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Abstract 

 

This paper presents some statistical concepts and techniques for refining the expression of 

uncertainty arising from: a) random variability (aleatory uncertainty) of a random quantity; and b) 

contributed epistemic uncertainty due to limited sampling of the random quantity. The treatment is 

tailored to handling experimental uncertainty in a context of model validation and calibration. Two 

particular problems are considered. One involves deconvolving random measurement error from 

measured random response. The other involves exploiting a relationship between two random 

variates of a system and an independently characterized probability density of one of the variates.  

I. Introduction 

 
Model validation involves a comparison between model predictions and experimental responses to assess 

whether or not the computational model is “valid” for the application (see e.g. the extensive survey and 

review [1]). Part of the challenge in these comparisons is the appropriate characterization of the various 

sources of experimental variability and uncertainty in the response data.  Several complicating factors may 

be present: experiment-to-experiment boundary condition variability and/or systematic uncertainty, and 

measurement error variability and/or systematic uncertainty, may contribute uncertainty regarding output 

responses. References [2] and [3] discusses the implications and treatment of systematic uncertainty in a 

context of model validation and calibration. This paper concentrates on the random component of 

uncertainty encountered in multiple repeat tests.  

 

Whether one or several units or systems (“devices”) are tested in multiple repeat tests, portions of the 

response variance may be attributable to characterized sources of experimental randomness that are not 

affiliated with the tested device/s, while the remainder is attributed to variance of the tested devices/s.  It is 

the variance attributed to the device/s being modeled that is of lasting importance in model validation or 

calibration and should be variously embodied in the model as it “travels” ([1], [2]) to downstream 

prediction use beyond the validation or calibration activity. Limited repeat tests in experimental campaigns 

introduce epistemic uncertainty to the identified device variability. This uncertainty shows up as epistemic 

uncertainty on the statistical parameters and/or form of the uncertainty distribution associated with the 

measured response variability.   

 

Hence, 1) the epistemic uncertainty in the response distribution due to sparse sampling be accounted for; 

and 2) sources of measurement error variability and experiment-to-experiment test condition variability 

should be characterized in the tests or in separate tests so that their effects can be separated or deconvolved 

from the stochastic variability of the measured response of the tested device/s (thus isolating the device 

response variability for comparison against computational predictions).   
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Accordingly, this paper presents some statistical concepts and techniques for refining the expression of 

uncertainty for model validation and calibration when random variability in repeat experiments is involved.  

Two particular problems are considered. One problem involves the decomposition or deconvolution of 

response variability in a set of data where measurement error variability is "confounded" (indistinguishable 

based on the response measurements) with the device-to- device variability in the set of repeat experiments, 

but a good independent characterization of the measurement error variability exists.  Then the contribution 

of measurement error can be deconvolved from the response data, yielding a sharpened estimate of 

variability of device response (which is the variability sought for comparison with predictions). When a 

large number of experimental repeats are involved, the well characterized variance of the measurement 

error can be subtracted from the variance of the measured data leaving a reasonable estimate of the device 

variance. However, when few experiments are involved, this simple “variance-subtraction” approach does 

not acknowledge the potentially large epistemic uncertainty due to the limited number of experiments.  A 

simple approach is described in Section III of this paper to address this “deconvolution problem” in the 

common situation where only a few repeat experiments are available or can be conducted.   

 

A second problem involves sharpening the estimate of the stochastic variability of a sparsely tested device 

by exploiting a causal relationship between a governing device attribute that varies randomly in the 

experiments and the related variability of device response. If the probability distribution of the governing 

attribute is well characterized through a large number of separate experiments, then this knowledge can be 

combined with the causal relationship to refine the estimate of device variability from the few experiments. 

The methodology, demonstrated in Section IV, uses the results of the few experiments and standard 

methods for variance component estimation and regression analysis to estimate the causal 

attribute/response relationship.  Then a parametric bootstrap approach ([4]) is used to derive estimates of 

the true variability of device performance.  

 

We start by providing essential starting background next in Section II. We close with Section V. 

II. Some elementary background: Limiting cases of all measured variability caused by 

device variability or all caused by measurement error variability  

 

Let the measured response from a set of repeat experiments be governed by a Normal distribution or 

PDF (probability density function). For simplicity, let the normal PDF have a mean µ = zero and a standard 

deviation σ = 1/1.96 such that the µ ± 1.96σ extents of the PDFs, which mark its 0.025 to 0.975 percentiles, 

have values of -1 and 1. Figure 1 shows three sets of 8 random samples drawn from the PDF.  

It is common in engineering to fit experimental data with a normal distribution. The plot at the top of 

Figure 2 shows 20 uncertainty intervals defined by µi ± 1.96σi from normal PDFs fit to the three sample 

data sets shown in Figure 1 and 17 other 8-sample data sets. (The normal fits are obtained by forming a 

normal PDFi with mean µi and standard deviation σi calculated from the ith set of 8 samples.) The intervals 

mark the 0.025 and 0.975 percentiles of the normal PDFs. In other words, the intervals show the central 

95% probability ranges of the fitted normal PDFs. The interval ranges can be compared to the displayed (-

1,1) central 95% probability range of the exact normal PDF from which the sample sets were drawn. Only 

four of the 20 intervals contain the true 95% range of the exact PDF. A desirable outcome when fitting 

random-variable data is that the fit be somewhat conservative so as to bound a desired large percentage of 

the actual PDF, say 95% included probability, with reasonable reliability. This does not occur in the figure. 

A broader study in [5] finds that of 3000 such trials only 25.6% of computed 95% intervals contained 

the true 95% interval of the sampled Normal PDF. A mean shortfall error of 28% of the true 95% range 

occurred. When only 2 samples are drawn from the normal PDF (instead of 8), only 20.7% of 3000 

computed intervals contained the true 95% interval of the sampled PDF. A mean shortfall error of 63% was 

found. Even for the relatively large number of 32 samples per trial, only 27.8% computed intervals contain 

the true 95% interval of the sampled PDF, but a relatively small mean shortfall error of 14% occurred. 

 Hence, the common practice of fitting data with a normal PDF is not very reliable even if the 

underlying random process being sampled is Normal. In general, when relatively few samples are obtained 

from a source of random variability, a substantial amount of epistemic uncertainty exists in addition to the 

aleatory variability information in the samples from the random quantity. This epistemic uncertainty 
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undermines accurate estimation of the source variability function or PDF. Indeed, in [5] the goal was not to 

pursue accurate PDF estimation from sparse data (an impossible goal to reach), but instead to identify 

uncertainty representation methodologies that are some conservative in that they reliably bound a desired 

range (95% included probability) of the sampled PDF with reasonable reliability. A second, opposing 

objective was that the representation not be overly conservative; that it minimally over-estimate the said  

exact range. The presence of the two opposing objectives makes the sparse-data uncertainty representation 

problem an interesting and difficult one.   

 It was provisionally found in [5], based on a very simple zeroth-order performance ranking scheme and 

an initial set of tests, that the classical approach of using statistical tolerance intervals [6] computed from 

sparse random data provides reliably conservative interval representation for the combined epistemic and 

aleatory uncertainty associated with the limited data. Furthermore, the Tolerance Interval method is simple 

to implement and use, as explained at the end of this section. However, a drawback is that the tolerance 

intervals often substantially overestimate the target percentile range of the sampled PDF at low numbers of 

samples (see [5]). For eight samples the overestimation is not egregious. The middle plot in Figure 1 shows 

calculated 90% confidence / 95% coverage (0.9/0.95) tolerance intervals for the same 20 sets of 8 samples 

that were used in the top plot for the Normal-Fitting method. Sixteen of the twenty tolerance intervals 

contain the true 95% interval of the sampled Normal PDF. Of the 3000 trials in [5], 84.4% of the computed 

tolerance intervals contained the true 95% interval―close to the advertised 90% reliability (confidence) of 

the 0.9/0.95 tolerance intervals.  

The context of the above discussion is that the sampled Normal PDF (µ = 0, σ = 1/1.96) represents 

stochastic behavior of the tested device/s in the repeat experiments. The stochastic variation of the response 

samples are assumed to be measured with zero error. Next we consider an opposite limiting case where the 

variability of sample values arises purely from random measurement errors in the experiments. In section 

III we consider the mixed case where the randomness in the samples comes from both sources: a) stochastic 

device response in the experiments; and b) random error in the measurements of response.  

For the opposite limiting case just mentioned, let all the variability in measured device response be due 

to random measurement error. Let the measurement error be governed by the same Normal PDF (µ = 0, σ = 

1/1.96) as discussed above. Figure 1 shows three sets of 8 random samples drawn from this PDF. In the 

new context the sample values are instances of measurement errors. The goal is to determine, from the 

sample data, the actual value of the quantity being measured (i.e., the value of the measurand). Let the 

measurement errors be approximately symmetrically distributed about the actual value of the measurand 

(i.e. the mean of the distribution from which the random errors arise approximately coincides with the 

actual value of the measurand). Then the problem becomes one of estimating the mean of the error 

distribution and taking this for the value of the measurand.  

If the errors are approximately normally distributed, then the mean of the distribution can be obtained 

within an uncertainty determined from use of  Student’s t-distribution ([6]). The mean µ of the error 

distribution is said to lie within a distance or “confidence interval” of tx%,νσin
-1/2

 from the calculated mean 

µi of the sample data. The subscript ν signifies the “degrees of freedom” in the problem, equal to the 

number of samples minus one, n – 1, and the x% subscript designates the desired confidence level or odds 

of assurance that the true mean lies within the said distance of the sample mean µi. Desiring in this paper a 

confidence level of 95%, the value of t95%,ν=7 = 2.365 (see Table 1 and associated text at end of this 

section). The associated 95% confidence intervals defined by 

      µi ±  t95%,νσin
-1/2 

              (1)
 

 

are shown in the lowest plot in Figure 2. It is seen that the 19
th

 and 20
th

 mean estimates with their 

uncertainty bars or intervals do not contain the true mean µ = 0 of the sampled normal PDF. Hence, the 

advertised 95% confidence intervals only worked in 90% of the 20 trials shown. In 1000 trials run for the  
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Figure 1.   Three sets of 8 random samples from Normal PDF described in body of 

paper.   
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Figure 2.   Various computed uncertainty intervals (labeled on plot ordinates) from 20 sets each 

consisting of 8 random samples of Normal PDF. Various interval are defined in body. 
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purposes of this paper the calculated 95% confidence intervals worked to their advertised level, in which 

949 or 94.9% of the calculated intervals did bound the true mean.  

The lengths of the confidence and tolerance intervals in Figure 2 are given by multiplication factors that 

scale the calculated standard deviation σi of a set of random data. The multiplication factors, and thus the 

relative lengths of the confidence and tolerance intervals, are listed in Table 1 and plotted in Figure 3 

according to the number of data samples available. For the purposes here we use 95% confidence intervals 

and tolerance intervals with a 95% percentile range coverage at 90% confidence or assurance odds. The 

confidence intervals are calculated from equation 1 where the multiplication factor t95%,νn
-1/2

 is given in 

Table 1 and plotted in Figure 3. Values of tx%,ν are found in standard confidence interval tables, e.g. [6] and 

[7]. The tolerance intervals are defined by  

      µi ±  f0.9/0.95σi              (2) 
 

where the multiplication factor f0.9/0.95 comes from standard tolerance interval tables, e.g. [6]. This factor is 

listed in Table 1 and plotted in Figure 2.  

 The figure and table reveal that the confidence and tolerance intervals are very large at n=2 samples but 

quickly decrease in size when more samples are available. A knee in the rate of uncertainty decrease (per 

added sample) occurs somewhere between 4 to 6 samples, with the rate of decrease being fairly small after 

n=8 samples. At n=2 samples the confidence intervals are about half the extent of the tolerance intervals. 

The relative extent decreases to about 1/4 at n=8 samples and to little more than 1/10 at 40 samples, as 

Table 2 shows and Figure 4 plots. As might be expected, the uncertainty range (confidence interval) for the 

estimated mean of the sampled normal PDF is considerably less and decreases at a faster rate than the 

tolerance interval for the uncertainty about the estimated 95 percentile range of the sampled PDF. The 

tolerance interval has an asymptotic standard-deviation multiplier value of 1.96 for an infinite number of 

samples. This corresponds to the exact 95 percentile range of the sampled normal PDF. The confidence 

interval has an asymptotic multiplier value of zero, consistent with zero estimation error (an exact estimate) 

for the PDF mean when infinite number of samples are used.  

  

    
 

Figure 3.  Multiplier on calculated standard deviation used to form uncertainty interval ranges for 

confidence intervals and tolerance intervals.  
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Table 1.  Standard deviation multipliers for 95% Confidence Intervals and 

Tolerance Intervals of 95% coverage at 90% assurance 

 

# samples t95%,ν t95%,ν / n  f0.9/0.95 

2 12.71 8.98 18.80  

4 3.18 1.59 4.94 

8 2.37 0.84 3.26 

12 2.20 0.64 2.86 

20 2.09 0.47 2.56 

30 2.05 0.37 2.41 

40 2.02 0.32 2.33 

∞ 1.96 0 1.96 

 

III. Variability Reduction by Deconvolution for Mixed cases having both 

Device Variability and Measurement Error Variability  

 

The previous section defined the limiting cases of uncertainty associated with a set of measured random 

data. At one extreme where all the variability is caused by random measurement error, confidence intervals 

are used to provide an estimated uncertainty range within which the true value of the measured quantity is 

expected to lie with expectation odds or confidence that the user sets. At the other extreme, no random 

measurement error exists and all the measured variability is caused by randomness in the device behavior 

in the repeat experiments. Then tolerance intervals are used to provide an estimated uncertainty range 

within which a specified percentage of the entire population of random values lies (only a few samples of 

which were measured).  

In this section we examine cases that lie between the two extremes, where the variability in measured 

results is due to random measurement error and also to variability of the quantity being measured. In 

particular, we consider the situation where the PDF of measurement error is well characterized by the 

measurement instrumentation manufacturer or by calibration activities from the experimentalists. In this 

case, variability can be subtracted off the data measurements using the following simple technique. 

For demonstration, consider a case where the variability in the measured data comes from equal sources 

of Normal variability in measurement error and in the quantity being measured. Let the model problem 

have a combined variance σ
2 

of 1.0 for convenience. Then the normal PDF to be sampled has a standard 

deviation of σ
 
= 1.0, and let its mean µ be equal to zero. By the rule that the variances of the contributing 

random sources sum to the variance of the resultant PDF, and noting that the resulting PDF has a variance 

of 1.0 and the two contributing sources have equal variances, the following is obtained: σmeas._error = 

σdevice._variability = 0.707.   

The deconvolution problem is posed such that the variability of the combined PDF is not known a 

priori; information on this PDF comes from experimental measurements (samples). However, the PDF of 

random measurement error contributed to the measurement is known a priori. This latter information can  

be used to refine the estimate of true variability of the quantity being measured, which is the variability that 

is important to characterize in the experiments (and for model validation and calibration purposes if 

applicable).  

A simple way to approach the deconvolution problem is to form tolerance intervals for the measured 

data and then subtract from these a variance contribution due to the measurement error. The tolerance 

intervals as we have seen are fairly conservative, especially for sparse data. Therefore, any fair scheme to 

reduce the extent of these intervals based on knowledge independently gained (not from the current 

experiments) should be taken advantage of. In the present case, a classical result from [8] is used to 

subtract, from the 95% percentile range represented by the 0.9/0.95 tolerance intervals, the variance 

contribution from measurement error (represented by the 95% percentile range of the measurement error 

PDF, here = 2*1.96σmeas._error). The subtraction operation is as follows: 

 

  reduced 95% uncertainy interval = µi ±  ∆i  ,     ∆i = [(f0.9/0.95σi)
2
 − (1.96σmeas._error)

2
]

1/2
  .  (3) 
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This relationship is applied to the model problem above, having equal variability sources of the quantity 

being measured and of the measurement error, where σmeas._error = 0.707. For illustration in the following, 

also let the sample standard deviation σi be the value of the actual standard deviation σ
 
= 1.0 of the sampled 

PDF. Then Table 2 and Figure 4 give the variance reductions versus number of experimental samples. The 

reduced variance is presented in terms of fraction of the full tolerance-interval range that would exist if 

subtraction of the measurement error variability is not done.   

The plot shows that even if the measurement error variability constitutes half the contributed variability 

in the measured data, the effect of subtracting this out is swamped by the epistemic uncertainty coming 

from low numbers of samples. As the number of samples increases, the epistemic uncertainty and hence the  

tolerance interval size quickly decreases, causing the subtracted measurement variability to have a greater 

proportionate effect on total uncertainty. The uncertainty reduction reaches a value of about 10% reduction 

at 8 samples, nearly 20% reduction at 30 samples, with an asymptotic reduction of about 30% for infinite 

sampling. If the problem is changed so that the variability (standard deviation) of measurement errors is 

only 1/10 the actual variability of quantity being measured, then the achievable reduction is less than 1% 

even at the large number of 40 samples.   

The results here are somewhat sobering. While deconvolving measurement errors can help to reduce 

uncertainty, the gains to be made appear relatively minimal unless a relatively large number of tests can be 

run. It may be that more sophisticated deconvolution methods can shave off more uncertainty, but this has 

not been explored by the authors yet.  

  

Table 2. Relative sizes of listed uncertainty intervals as a fraction of size of  

        0.9/0.95 Tolerance Intervals (95% coverage at 90% assurance) 

  

# samples reduced tol. intvl. 

by deconvolved 50% source 

of rand. meas. error 

(t95%,ν / n )/ f0.9/0.95 

2 0.997 0.478 

4 0.960 0.322 

8 0.905 0.256 

12 0.875 0.220 

20 0.841 0.183 

30 0.819 0.155 

40 0.805 0.137 

∞ 0.707 0.0 
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Figure 4.   Plot of attainable variance reduction by subtracting out well-characterized random 

measurement error from a set of measurements. 

 

  

IV. Refinement of variability estimates using a behavioral relationship between two variates 

and independently characterized PDF of one of the variates 

 

The methodology presented in this section was motivated by an application where a small number of 

hardware devices were stress tested to destructive levels (only a small number of devices could be 

sacrificed for this testing). The devices came from a very large population of devices (nearly 200) whose 

performance in normal environments was well characterized. By comparing the levels of performance of 

the stressed devices with their normal-environment performance it was found that a relatively strong 

correlation existed between their performance in the two environments. This relationship was used, along 

with the well-characterized PDF of device performance in normal environments, to provide estimates of the 

stress-performance variability of the full population of devices. These estimates were substantially more 

precise than could have been obtained by calculating tolerance intervals of device performance from the 

responses of the few stress tested devices. The methodology and the resulting precision improvements are 

illustrated here using data from two related variates in Example 12.5 from [7]. Table 4 presents the data 

from the example. The data is plotted in Figure 5. 

   

Table 3. Table of related variates from example 12.5 in Ref. [7]. 

  

X value Y value 

78 850 

75 775 

78 750 

81 975 

84 915 

86 1015 

87 1037 
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This example was established to illustrate two points.  First, it can be extremely advantageous to make use 

of independent variables were appropriate in the construction of tolerance bounds.  Second, if we have an 

independent assessment of the measurement uncertainty we can further reduce the width of the tolerance 

bounds to accommodate this.  In order to demonstrate this second point we compare the two extremes: a) 

all variability not explained through the relationship between the dependent and independent variable is 

measurement error -- we refer to this extreme as the measurement variation case and b) all variability not 

explained through the relationship is device to device variability -- we refer to this extreme as the device 

variation case. 

 
We supplement the problem above with an assumption that we know (through separate analysis) the 

distribution of the independent variable X. We assume that this has a normal distribution, X ~ 

Normal( 1.84 ,4.1), where ~ implies "is distributed as" and 84.1 and 4.1 are the mean and standard 

deviation respectively.  With these parameters, one can compute distribution percentiles.  We will use the 

2.5th and 97.5th percentiles, 73.1 and 5.89  respectively.  We seek to construct tolerance bounds that cover 

this central 95% of the population with 90% certainty.  Figure 5, below, provides an illustration of the 

problem. 

 
Figure 5.  Data from Example 12.5 in [7], with additional specification of the distribution of X.  

 

In order to address this problem, we use a simple linear regression model xy 10   .  Using the data 

provided, we estimate the regression parameters 10 ,  and 
2  using the notation 10

ˆ,ˆ   and
2s  

respectively.  We also make use of the "typical" assumptions for simple linear regression (simple linear 

model with independent homoscadastic (of equal variance) normally distributed residuals is appropriate). 

 

We use the fact that under the assumptions of our analyses: 
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(4)       2~
2)s-(n 2

2

2

n


 where  22 n  is the Chi Square distribution with (n - 2) degrees of 

freedom; 
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

 XXC  . 

 

In order to construct the tolerance intervals we simulate values for the line xy 10    that reflect our 

uncertainty in the parameters 10
ˆ,ˆ   and

2s  based on a sample of size 7.  This is illustrated in figure 6 

below.  The four distributions on the left-hand side are based on the intersection of the simulated lines with 

the percentiles of the soon normal distribution for X. the two solid PDFs are constructed for the 

measurement variation case in the two dashed PDFs are for the device variation case. 
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Figure 6.  Examples of simulated regression lines used to construct percentiles of the distribution of 

the dependent variable Y. 

 

The following algorithm was used to create tolerance bound estimates for the measurement variation and 

device variation cases. 

 

For 100000 iterations, i = 1,…,100000 

 

 using relationship (1), generate is~  

 

 established the covariance matrix   12

,22,21

,12,11
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~~
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~ 
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 using relationships (2) and (3) with 
22 ~

is   generate 



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Measurement variation case 
 

calculate the upper response value 5.89
~~~

,1,0, iimeasiy    

calculate the lower response value 1.73
~~~

,1,0, iimeasiy    
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Device variation case 

 

calculate the upper response value 5.89
~~~

,1,0, iiunitiy    + εii    where 

 εii  ~ Normal(0, is~ ) 

calculate the lower response value  1.73
~~~

,1,0, iiunitiy   - εii    where 

 εii  ~ Normal(0, is~ ) 

 end 

end. 

 
The tolerance bound estimates can now be taken from the simulated responses - we use the 5

th
 percentile of 

the lower distributions of each response (the 5000
th

  ordered response) and the 95
th

 percentile of the upper 

distributions (the 95000
th

 ordered response). These intervals provide two-sided tolerance bound estimates 

for 95 percent of the response population with 90% confidence.  The interval are: (642, 1160) for the 

measurement variation case and (600, 1201) for the device variation case.  The latter range compares 

with a .9/.95 tolerance interval of (540.35, 1262.5) constructed from the raw y data in Table 4. The 

tolerance interval is about 20% larger than the reduced interval computed by the demonstrated 

methodology. Figure 7 below shows the response distributions in more detail. The density functions were 

estimated using kernel density estimation. 

 
Figure 7.  Kernel density estimates of the response distributions for the fifth and 95th percentile. 

 

V. Closing  
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Some useful statistical concepts and techniques have been presented for expressing and refining uncertainty 

arising from: a) random variability (aleatory uncertainty) of a random quantity; and b) contributed 

epistemic uncertainty due to limited sampling of the random quantity. A number of experimental scenarios 

have been considered. The material is provided to assist modelers working in model validation and 

calibration who are non-statisticians and are not accustomed to working with random experimental data. 
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