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Basic definitions: Unitary quantum gates

A unitary quantum gate is the basic functioning element of a quantum
circuit. Some basic notation:

n number of qubits in the quantum gate system
N = 2" dimension of the system’s Hilbert space
W € U( N ) the target unitary transformation

U (T) - U( N ) the actual evolution operator of the system
at the final time T

The same unitary transformation is applied to any input state:

[Yin) —> U(T) — [Your) = U(T)[thin)




Controlled quantum gate

An external classical control ¢(t) is necessary to operate the quantum gate.
The Hamiltonian and evolution operator are functionals of the control:

H = Hy+ H.lc(t)], U="Ulet)], te|0,T]
Gate fidelity is a measure of how well the target transformation was
performed:

F=1-[W-U(T)]|

It is convenient to use a normalized fidelity:

1 1
F = ZReTr (WU) o F =< |Tr (WU)|

Gate fidelity is also a functional of L
the control: F = F[C(t)]



Quantum control landscape and optimality

The functional dependence F' = F[c(t)] is called the control landscape.

The critical points of the
control landscape satisfy:

SF
set)

vVt € |0,T]

A sufficient condition for
optimality of a critical point
IS negative semidefiniteness
of the Hessian matrix:

0 F
50(-&’) 5C(t) For a recent review, see

C. Brif, R. Chakrabarti, and H. Rabitz,
New J. Phys. 12, 075008 (2010)

H(t,t') =



Optimally controlled guantum gate

The analysis of regular critical points on the control landscape reveals that:
® There is one maximum manifold: F =1

® There is one minimum manifold: F =0

® All other critical manifolds are saddles (can be avoided by a smart
optimization algorithm)

An optimal control solution c (1) is perfect in ideal conditions

(no environment, no noise, no uncertainties):

U[C()]:W:>F[Co]:1

The Hessian at any optimal control solution has only non-positive
eigenvalues. The “flatness” of the control landscape in the vicinity of
an optimal control solution depends on the number of zero Hessian
eigenvalues and magnitude of negative Hessian eigenvalues.



Optimal quantum gate with noisy control

All real controls are noisy! Consider a unitary quantum gate operating in the
vicinity of an optimal control:
c(t) = co(t) + 2(2)

Expanding for small noise: S
1
Fle]~ 1+ 5/ / Ho(t, t)z(t)z(t")dtdt’
0 0

In the case of random noise, the control error z(t) is a stochastic variable, with
an auto-correlation function:

R.(t,1") = B{z(t)z(t')}

Statistical expectation value of the quantum gate fidelity:

1 T pT
E{F[c]} ~ 1+ 5 / / Ho(t, t")R,(t,t")dtdt’
0 0



Robustnhess to white control noise

For white noise with any zero-mean distribution:
R.(t,t) = c6(t —t)

This is a good model for thermal noise, which is the dominant source of control
errors for solid-state qubits controlled by time-dependent voltages.

The statistical expectation value of the quantum gate fidelity:

E{F[} ~ 1~ 50 [Tr(Hy)|

The expected fidelity decrease is determined by the trace of the Hessian:

TI(H()) — /OT Ho(t, i)di — — Z |hm‘



Robustnhess to white control noise

For control through a dipole coupling:

He(t) = —c(t)p

the Hessian (at the maximum) for unitary gate control is given by

Mo(t,1') = — - Tr [u(t)(t)

The trace of the Hessian is then independent of the details of the applied
control and depends only on the norm of the dipole operator and the total
control time:

1
Tr(Ho) = — |l 37

|l 7 = Tr(p®)



Strategies for enhancing robustness

® For white noise, the expected fidelity decrease is determined by the trace
of the Hessian. For unitary gate control, this yields:

E{Flc} ~1— %UZTr(;ﬂ)T

® Explore minimum control time that preserves controllability, given the system
Hamiltonian (including the free Hamiltonian and the dipole operator)
m Explore scaling of the fidelity decrease with the number of gate qubits.

® For non-white noise, the expected fidelity decrease is determined by the
overlap of the Hessian and the noise autocorrelation function:

1 T pT
E{Fc]} ~1+ 5 / / Ho(t, t")R,(t,t")dtdt’
0 0

= Minimize the gate error by searching for optimal controls with the Hessian
“orthogonal” to the control noise.



Adaptive optimization of quantum gate fidelity

We seek improved robustness — i.e., want to minimize the decrease in
fidelity for a given control noise.

A laboratory-oriented approach — closed-loop optimization using adaptive
feedback control (AFC) in the laboratory (or numerical simulation)
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AFC concept:
Judson & Rabitz '92 Measurement

Data transfer

Advantages of laboratory AFC.:
® Optimization is for actual system with actual noise, not a simplified model;
® Each trial is very fast (~ps for system evolution, ~ms for control generation).

Drawback of laboratory AFC: Fidelity estimation requires process tomography
(very expensive in number of experiments for multi-qubit systems)
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