can be satisfied without violating arc capacities)
given the destruction of a subset of the network’s arcs. Specif-
ically, we consider the case in which a disruption (random or
malicious) can destroy a subset of the arcs, subject to a disruption
budget I'. This problem takes the form of a trilevel, two player
game, in which the network operator designs (or augments) the
network, then the attacker launches a disruption that destroys
a subset of arcs, and then the network operator attempts to
find a feasible flow over the residual network. We model this
problem as a two-stage stochastic program with an extremely
large number of disruption scenarios. We then reformulate this
problem, via a Benders decomposition, to consider the third-
level recourse decisions implicitly, greatly reducing the number
of variables but at the expense of an exponential increase in the
number of constraints. We next develop a cut-generation based
algorithm. Rather than explicitly considering each disruption
scenario to identify these Benders cuts, however, we develop a
bilevel program and corresponding separation algorithm that
enables us to implicitly evaluate the exponential set of disruption
scenarios. Our computational results demonstrate the efficacy of
this approach.

Index Terms—Survivable network design, stochastic program-
ming, decomposition, separation, implicit optimization.

I. INTRODUCTION

Society depends heavily on networked systems such as the
electric power grid, water and gas distribution systems, com-
munication networks, and transportation systems. This reliance
makes it crucial to fortify and ensure the security of these
networks. The Northeast blackout in 2003 is frequently used
as an example of the severe consequences of an infrastructure
failure.

Many of these networks are also congested, with growth in
demand exceeding expansions in capacity. This forces systems
to operate close to their boundaries of feasibility. At the same
time, rapid technology developments have made these systems
so complex that human expertise is no longer sufficient to
secure operations. Automated tools must instead be developed
to detect system vulnerabilities.

Many recent research efforts have focused on vulnerability
analysis for critical infrastructure networks. [12] analyzed a
bioterror attack on the food supply. [6] examined the affects of
one or more link failures in a transportation network in terms
of network travel time or generalized travel cost increase as
well as the behavioral responses of users due to the failure in
the network. These efforts have produced significant enhance-
ments in models and algorithms for identifying vulnerability.
The next logical step is to improve systems to reduce these

vulnerabilities, abating the risk of failure. This is the goal of
this paper.

It is often useful to represent physical networks with math-
ematical networks. For example, nodes can represent genera-
tors, load points, and junctions in a power system, with arcs
representing transmission lines. Supplies and demands at each
node correspond to generation and load, and arc capacities
represent transmission limits. Mathematical constraints then
approximate the physical dynamics of flow across the network.

The underlying structure of a network can be critical in
enabling us to understand and remedy its vulnerabilities. For
example in [10], it was shown that even though nonlinear
equations govern the flow of power through a network, vulner-
abilities of the underlying power system can be identified by
investigating the structural properties of the network. In this
paper, we specifically exploit network structure to solve the
problem of identifying the minimum-cost set of arc capacities
to install in the network while ensuring that a feasible flow
will be possible even after an arbitrary disruption of arcs that
is limited only by a disruption budget I'.

Formally, we study the following problem:

Given a graph G = (N, E), a set of candidate edges
E., demand/supply on each node, capacities of all edges,
the costs of constructing and disrupting each edge in E,
and a disruption budget T, find a set of edges E, C E.
whose cumulative cost is minimum, such that for any edge
subset X whose cumulative disruption cost is less than T,
a feasible flow, satisfying all demand, exist on the graph
G'=(N,(FEUE,)\ X).

This problem poses significant challenges. First, the outer
optimization problem has inner optimization problems em-
bedded within it as constraints. First, for a given set of arc
capacity (x), the worst-case disruption scenario will realize.
Second, for a given disruption, the recourse problem is to
find a feasible flow over the residual network. Solving this
feasible flow problem corresponds to solving a maximum
flow problem over a related network. More importantly, a
straight forward approach requires investigating prohibitively
many combinations, because we have to ensure that any
possible attack within the disruption budget will still enable
a feasible flow. In many cases, this set of possible attacks
will be exponentially large. For example, in the simplest case
where the budget limits the number of attacked edges to be
at most k, there will be (“]f ‘) attacks to evaluate. Instead,
tractability depends on the use of an alternative approach that
can identify feasible solutions to the network design problem,
i.e. solutions that can survive any attack within the disruption



budget, without having to explicitly consider all disruption
scenarios. This is the focus of our paper.

The rest of the paper is organized as follows. Section II
presents the single level network flow problem, bilevel network
disruption problem, and the trilevel network design problem.
In III, we discuss cutting plane procedures and develop an
implicit optimization approach for solving the trilevel network
design problem. Section IV presents experimental designs and
computational results, and Section V concludes the paper.

II. MODELS

Consider an undirected network G(N,E) with node set
N and undirected edge (candidate and existing) set E. To
differentiate between undirected capacities and directed flow,
we denote the undirected link between node ¢ and j as
{i,7} and the two corresponding directed links as (¢, j) and
(j,1). Let arc set A represent the set of all directed arcs
corresponding to the set of undirected edges FE, that is,
A = {(i.). (G.i){i.j} € E}. Each edge {i,j} € E is
associated with a construction cost ¢;; and an edge capacity
ug;. If b; > 0, then node 4 is a supply node, if b; < 0 then i is a
demand node, and b; = 0 for all other (transshipment) nodes.
Without loss of generality, we assume that ), b; = 0.

The goal is to design a minimum cost network such that a
feasible flow exist under any disruption within the disruption
budget I'. In the first level, the network operator determines the
network design (or augmentation). We define a binary variable
T4, so that

L
Tij = 0’

For simplicity of notation, we do not make a distinction
between existing and candidate edges. For an existing edge
{i,j} € E, we set z;; to be one and assume a construction
cost ¢;; = 0.

The cost to the attacker of disrupting edge {i,j} € F is
given by ;;. We define a binary variable d;;, so that

L,
dij = { 0,

The edge destruction cost may reflect the probability of
random failure or the cost of disruption to an attacker. We
assume that the amount of disruption that can be realized is
constrained by a disruption budget I'. That is

if edge {4, 7} is constructed,

otherwise, Vgt ek

if arc (4, 7) is distrupted,

otherwise, vi.jt ek

rTd <T.

A. Trilevel Optimization Framework

We begin by presenting an explicit formulation of the
problem as a trilevel optimization problem. Recall the three
levels comprising the problem:

1) In the first level, the network operator (for example, the
Independent System Operator of a power system makes
decisions about which arcs to either add or augment
(for example, by adding sensors, redundancy, or other

protective measures to improve impenetrability of the
arc).

2) In the second level, a worst-case disruption (with cost
< T') occurs on the newly-augmented network such that
a subset of the arcs are destroyed.

3) In the third level, the network operator responds to
the disruption by seeking to find a feasible recourse,
with flow able to satisfy demand without violating the
capacity constraints on the surviving arcs.

The goal of the overall problem is to find the minimum-cost
first stage decisions subject to the constraint that the third stage
problem will be feasible under any second stage decisions.

To present our trilevel formulation, we begin by assuming
fixed values for a network design () and disruption scenario
(d). The third level problem is to then minimize the penalty
(py) associated with failing to fully satisfy demand. If the
optimal objective value is zero, then the third level problem is
in fact feasible. The penalty term p must be chosen to be large
enough such that the penalty cost for an infeasible third stage
problem will dominate the objective function when making
first stage decisions, ensuring that in the final solution the third
stage will be feasible for any valid disruption in the second
stage.

min  py (1a)
Iy
st. Y fij— >, fii=bi(l—7) Vie N (ib)
Ji(i,j)EA J:(Ji)EA
fijs Fii S wij(iy — dij)t V{i,j} € E (1o
fij =0 V(i j)eA (1d)
720 (le)

In this statement of the third level of the problem, note
that (z) and (d) are input parameters, passed from the two
upper levels, rather than decision variables. Objective (1a) is
to minimize the fraction of demand that goes unmet (i.e. the
load shed). (1b) are flow balance constraints that requires the
net flow into and out of a node to be equal to the demand
(or supply). It is possible that given a network design ()
there may not exist a feasible flow post disruption (d). Thus
we introduce a scaling variable v € [0, 1] corresponding total
demand shed (e.g. not satisfied). An « value of zero indicates
that all of the demand is satisfied and a value of one indicates
that none of the demand is satisfied. (1c) and (1d) are arc
capacity upper and lower bounds, respectively. Note that the
upper bound on edge {4,j} depends on whether the edge is
part of the network as defined in the first stage problem (x;;)
as well as whether the edge has been disrupted as defined
in the second stage problem (d;;). We assume, for notational
simplicity, that flow lower bounds are zero but a more general
model with nonnegative lower bound is applicable as well.

We now step up one level to the second level. We assume
that the network is vulnerable to disruptions due to both
malicious and natural causes, and we wish to secure the
network against all possible disruptions. We assume that when



an edge is disrupted, all of its capacity is lost. In this sense,
the disruption we are considering is a worst-case disruption.
For critical infrastructure protection, it is imperative to look
at worst-case scenarios. One reason for this is that critical
infrastructure can easily be the target of a malicious attack by
an intelligent adversary. Another is that even highly unlikely
events can cause huge disturbances, as evidenced by the
Northeast blackouts [3][10], due to the paramount importance
of these critical structure from the perspectives of both security
and the economy.

Given that we want to ensure against any possible disruption
(with cost < TI'), we assume that for any given network design
(defined by the decision variables (z)), the most damaging
disruption will realize. We refer to this problem as the network
disruption problem (NDP) and formulate it as follows.

(2a)

~

st Y fy— Y fi=bi(l-7) ViEN (2b)
j:(1,7)€A j:(4,5) €A

fijs fii < wig(xiy —dig)™t

mciax min  py

v{i,jl € E ()

fi; >0 V(i,j)eA (2d)
v7=>0 (2e)
rfd<T (2f)
de {Oa l}n (2g)

The objective (2a) is to choose the disruption scenario for
which the network operator’s corresponding optimal recourse
will have the highest penalty cost. The constraints look the
same as in the third stage problem, except that (d) is now a
decision variable rather than an input parameter. In addition,
constraint (2f) is added to restrict the feasible disruption
scenario to be one in which the disruption budget is not
violated. The disruption cost is assumed to be an additive
function of the disrupted arcs. Observe, that if z;; is equal to
one then d;; can take on either one or zero. If z;; is zero, then
the constraint forces the attack decision on the corresponding
component to be zero as well. This is equivalent to the
statement that non-existent components are not disruptable.

Problem of the form (2) are commonly referred to in
literature as network interdiction problems. For example, [13]
proposed an algorithm for performing sensitivity analysis on
maximum flow networks. More recently, [9] examines the
multicomomdity network interdiction problem under discrete
and continuous attacks.

Work on network interdiction problems have brought a lot
of insights to the vulnerabilities of networks, and has paved
the way for a higher objective: How do we build/augment net-
works in the first place, so as to limit their vulnerability? This
new problem, which embeds the bilevel network interdiction
problem as constraints, yields a ¢rilevel optimization problem.

Trilevel optimization problems are extremely challenging
and, typically, cannot be solved without much difficulty. [2]
proposed general bilevel and trilevel programming models for
defending critical infrastructure. [11] examined the problem

of augmenting a network under various disruption scenarios,
assuming disruptions may be selected based on arc capacities,
initial flows, minimizing the maximum profit from transmitting
flows. [14] proposed a nested bilevel programming approach
for the augmentation of electric power grids.

In network design problem which we examine, we embed
the bilevel NDP problem, yielding a trilevel optimization
problem, which we refer to as the network augmentation
problem (NAP).

min max min CijTij + 3a

- ; i (i%éA jLij T PY (3a)

s.t. S = > fi=bi1—9) VieN (3b)
J:(i,j)€EA J:(39)EA

fijs Fii S wij(wiyy — dij)t V{i,j} € E (3¢)

fij =0 V(,j5) €A (3d)

720 (3e)

rfd<T (3)

de{0,1}" (32)

z €{0,1}"

The objective (3a) is to minimize the total network design
cost as well as the penalty associated with the worst-case
disruption, given the network design (z). By setting the
penalty cost p adequately large, the first stage decisions will
always yield a network design that can survive a feasible
attack, so long as such a network design exists. Observe that
the constraints of NAP are the same as those of NDP except that
(z) is now a decision variable instead of an input parameter.
Finally, note that the non-negativity constraints (3d) prevent
an arc from being attacked in the second stage unless that
arc is created (or is pre-existing) in the first stage, else the
right-hand side of (3c) would be negative.

III. SOLUTION APPROACHES

We begin by making the observation that given a finite
disruption budget I' (or a limited number of disruptable
components), the number of possible disruption scenarios is
finite (although it may be extremely large). Let S be the total
number of possible disruption scenarios with cost less than or
equal to the given disruption budget I'.

One approach is to explicitly consider all possible disruption
scenarios (s = 1,---,5) in determining the optimal network
augmentation. By explicitly considering all possible disruption
scenarios, we can reduce the trilevel optimization model to
a single MILP, although it may be extremely large. This
eliminates much of the difficulties associated with embedding
a bilevel program, corresponding to network disruption, within
the first-level network design problem. We denote this model
as the extensive form (EF) and state it as follows.
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Observe that in EF, d* is an | F|-dimensional vector (of pa-
rameters) corresponding to disruptions of each edge ({i,j} €
E) under a disruption scenario s. The objective (4a) is to
minimize the network design cost and shortage cost under
the worst-case disruption scenario, which will naturally vary
with the network design (z). Constraints (4b) ensure that the
operating cost 6 is lower bounded by the operating cost under
each disruption scenario. Since the objective is to minimize
total cost,  will attain a value equal to the maximum operating
cost across all scenarios for any given network design ().
Constraints (4c) are flow balance constraints for each node-
disruption scenario pair. Constraints (4d) are arc capacity
constraints given network design (z) and disruption scenario
(d®). Since (d®) is a parameter, if an arc (i, j) is disrupted in
a given scenario s, we can replace (z — d)* with simply 0.
In this scenario, the capacity of arc (i, j) is zero regardless of
whether the arc is constructed or not. Alternatively, if arc (¢, j)
is not disrupted in scenario s, we replace the right hand side
of constraint (4d) with simply (z;;). Thus constraints (4d) can
be represented by a set of linear inequalities. Finally, (4e—4g)
are variable non-negativity and integrality constraints.

EF is a large-scale MILP, with O(|E|) binary variables and
O((JE|+|N|)-S) continuous variables, and O((|E|+|N])-S)
constraints. Additionally, the linear programming relaxation
of (4) will likely be weak, as several values of (z) will be
fractional at optimality for system components whose capac-
ities are not fully utilized. Therefore, solving (4) directly via
a branch-and-bound approach will most likley be intractable
for all but the smallest instances (which we demonstrate via
computational experiments in section IV).

A. A Benders Decomposition

The EF formulation has a large number of variables and con-
straints. For instances involving large networks and/or a large
disruption budget (hence, large number of disruption scenarios
S), formulation (4) can become computationally intractable. In
this section, we present an alternative formulation with only
|E| binary variables () and one continuous variable 6 but
possibly an extremely large number of constraints. We use
linear programming duality to generate valid inequalities for
the projection of the natural formulation onto the space of the

(z) variables. In essence, we use a variant of Benders Decom-
position in which we generate valid inequalities corresponding
to “optimality” cuts.

Given a network design (x) and disruption scenario (d®),
we solve the following linear program, denoted as the primal
subproblem PSP(x, d*®), to determine a feasible flow (f*) that
minimizes the demand shortage +*° under disruption scenario

(d®).

0°(x,d*) = min ~° (5a)
fs’,ys
st (o) o= > fi=bil—vY)

j:(i,j)eA j:(Gi)EA

Vie N (5b)

(8%) i Fin < wig(wig — dfj)+ i, j} € E (5¢)

5 =>0 V(i,j) €A (5d)
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The objective (5a) is to minimize demand shortages given
the prescribed network design (x) and disruption scenario s.
Let the optimal objective value be given by 0°(x, d*). Clearly,
if 0°(x,d®) > 0, then there does not exist a feasible flow
satisfying all demands, and if 6°(x,d®) = 0, then a feasible
flow does exist satisfying all demand.

By strong duality, we can approach problem (5) by forming
its dual. We refer to this problem as the dual subproblem
DSP(z,d®) and state it as follows

max Yobiag Y wiwig — i) T8+ B5) (6a)
* iEN {i,j}€E
st af —aj+ B <0 V(i,j)eA (6b)
D biaj <1 VieN (6¢)
1EN
5 <0 V(,j)eA (6d)

Since PSP(x,d®) has a finite optimal solution, the dual
DSP(z,d?®) also have a finite optimal solution and, by strong
duality, the optimal solutions coincide. Therefore (6) has a
finite optimal solution, and the optimum must be obtained at
an extreme point. Thus we can re-write this as

0° (x7 ds) = g:r??j)-([, < Z bzaf

iEN

+ Z uij(xij_dfj)+( fj+ﬁ§i)> @)
{i,j}€E

where L is the set of extreme points corresponding to the

polyhedron characterized by inequalities (6b)—(6d). Note that

the feasible region of (6) does not depend on the network

design () or the disruption scenario (d®), which only affects

the objective function.



Alternatively, 6°(x, d®) is the smallest number 6° such that

Z bial + Z wij (i —di;) " ( fj + 5fz) <67
iEN {i,j}eE
(=1,---,L (8)

Observing that §° < 6 for all s and using (8), we can
reformulate (4) as

I?igl Z cijxij + po (9a)
’ {i,j}€E
s.t. Z biat + Z uij(xij—dfj)+( fj + ﬁfz) <90
iEN {i,j}eE
¢(=1,---,L, s=1,---,8 (9b)
2y € {01} V({ij} € E 90)
60>0 (9d)

Formulation (9) has an exponential number of constraints,
so we solve this via Benders decomposition (BD). At a typical
iteration of BD, we consider the relaxed master problem (RMP),
which has the same objective as problem (9) but involves only
a small subset of the constraints. We briefly outline BD below.
For a detailed treatment of BD please refer to [1].

Let ¢ be the iteration counter and let the initial RMP be
problem (9) without any constraints (9b).

Algorithm 1 Benders Decomposition

11+ 0

2: solve RMP and let (2, 8%) be the solution
3 fors=1,---,95

4 if psp(zt,d®) > 0!

5: add cut (8) to RMP

6: end if

7: end for

g: ifVs=1,---,5, psp(zt, d¥) <6
9: (2%, 0") is optimal (EXIT)

10: else

11:  t<+t+ 1 and GOTO step 2

12: end if

By using a Benders reformulation, we are able to decom-
pose the extremely large MILP (4) into a master problem
and multiple subproblems, one for each disruption scenario.
This enables us to solve larger instances, which would not be
possible by a direct solution of the EF formulation. However,
the extremely large number of disruption scenarios make direct
application of Benders ineffective for instances with large
networks and/or a large disruption budget. In the next section,
we develop a custom cut-generation based algorithm that
evaluates all possible disruptions scenarios implicitly using a
separation oracle.

B. Delayed Scenario Generation

In practice, networks may be extremely large and the num-
ber of disruption scenarios may be too large to be considered

explicitly (even with a BD approach). Our goal is to instead
use an oracle that implicitly evaluates all disruption scenarios
and either identifies a violated one (with cost < I') or provides
a certificate that no such disruption scenario exists. If such a
disruption exist, we add this disruption scenario to a disruption
list and proceed to solve the problem with an updated scenario
list (increased by one) . If no such disruption exists, then the
current network design (z) is optimal and we terminate. The
proposed implicit optimization approach is summarized by the
flowchart in Fig. 1.

ORACLE

Is there a disruption
of cost <T" ?

NO Solution

optimal

Optimality cuts YES

(@)

Disruption

scenario list

New distruption scenario

Fig. 1.

Proposed implicit optimization approach.

So, then, what does this oracle look like? Recall that we
are trying to solve bilevel network disruption problem (2), i.e.
given an (z), we want the (d) that maximizes the minimum
shortage. We state, without proof (for sake of brevity), that
this problem can be reformulated as (10).

Theorem 3.1: Problem (2) has an equivalent MILP formu-
lation as follows:

Nm(_%%2“1+2:%m@ﬁﬁgaw
{i,j}eE

af — a3+ By — Bydy; < o

t. 1 J ij g 0 Vv 7 cE 10b

° aj—aerﬂS _ jszdfj_ i {i,j} (10b)
Z —baf <1 VieN (10c)
ieN
rTd<T (10d)
5 <0 V(i,j)eA (10e)
dij € {071} V{i,j} cFk (10f)

This is a standard MILP with O(]E|) binary variables,
O(|N|+|E|) continuous variables, and O(|E|+|N|) contraints
that can be solved much more easily than the exponential num-
ber of individual disruption scenarios. Similar reformulations
for bilevel problems appear in [2][11].



Algorithm 2 Delayed Scenario Generation
1:t+0

2: solve RMP and let (zf, %) be the solution

3: solve NDP(z?) let (d,at, 3%) be the solution
4 if NDP(x?) > 6! > (d') new scenario
5:  t<t-+1 and add (d*) to scenario list

6: fors=1,---,t

7: if Dsp(zt71,d*%) > 6

8: add cut (8) to RMP

9: end if

10:  end for

11:  GOTO step 2

12: else

13: (2%, 0") is optimal (EXIT)

14: end if

At each iteration, either a new disruption is identified and
added to the scenario list, leading to the generation of a new
(violated) Benders cut, or the algorithm terminates with the
current solution being optimal (if no new disruption is found).
Since the number of possible disruptions is finite, DSG will
terminate after a finite number of iterations.

Although DSG is finitely convergent, the efficiency of the
algorithm will largely be dictated by the strength of the RMP
and NDP formulations and the order in which the disruption
scenarios are identified. In the next section, we exploit the
problem structure to take advantage of special network prop-
erties. Specifically, we leverage the fact that max-flow equals
min-cut — to find a feasible disruption for which the min
cut is below a certain threshold. If this min cut translates
to a max flow less than the total demand of our network,
then the network is infeasible — i.e. we have identified a
disruption scenario that leads to demand shortage. Using this
insight, we derive a strong formulation of NDP and used
this formulation to demonstrate the efficacy of DSG through
extensive computational experiments in section IV.

C. A Strong NDP Formulation

The performance and scalability of the formulation in the
previous section directly depends on our ability to identify
disruptions efficiently. In this section, we present a strong
formulation that is designed specifically for inhibiting flows in
networks. This formulation has been previously used in [10],
[5]. Here we describe the formulation for completeness.

The network disruption problem seeks to minimize the
maximum flow of a graph in a cost optimal way. To avoid
solving the bilevel optimization problem, we use the duality
between maximum flow and minimum cut, and reformulate the
problem problem so that we remove lines from a given graph
so that there exists a cut in the resulting graph, whose capacity
is less than the total demand in the system. This means that in
the resulting system the demand cannot be satisfied completely
and thus we have a disruption within the given budget.

Let us add two special nodes to the graph: a source s and a
terminal ¢, and connect each supply node 7 to s with a capacity
equal to the supply capacity of the node uy; = b;. Similarly, we

connect each demand node j to the terminal ¢ so that u;; = b;.
We will refer to the new edge set that contains these new edges
as E'. A cut in a graph is defined by a bipartitioning of its
nodes as N; and No = N \ N; such that s € N7 and t € Ns.
The capacity of this cut is defined by the cumulative capacity
of edges from N; to Ny, i.e., Z u;;. We define a binary

. . 1EN1,JEN,
variable p; for each node ¢ € N, so that

0, ifie Ny,
Pi = 1

if ¢ € Na,
We also define a binary variable w;; € [0,1] for each edge.
We will later show that w;; only takes values in {0, 1}. Binary
variables d;; identify lines that are disrupted. However, since
we are dealing with node failures in this paper, we do not use
any variables for edges from the source s and the terminal .
We can formulate the strong NDP as follows.

/35% > wijwi (11a)
rTd<T (11b)
pi — pj +wij +dij >0, (11¢)
ps =0, (11d)
pe=1; (11e)
pi € {0,1} Vie N (11f)
di; €{0,1} V{i,j} € E (11g)
wij €[0,1] V{i,j} € E' (11h)

Here, the constraint (11c) ensures that any edge directed from
the source side N; to the terminal side N5 is either disrupted
(di; = 1) or contributes to the cut (w;; = 1). Note that w;; = 0
in any other case due to the objective function, thus w takes
only binary values even though it is a continuous variable.
Constraint (11b) guarantees that the attack is within budget.
The objective function measures the capacity of the cut, and
if it is below the total demand, the d variables identify a new
disruption scenario that fails the network.

This formulation offers significant improvements over the
general NDP formulation (10). In our computational exper-
iments, we observed that formulation (11) to run 3 to 5
times faster than the general NDP formulation, even for small
instances, with the improvement gap increasing for larger
problems. The NDPs can be solved within seconds even for
very large problems and generous budgets. The reason for this
is that gap between this formulation and its relaxation is very
small as has been analyzed in [5].

IV. COMPUTATIONAL EXPERIMENTS

To test the performance of our proposed approach, we
conducted computational experiments on a number of test
cases, under a variety of parameters. All experiments were
run on a machine with four quad-core 2.93G Xeon with 96G
of memory. For all computational experiments, a single CPU
and up to 8GB of RAM was allocated. CPLEX 11.2/Concert



TABLE I
RUN TIMES FOR DIFFERENT SOLUTION APPROACHES

Test No. poss.

Systems N k scen. EF BD DSG
1 82 1 82 0 0 0
2 358 1 358 20 4 4
3 444 1 444 33 11 19
4 123 2 > 7K 81722 34 1
5 537 2 > 140K X 2142 4
6 666 2 > 200K X 5924 174
7 164 3 > 700K X 3045 9
8 716 3 > 60M X X 398
9 888 3 >116M X X 653
10 205 4 > T2M X X 67
11 895 4 > 26B X X 2708
12 1110 4 > 63B X X 11999

Technology v.27 was used for solving all mathematical pro-
grams.

Altogether, we considered twelve problem instances. We
considered three different networks, derived from the IEEE 30-
node, 118-node, and 179-node test systems. For each of these
networks, we considered four different disruption budgets.
Specifically, we limited the attacker to disrupting at most one,
two, three, or four arcs in the network. In all twelve instances,
the power flow was approximated by a simple transportation
model.

Table I allows us to compare the run times for the three
different approaches to solving the problem. For each of the
twelve instances, IV provides the number of disruptable edges.
For each test instance, we replicate the set of existing edges
multiple times to ensure that we have enough candidate edges
to yield a feasible network design. Next, k£ is the maximum
number of edges that can be disrupted by the attacker. In this
case, the attack budget is given by k and the cost of disruption
is one for all edges. The number of possible scenarios, i.e.
the size of the set of feasible disruptions, appears in the next
column. Note that for all but the smallest instances, this is a
very large number — approaching the hundreds of billions in
the largest case.

The remainder of this table provides the run time (in sec-
onds) for each instance under the three different approaches.
Note that the first approach, the extensive form (EF), can only
solve the smallest of instances. This is because of the sheer
size of the problem for each contingency, a full network flow
problem must be embedded in the formulation. As the number
of contingencies grows, this quickly becomes intractable.

The second approach, BD, bypasses this problem via a
Benders decomposition, with corresponding delayed cut gen-
eration. However, this still suffers from the exponential growth
in the number of disrupton scenarios — for each contingency,
a dual subproblem must be solved to check for violated
Benders cuts to add to the master problem. We see that
larger problem instances can be solved, relative to EF, but that
the BD approach nonetheless cannot solve the larger problem
instances.

In the DSG approach (using the strong NDP formulation
(11)), we see that all instances of the problem can be solved, in

TABLE I
DSG RUNTIME BREAKDOWN

Test No. poss.  No. eval. Total RMP NDP SP
Systems scen. scen. time time time time
1 82 3 0 0 0 0
2 358 17 4 0 2 1
3 444 51 19 1 7 10
4 > TK 15 1 0 1 0
5 > 140K 58 4 3 26 12
6 > 200K 158 174 6 50 118
7 > 700K 43 9 2 5 2
8 > 60M 128 398 25 303 70
9 > 116 M 284 653 21 193 439
10 > 72M 156 67 7 23 37
11 > 26B 359 2708 399 1698 612
12 > 63B 899 11999 4939 1822 5237

almost all cases in under an hour and frequently in only a few
minutes. This is a result of the combination of the strength of
the Benders cuts, enabling the problem to be solved in a very
limited number of iterations, and also the fact that we are able
to implicitly evaluate the contingencies in order to identify a
violated contingency and then quickly find its corresponding
Benders cut.

Table II provides us with further evidence to support this.
For each instance, we see the total number of possible dis-
ruption scenarios and then the number of disruption scenarios
for which corresponding cuts were actually generated (this
is the total number of iterations). Clearly, it is a very tiny
fraction of the possible number of disruptions, which is critical
to the tractability of the approach. The remaining columns
of this table breakdown the total run time by time spent on
the three components of the algorithm — the restricted master
problem (RMP), which identifies a candidate network design
(z); the network disruption problem (NDP), which identifies a
contingency that cannot be overcome by the current network
design; and the total subproblem (SP) time. It is interesting to
note that no one category of time consistently dominates the
total time.

Finally, the fact that our proposed approach enables us
to find optimal solutions to the twelve problem instances
in tolerable run time provides us with the ability to also
conduct analysis on the quality of the solutions. Figure 2
provides some introductory insights into the trade-off between
investment in security and potential shortfalls for the IEEE
118-node system. The figure shows the total investment cost
(to secure the network) as a function of allowable demand
shortages for each of the four disruption budget. Observe, that
the IEEE 118-node system is largely secure for kK = 1. For
higher disruptions, a significant cost is incurred for completely
securing the system (zero shortage). The vertical dashed line
indicates that significant investment cost savings is attainable
if a one percent demand shortage is permitted. On the other
hand, if we restrict the network investment budget to $6 billion
(highlighted by the dashed horizontal line), we can assess the
security of the network against the various disruption budgets.
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Fig. 2. Investment cost and demand shortage trade-off

V. CONCLUSION

Network security is critical to society in many forms
telecommunications, transportation, water, and electricity, to
name a few. Concerns exist over both malicious, intentional
attacks and random failures tied to systems that are rapidly ap-
proaching the boundaries of their capacity. With increased size
and complexity of these networks, direct human analysis and
operational control are no longer possible. Instead, automated
tools are required to ensure the security of these networks.

Substantial research has been invested in identifying net-
work vulnerabilities, often through bilevel optimization ap-
proaches. In this paper, we have expanded this research
with the goal of identifying cost-effective ways to secure
a network against such vulnerabilities. We first pose this
problem as an explicit trilevel optimization problem. This
allows us to clearly state the problem, but is not tractable
in practice because of the enormous size — the formulation
must simultaneously capture separate network flow problems
for each of an exponential number of disruption scenarios. We
next consider a Benders decomposition-based approach to the
problem. This is certainly an improvement, with Benders cuts
replacing the exponential number of embedded network flow
problems. In order to identify the Benders cuts, however, each
of the exponential number of contingencies must be evaluated,
which still greatly limits the size of the problem instance that
can be solved in an acceptable run time.

To overcome this problem, we propose a new separation
problem that allows us to implicitly consider the full set of
contingencies in a much more efficient fashion. Each iteration
of the separation problem yields a contingency that, relative to
the current network design, would lead to infeasible network
flows. For such a contingency, we can then directly generate
the associated Benders cut. This new approach is demonstrated
to be much more effective in solving problem instances of a
realistic size in acceptable run times.

This research also lays the foundation for future, more
general research on trilevel optimization problems and, in
particular, survivable network design. In particular, we are
focused on first expanding the simple network flow problem
in the third stage to more complex (and realistic) power flow

models. Beyond this, we will be working to generalize the
approach to the broad class of problems where the third stage
problem is not restricted only to be a linear program. Finally,
we will consider the case where third stage decisions have
non-linear form.

REFERENCES
(1

[u—

J.E. Benders, Partitioning Procedures for Solving Mixed-Variables Pro-
gramming Problems, Numerische Mathematik, 10 (1962), pp. 237-260.
[2] G. Brown, M. Carlyl, J. Salmerén and K. Wood, Defending Critical
Infrastructure, Interfaces, 6 (2006), pp. 530-544.

D. Bienstock and A. Verma, The N-k problem in power grids: new

models, formulations, and numerical experiments, SIAM J. Optim., 20

(2010), pp. 2352-2380.

[4] D. Bienstock and A. Verma, Using mixed-integer programming to solve

power grid blackout problems, Discrete Optimization, 4 (2007), pp. 115-

141.

C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg,

A decomposition-based approximation for network inhibition, Network

Interdiction and Stochastic Integer Programming, D.L. Woodruff, eds.,

(2003), pp. 51-66.

[6] A. Chen, C. Yang, S. Konsomsaksakul, and M. Lee Network-based Acces-
sibility Measures for Vulnerability Analysis of Degradable Transportation
Networks, Networks and Spatial Economics, 7 (2007), pp. 241-256.

[7] K.J. Cormican, D.P. Morton and R. Kevin Wood, Stochastic Network
Interdiction, Operations Research, 46 (1998), pp. 184-197.

[8] E. Isracli and R. Kevin Wood, Shortest-Path Network Interdiction, Net-
works, 40 (2002), pp. 97-111.

[9] C.Lim and J.C. Smith Algorithms for discrete and continuous multicom-
modity flow network interdiction problems, 1IE Transactions, 39 (2007),
pp. 15-26.

[10] A. Pinar, J. Meza, V. Donde and B. Lesieutre, Optimization Strategies
for the Vulnerability Analysis of the Electric Power Grid, SIAM J. Optim.,
20 (2010), pp. 1786-1810.

[11] J.C. Smith, C. Lim and F. Sudargho, Survivable network design
under optimal and heuristic interdiction scenarios, Journal of Global
Optimization, 38 (2007), pp. 181-199.

[12] L.M. Wein and Y. Liu, Removing arcs from a network, Operations
Research, 12 (1964), pp. 934-940.

[13] R. Wollmer, Analyzing a bioterror attack on the food supply: The case of
botulinum toxin in milk, Proc. National Acad. Sci., 102 (2005), pp. 9984—
9989.

[14] Y. Yao, T. Edmunds, D. Papageorgiou and R. Alvarez, Trilevel Optimiza-

tion in Power Network Defense, IEEE Transactions on Systems, Man, and

Cybernetic, 37 (2007), pp. 712-718.

3

—_

[5

—



