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Introduction and Motivation @Sandia

» This talk discusses characterization and treatment of uncertainty
associated with random variability of stochastic materials, systems, and
processes when limited samples of the randomness are available.

— pervasive and important problem in experimental data UQ and
model validation or calibration to experimental data

« Sparse sampling introduces epistemic uncertainty that undermines
accurate characterization of the quantity’s aleatory uncertainty (i.e., of
its randomness as represented by a probability density function (PDF)
or “variability distribution)

* The view is therefore here taken that:

— One should not endeavor for the impossible (accurate estimation of the
underlying variability distribution from which the sparse samples come)

— Rather, a pragmatic goal is that the uncertainty representation should be
conservative so as to bound a specified percentage of the underlying PDF

— An opposing goal (making this a difficult problem) is that the uncertainty
representation not be overly conservative—i.e., should minimally
over-estimate the specified variability range of the true PDF.



Four Methods Tried for Sparse-Data @ﬁ%ﬁﬂﬁm
Uncertainty Representation
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 Method 1: Fit the data with a Normal distribution
— An easy and very common approach used in engineering practice.
— But how well does it work?

» Method 2: Tolerance Intervals from classical statistics

» Method 3: PDF estimation by Pradlwarter-Schueller KDE (kernel
density estimation) approach to fitting the data (slide follows)

 Method 4: PDF estimation by Sankararaman-Mahadevan “Non-
Parametric” PDF fit to the data (slides follow)

 Evaluation criteria:

— how well the approaches perform on the two stated objectives:
* conservative < but not overly conservative

 assess on illustrative problem:
— estimate 95% PDF coverage range (central 0.95 percentile)
of exact PDFs from which data samples are drawn

— ease of implementation and use for engineering practice




Classical Tolerance Interval Method for

Dealing with Sparse Data
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« Approach

— calculate the standard deviation o of the data

— multiply o by appropriate factor £ from statistical tables

— create interval bars of extent fo about the mean p of the data: u £ fo

— 0.9/0.95 Tolerance Intervals — in this study, the factors £ correspond to
approximate 90% confidence that the produced tolerance interval

encompasses the central 95-percentile range (between the 0.025 and

0.975 percentiles) of the true PDF

# samples T 00 95
2 18.80

4 4.94

8 3.26

12 2.86

20 2.56

30 2.41

40 2.33

0 1.96

* Very simple to use in practice



Pradlwarter-Schueller KDE Method for -
Dealing with Sparse Data @{“:gf::';?;,ies

Pradlwarter, H.J., and G.l. Schuéller, “The use of kernel densities and confidence intervals to
cope with insufficient data in validation experiments,” Computer Methods in Applied
Mechanics and Engineering. Vol. 197, Issues 29-32, May 2008, pp. 2550-2560.

» Kernel Density Estimation (KDE) is a technique used to estimate the density
of arandom variable X given n independent samples X, ..., X, of it.1

(OB} ey - L 3 k &0,

nhi=1 h
We used a Gaussian Kernel

KDE is very sensitive to the bandwidth, h. Bandwidth estimation typically
involves optimization (e.g. maximize a cross-validation likelihood)

For small samples, we used the approach in Pradlwarter and Schuéller:

find h to satisfy a fixed probability: 2 o0
[ fo;hydx+ [ f(x;h)dx = P(a,n)
—00 b

=

Figure taken from http://en.wikipedia.org/wiki/Kernel_density _estimation



Sankararaman-Mahadevan Method for -
constructing a PDF from Sparse Data @Naﬂonal
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Shankar Sankararaman & Sankaran Mahadevan, “Likelihood-based
representation of epistemic uncertainty due to sparse point data and/or interval
data,” Reliability Engineering and System Safety, doi:10.1016/].ress.2011.02.003.

 Discretize the domain of X 2> 6,i=11t0 Q
PDF values at each of these Q points
— fx(x=86)=p;fori=1to0 Q
Interpolation technique (cubic splines used here)

 Construct likelihood as a function of: n bij m
— Discretization points 6, selected,i=1to Q L oc IT [ f (x)dx IT f, (x.)
— Corresponding probability density function values p; i =1a; X | — X !

— Type of interpolation technique

Maximize Likelihood L(p) wherep ={p;; i =1to Q) subject to applicable
constraints

— Estimate f(x)

1.5

0.5+

Probability Density Function

Probability Density Function

85 4 45 5 55 6
Value of X



lllustrative PDFs or 95% Intervals from |
the Four Methods + a Matlab-KDE Method (rh) i
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» Three instances of 2 samples
from a Normal PDF

= 2 samples “close” together
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= 2 samples “far” apart
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lllustrative 95% Intervals from the Four Methods

= 20 trials per method, 8 random samples of a Normal PDF per trial
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e Tol. Intvls. most conservative, then Pr-Sch, Normal Fit, and Non-Para.
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The Larger Test Matrix @Sandia

« 1000 trials of each method for fitting sample

data from each of: |
— normal PDF

— right-triangular PDF

£

— uniform PDF

— Convolutions of these PDF types (figure at ) ;
right) acting as three equally dominant
sources of random uncertainty in a linear

system. (o H y H y H .
»Answer guestion: does the presence of
multiple sources of uncertainty smooth
or mitigate the errors in representing the
individual PDFs? e v - H =

» Fit the data for sample sizes of
n=2,8,32for each PDF

* Initial results reported here and in the paper
are for Top Row of figure only



Glimpse of 95% Intervals from the Four Methods

= 20 trials per method, 2 random samples of a Normal PDF per trial
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« Method results differ greatly for low numbers of samples.
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Glimpse of 95% Intervals from the Four Methods

= 20 trials per method, 8 random samples of a Normal PDF per trial
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* Interval estimation improves markedly as # of samples increases to 8.



Glimpse of 95% Intervals from the Four Methods

= 20 trials per method, 32 random samples of a Normal PDF per trial
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ish for “large” # of samples.



Quantification of Error of 95% Intervals

produced by the various methods
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* Interval estimation error is quantified and
put into one of three bins as follows:

» +/+ or pos/pos error (both 4, and 4, in
schematic at right are positive)

» estimated interval exceeds true 95%
range at both top and bottom (estimated
interval encompasses true interval)

* most desirable according to objective
» +[- or =/+ “mixed” error (4, and 4,
are of opposite sign)

» estimated interval encompasses true
95% range at one end, but falls short at
other end

* |less desirable

» =I- or neg/neg error (both A, and 4,
are negative)

e estimated interval falls short of true 95%
range at both top and bottom

* |east desirable

AU—/’

exact percentile U-exact
range from true
PDF —_

dr

L-exact
AL—/

percentile
range from
estimation
method




Error histograms — Normal PDF, 2 samples

] Pradlmrter-Schuellqr KDE _
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Error histograms — Normal PDF, 8 samples
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Bin height

Bin height

Error histograms — Normal PDF, 32 samples

Pradlvvgrter-SchuLeIIer KDE _
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Error histograms — Convolution, 2 samples
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Bin height

Bin height

Error histograms — Convolution, 8 samples

Prac!lmarter-?chuellgr KDE _
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Bin height

Bin height

Error histograms — Convolution, 32 samples

Pradlvvgrter-SchuLeller KDE _ quma] Fitteq
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Performance in Fitting Normal PDF

% of 3000 trials

% of Errors in +/+, =/-, and mixed
categories for each Method
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Performance in Convolution
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32
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# of samples from each of 3 Normal PDFs

 The higher the solid lines in the graphs, the more net desirable results (%opos/pos

results minus %neg/neg results) occurred.

» This desirability measure falls slowly for the better performers (Tol. Intervals and
Pr-Sch) with increasing # of samples as the % of less desirable mixed results rises
slowly (dashed lines). Proportions of +/+, =/[-, and mixed results for Normal-Fit and
Non-Para. mthds. improve w/ #samples but still net-undesirable even at 32 samples.

» These trends persist for performance in convolution, with slight improvement
generally in desirability of percentages of results in the +/+, —/—, and mixed bins.



Mean Results and Error Magnitudes

In each Category for each Method @ﬁgggﬁa,
at n=2 samples
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Performance in Fitting Normal PDF
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Performance in Convolution
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Pradiwarter-Schueller method
Normal Fit method
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+/+ overshoot err. -/- shortfall err. mixed error

Categories of Error for calculated 95% interval

» Tol. Interval method has much larger average overshoot errors (in +/+ category) than
all other methods, with Pr-Sch next largest, then Normal-Fit and Non-Para. Mthds.

» Tol. Interval method is least desirable in this performance objective, then Pr-Sch, then
the Normal-Fit method, with the Non-Parametric method being most desirable.

» Method differences much smaller for =/= shortfall errors and mixed +/- and =/+ errors.

» Conclusions same for performance in convolution, where +/+ overshoot errors are
generally slightly larger %wise, but the =/- and mixed errors are generally smaller
%wise (see next slide).



Mean %Error Magnitudes for
each method vs. # of samples
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Performance in Fitting Normal PDF

means of method +/+ and -/- errors

means of method mixed errors
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Performance in Convolution
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Zeroth-Order Ranking Scheme for »
Method Performance @Naﬂonal
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Performance Rank order

# of +/+ #of-/- #ofmixed mean-/- mean_mixed mean +/+

Method Performance Aspect

* No method consistently best for all six performance attributes.

» Total score across all six attributes yields the following ranking:
1-Tol. Intervals, 2-Pr-Sch, 3-Normal Approximation, 4-Non-Parametric mthd.

* Method ranking on total score is robust whether maximum instead of
mean errors are considered, or Normal PDF or Convol., or n=2,8,32.



Tentative Conclusions based on this |
Initial Partial Study (Normal PDFs) () i
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Tolerance Interval method performed best on balance according to the simple
ranking scheme employed. The method is also very simple to use.

However, the Zeroth-Order ranking scheme used is very simplistic:

— weights all six attributes equally

— only considers performance order in each attribute, not how much better one method performs vs.
another.

A different ranking could occur with a more sophisticated performance scoring
system and when the other aspects of the fuller study are performed.

— In particular, Pradlwarter-Schueller KDE general performed well and at low # of samples has less
egregious +/+ overshoot errors than Tol. Intvls., but also has significantly less desirable +/+ results
and significantly more undesirable —/— & mixed results than Tol. Intvils. Implementation of the Pr-
Sch method is also considerably more involved.

The disadvantage of large Tol. Intvl. +/+ overshoot errors relative to the other
methods diminishes by 8 samples, but the advantage in terms % of net desirable
results remains through 32 samples.

The common practice of fitting a Normal distribution to the data underperforms
even if the underlying PDF being sampled is Normal!
— This common practice is inadequate for dealing with sparse data and should be abandoned in
favor of the Tolerance Interval or Pradlwarter-Schueller KDE approaches.
The presence of multiple sources of uncertainty in aggregation (convolution)
does not substantially lessen the effect of method approximation errors in
representation of the individual contributing PDFs.




