

An Initial Comparison of Methods for Representing and Aggregating Experimental Uncertainties involving Sparse Data

Vicente Romero, Laura Swiler, Angel Urbina

Sandia National Laboratories*

Albuquerque, NM

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

13th AIAA Non-Deterministic Approaches (NDA) Conference
April 4-7, 2011, Denver, CO

Introduction and Motivation

- This talk discusses characterization and treatment of uncertainty associated with random variability of stochastic materials, systems, and processes when limited samples of the randomness are available.
 - pervasive and important problem in experimental data UQ and model validation or calibration to experimental data
- Sparse sampling introduces epistemic uncertainty that undermines accurate characterization of the quantity's aleatory uncertainty (i.e., of its randomness as represented by a probability density function (PDF) or "variability distribution")
- The view is therefore here taken that:
 - One should not endeavor for the impossible (accurate estimation of the underlying variability distribution from which the sparse samples come)
 - Rather, a pragmatic goal is that the uncertainty representation should be **conservative** so as to bound a specified percentage of the underlying PDF
 - An opposing goal (making this a difficult problem) is that the uncertainty representation **not be overly conservative**—i.e., should minimally over-estimate the specified variability range of the true PDF.

Four Methods Tried for Sparse-Data Uncertainty Representation

- **Method 1: Fit the data with a Normal distribution**
 - An easy and very common approach used in engineering practice.
 - But how well does it work?
- **Method 2: Tolerance Intervals from classical statistics**
- **Method 3: PDF estimation by Pradlwarter-Schueller KDE (kernel density estimation) approach to fitting the data (slide follows)**
- **Method 4: PDF estimation by Sankararaman-Mahadevan “Non-Parametric” PDF fit to the data (slides follow)**
- **Evaluation criteria:**
 - how well the approaches perform on the two stated objectives:
 - **conservative** \Leftrightarrow **but not overly conservative**
 - **assess on illustrative problem:**
 - estimate 95% PDF coverage range (central 0.95 percentile) of exact PDFs from which data samples are drawn
 - ease of implementation and use for engineering practice

Classical Tolerance Interval Method for Dealing with Sparse Data

- **Approach**

- calculate the standard deviation σ of the data
- multiply σ by appropriate factor f from statistical tables
- create interval bars of extent $f\sigma$ about the mean μ of the data: $\mu \pm f\sigma$
- 0.9/0.95 Tolerance Intervals — in this study, the factors f correspond to approximate 90% confidence that the produced tolerance interval encompasses the central 95-percentile range (between the 0.025 and 0.975 percentiles) of the true PDF

# samples	$f_{0.9/0.95}$
2	18.80
4	4.94
8	3.26
12	2.86
20	2.56
30	2.41
40	2.33
∞	1.96

- **Very simple to use in practice**

Pradlwarter-Schuëller KDE Method for Dealing with Sparse Data

Pradlwarter, H.J., and G.I. Schuëller, "The use of kernel densities and confidence intervals to cope with insufficient data in validation experiments," *Computer Methods in Applied Mechanics and Engineering*. Vol. 197, Issues 29-32, May 2008, pp. 2550-2560.

- Kernel Density Estimation (KDE) is a technique used to estimate the density of a random variable X given n independent samples X_1, \dots, X_n of it.¹



$$f_n^{\{KDE\}}(x; h) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right)$$

- We used a Gaussian Kernel
- KDE is very sensitive to the bandwidth, h . Bandwidth estimation typically involves optimization (e.g. maximize a cross-validation likelihood)
- For small samples, we used the approach in Pradlwarter and Schuëller: find h to satisfy a fixed probability:
$$\int_{-\infty}^a f(x; h) dx + \int_b^{+\infty} f(x; h) dx = P(\alpha, n)$$

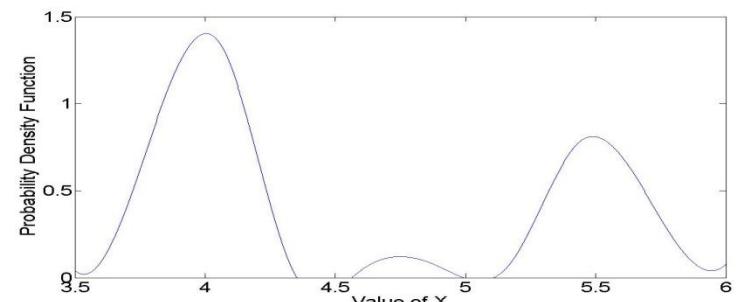
1. Figure taken from http://en.wikipedia.org/wiki/Kernel_density_estimation

Sankararaman-Mahadevan Method for constructing a PDF from Sparse Data

Shankar Sankararaman & Sankaran Mahadevan, "Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data," *Reliability Engineering and System Safety*, doi:10.1016/j.ress.2011.02.003.

- Discretize the domain of $X \rightarrow \theta_i, i = 1 \text{ to } Q$
- PDF values at each of these Q points
 - $f_X(x = \theta_i) = p_i$ for $i = 1 \text{ to } Q$
- Interpolation technique (cubic splines used here)
- Construct likelihood as a function of:
 - Discretization points θ_i selected, $i = 1 \text{ to } Q$
 - Corresponding probability density function values p_i
 - Type of interpolation technique
- Maximize Likelihood $L(p)$ where $p = \{p_i ; i = 1 \text{ to } Q\}$ subject to applicable constraints
 - Estimate $f(x)$

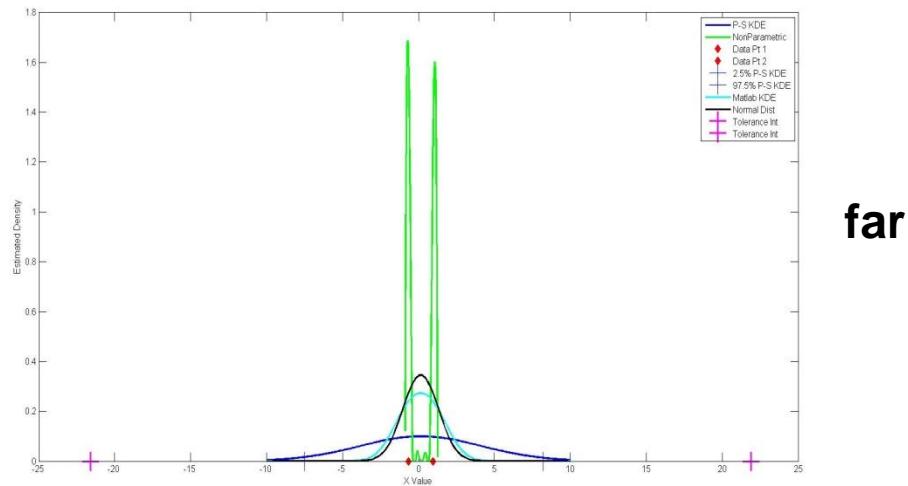
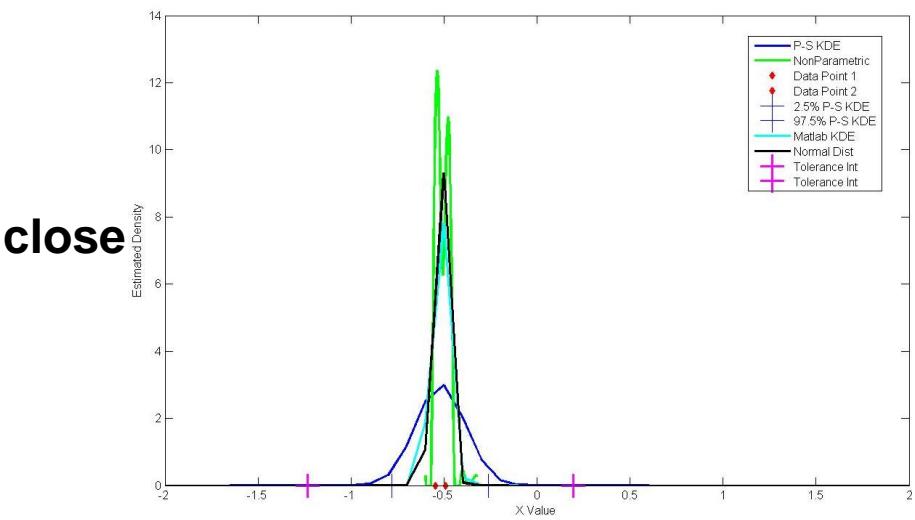
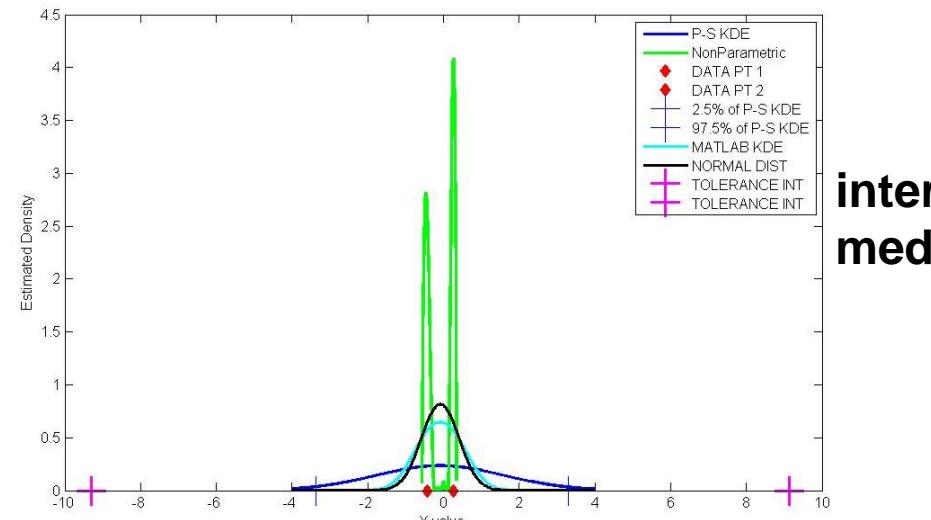
$$L \propto \left(\prod_{i=1}^n \int_{a_i}^{b_i} f_X(x) dx \right) \left(\prod_{i=1}^m f_X(x_i) \right)$$



Probability Density Function

Illustrative PDFs or 95% Intervals from the Four Methods + a Matlab-KDE Method

- Three instances of 2 samples from a Normal PDF
 - 2 samples “close” together
 - 2 samples “far” apart
 - 2 “intermediately” spaced

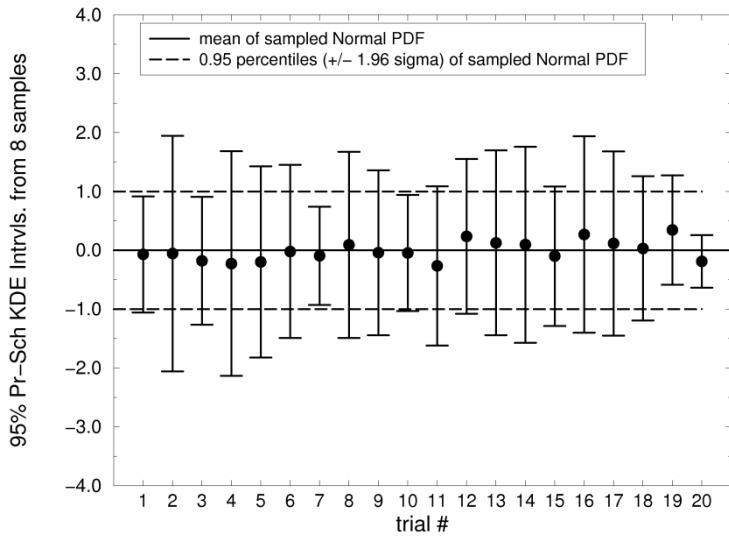
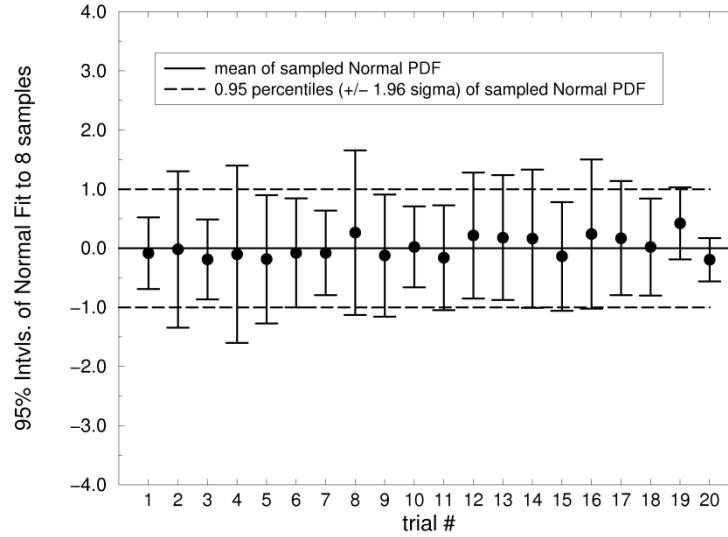
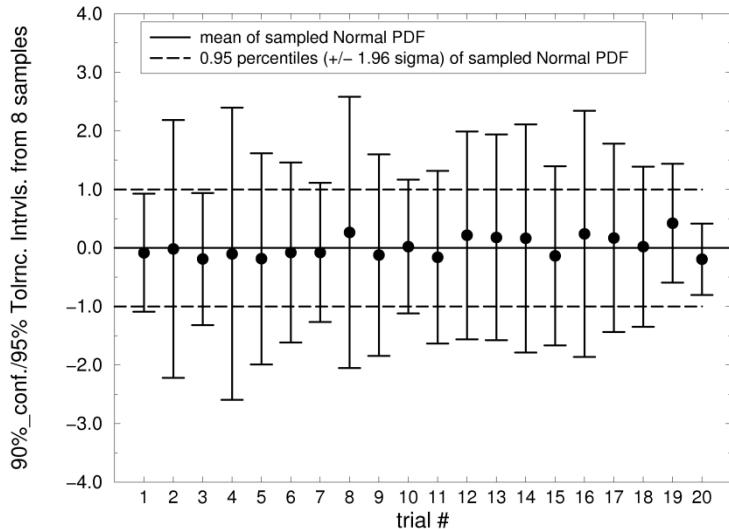
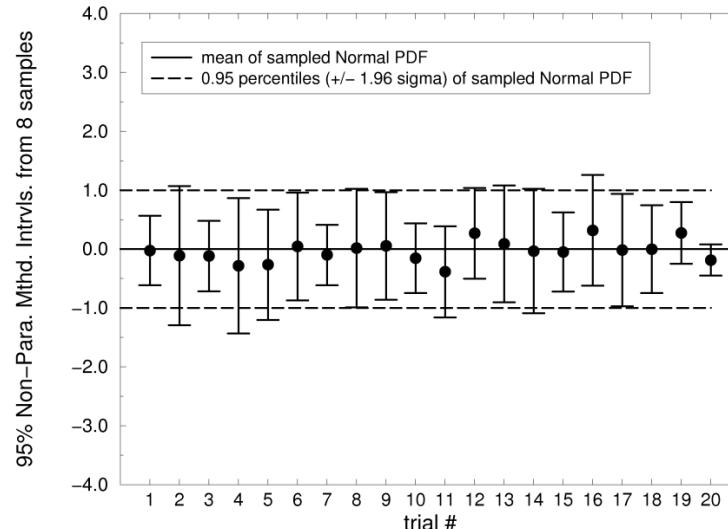


close

inter
med.

Illustrative 95% Intervals from the Four Methods

- 20 trials per method, 8 random samples of a Normal PDF per trial



- Tol. Intvls. most conservative, then Pr-Sch, Normal Fit, and Non-Para.

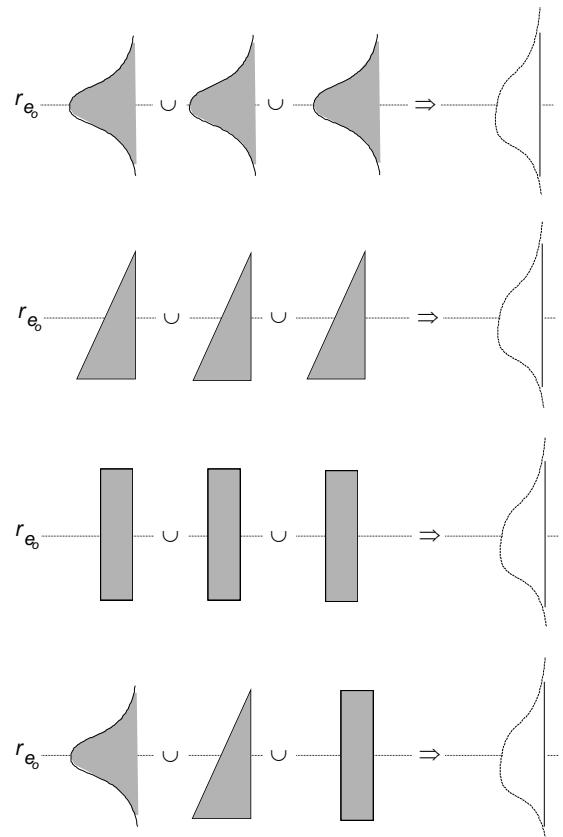
The Larger Test Matrix

- **1000 trials of each method for fitting sample data from each of:**

- normal PDF
 - right-triangular PDF
 - uniform PDF
 - Convolutions of these PDF types (figure at right) acting as three equally dominant sources of random uncertainty in a linear system.

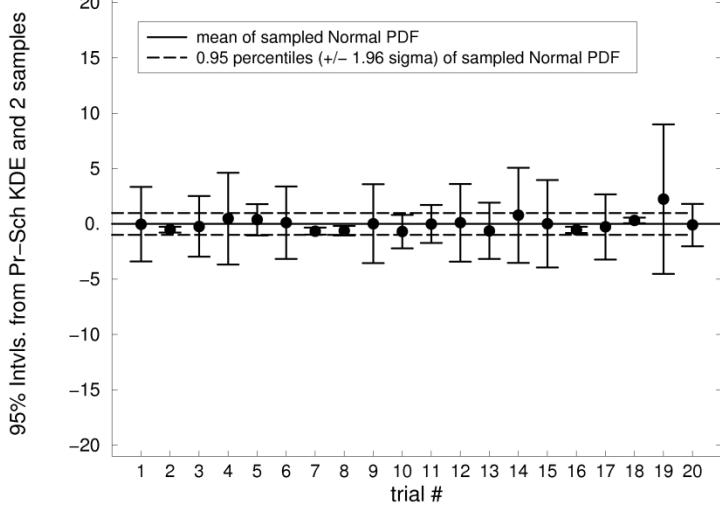
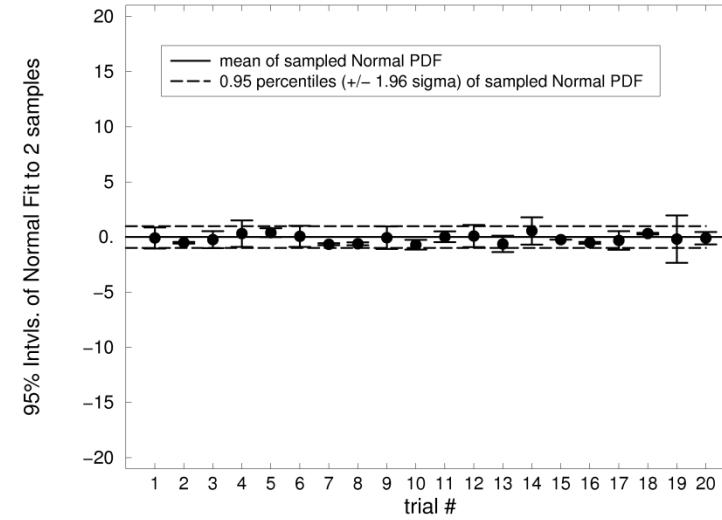
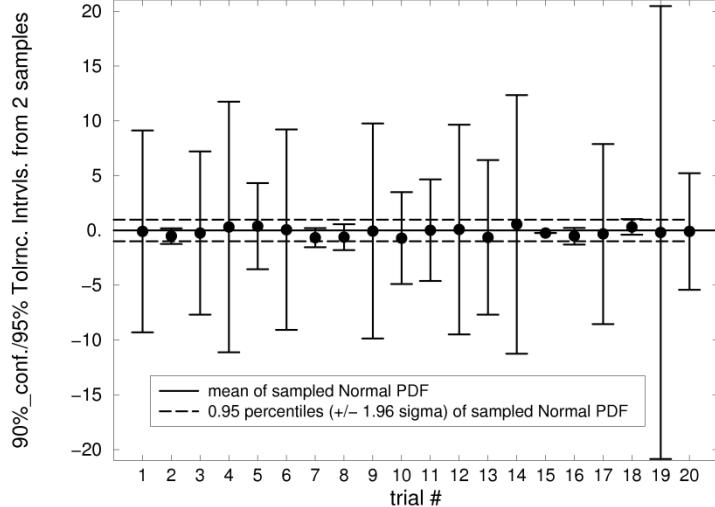
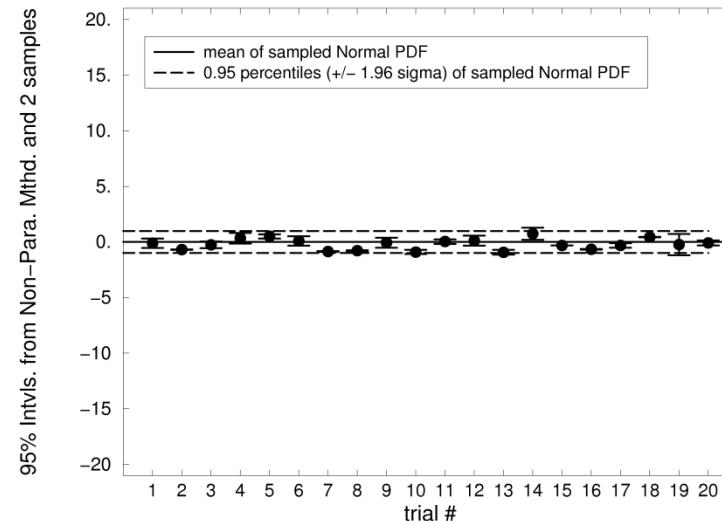
➤ Answer question: does the presence of multiple sources of uncertainty smooth or mitigate the errors in representing the individual PDFs?

- **Fit the data for sample sizes of $n = 2, 8, 32$ for each PDF**
- **Initial results reported here and in the paper are for Top Row of figure only**



Glimpse of 95% Intervals from the Four Methods

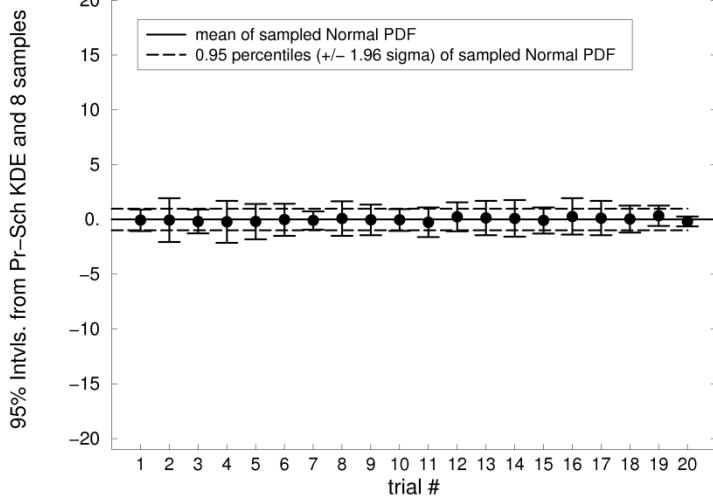
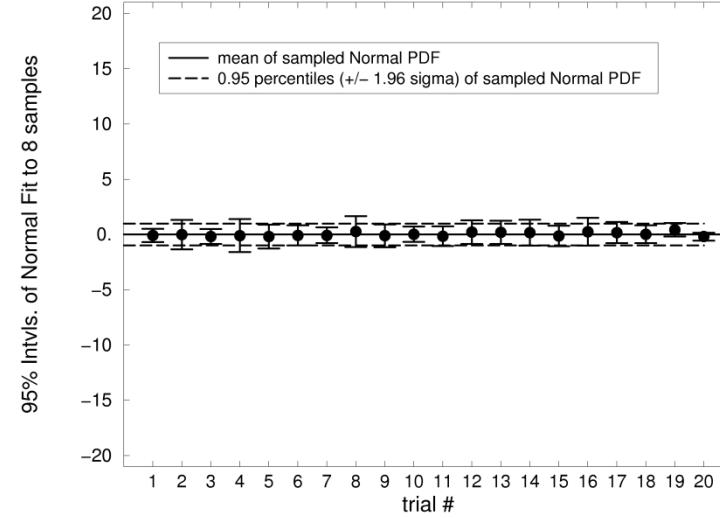
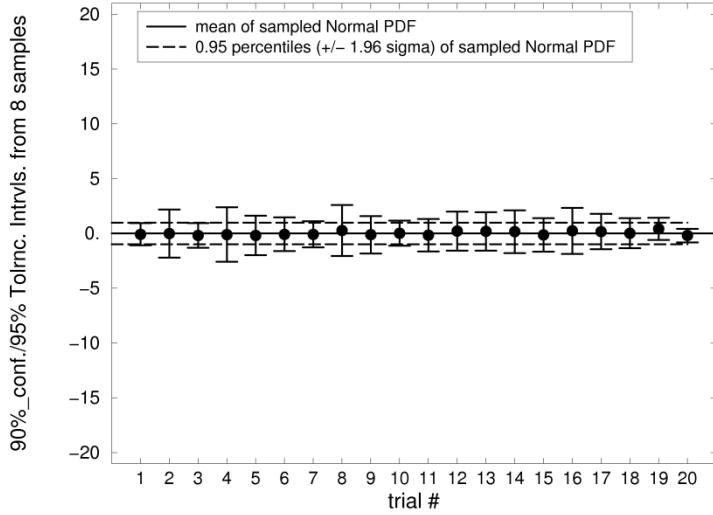
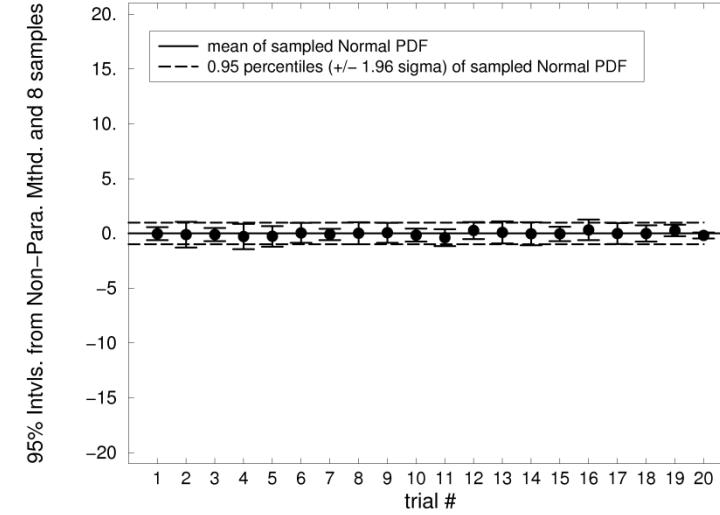
- 20 trials per method, 2 random samples of a Normal PDF per trial



- Method results differ greatly for low numbers of samples.

Glimpse of 95% Intervals from the Four Methods

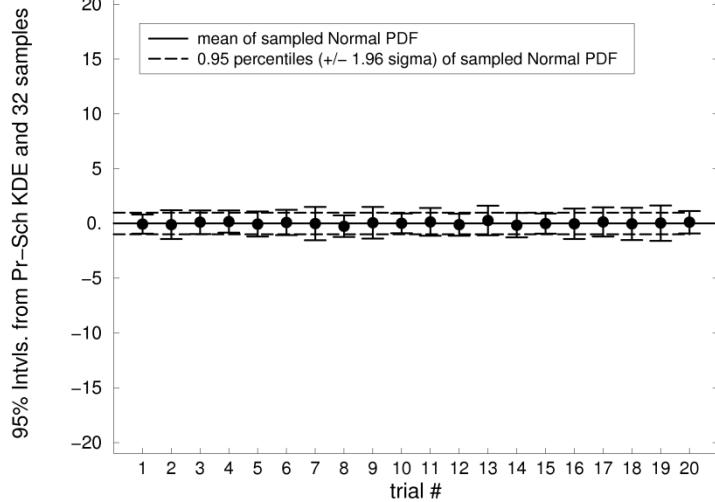
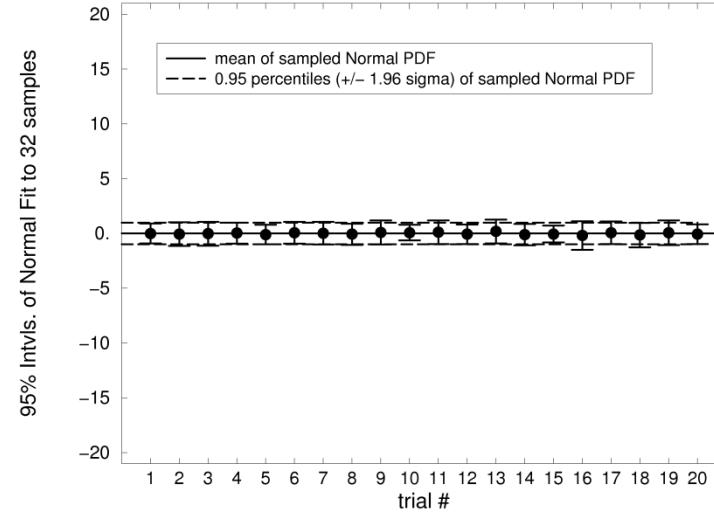
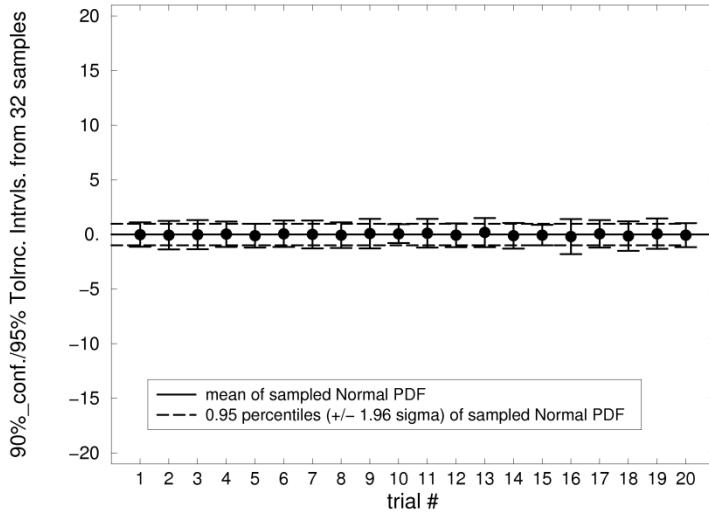
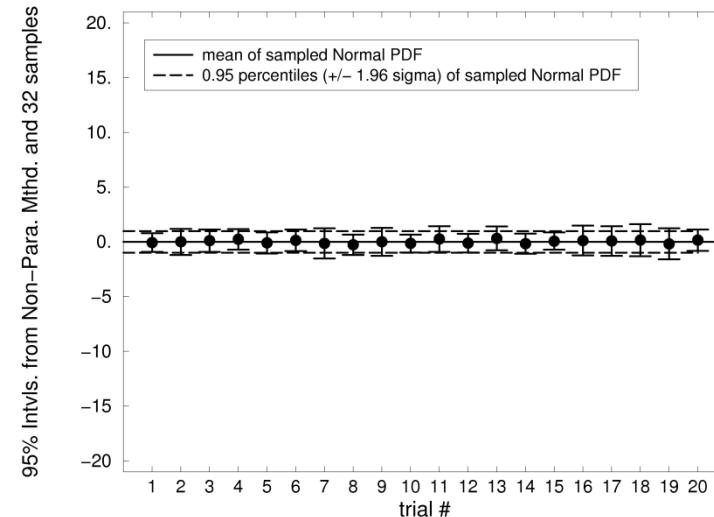
- 20 trials per method, 8 random samples of a Normal PDF per trial



- Interval estimation improves markedly as # of samples increases to 8.

Glimpse of 95% Intervals from the Four Methods

- 20 trials per method, 32 random samples of a Normal PDF per trial

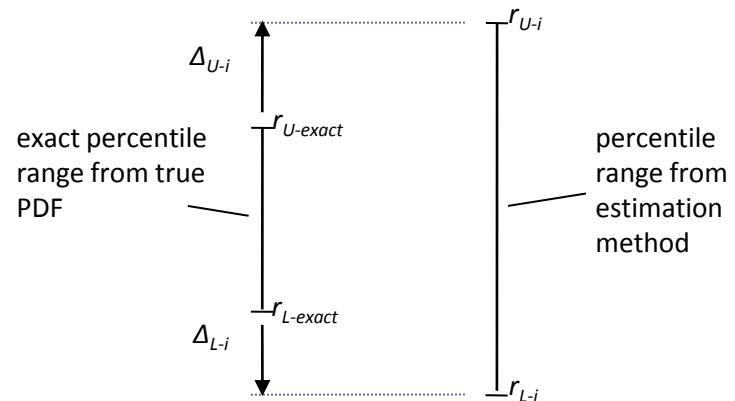


- Differences in method performance diminish for “large” # of samples.

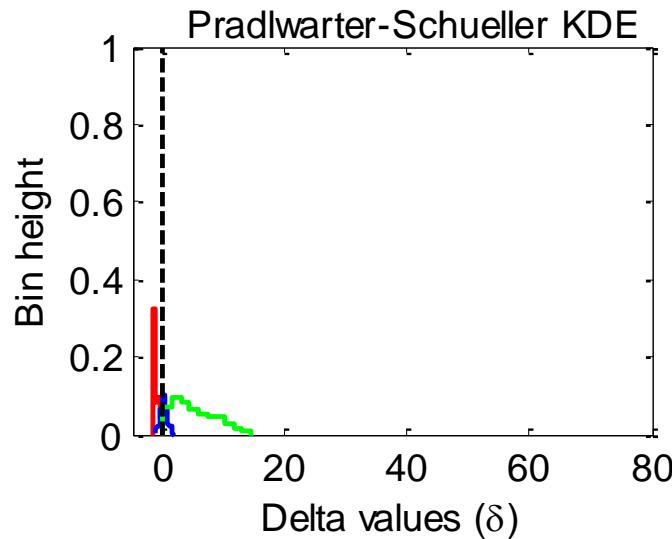
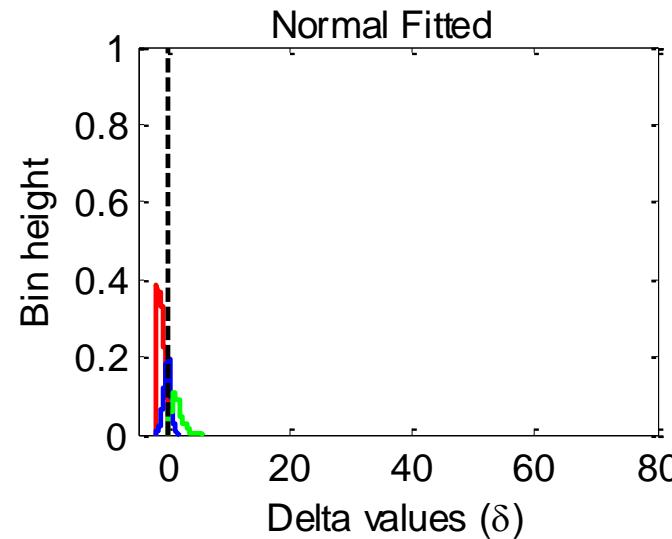
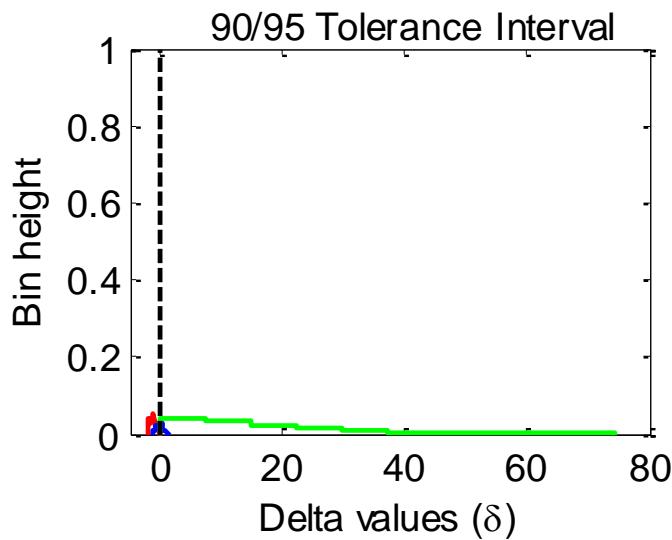
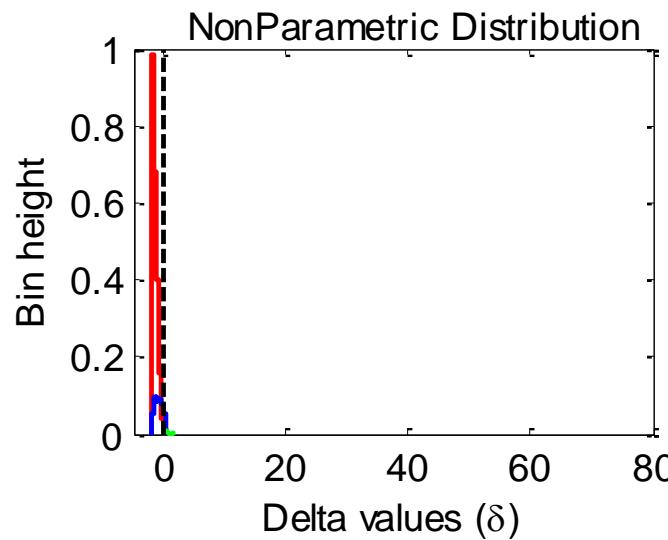
Quantification of Error of 95% Intervals produced by the various methods

- Interval estimation error is quantified and put into one of three bins as follows:

- **+/+ or pos/pos error** (both Δ_U and Δ_L in schematic at right are positive)
 - estimated interval exceeds true 95% range at both top and bottom (estimated interval encompasses true interval)
 - **most desirable according to objective**
- **+/- or -/+ “mixed” error** (Δ_U and Δ_L are of opposite sign)
 - estimated interval encompasses true 95% range at one end, but falls short at other end
 - **less desirable**
- **-/- or neg/neg error** (both Δ_U and Δ_L are negative)
 - estimated interval falls short of true 95% range at both top and bottom
 - **least desirable**

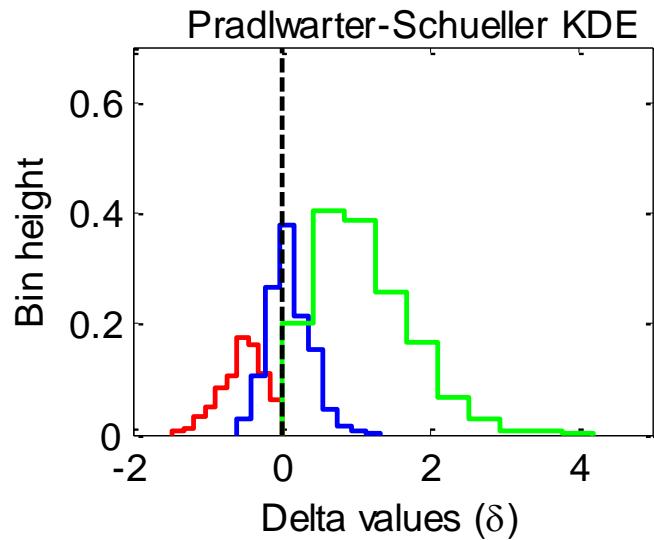
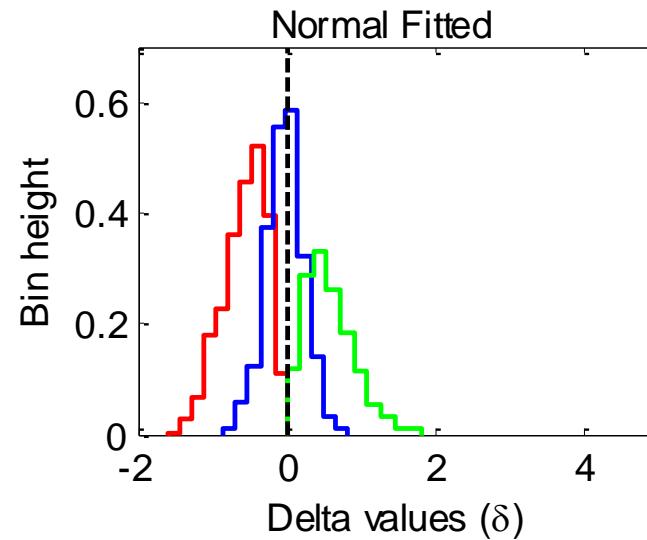
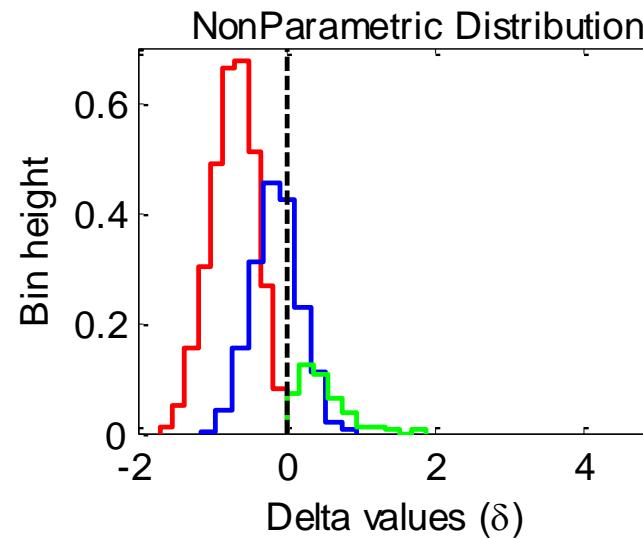


Error histograms — Normal PDF, 2 samples



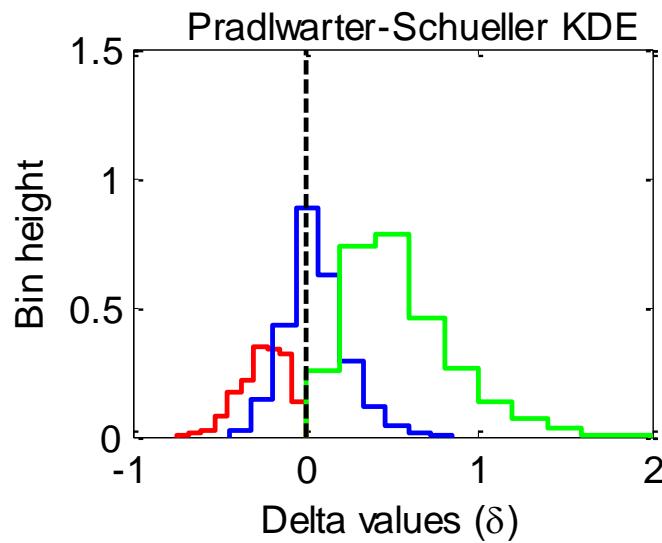
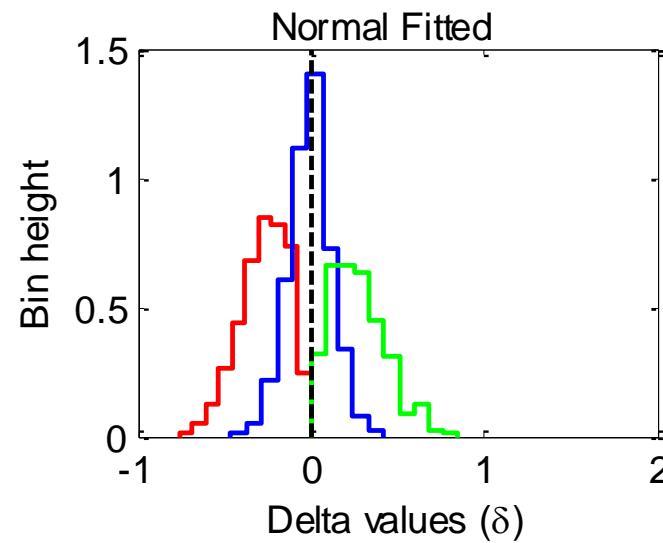
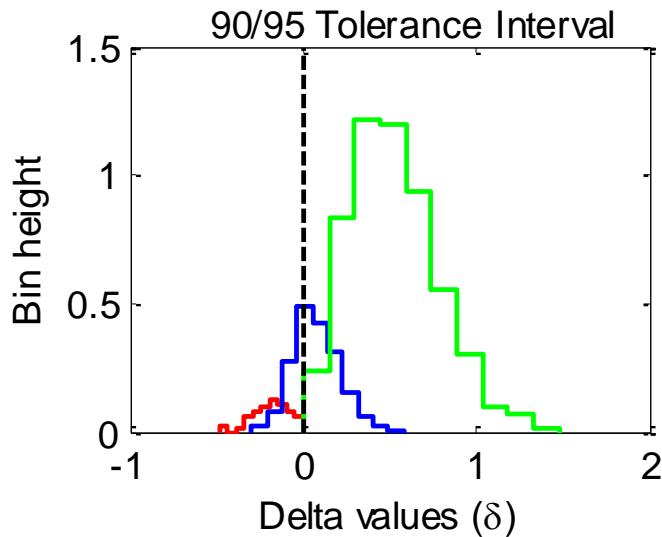
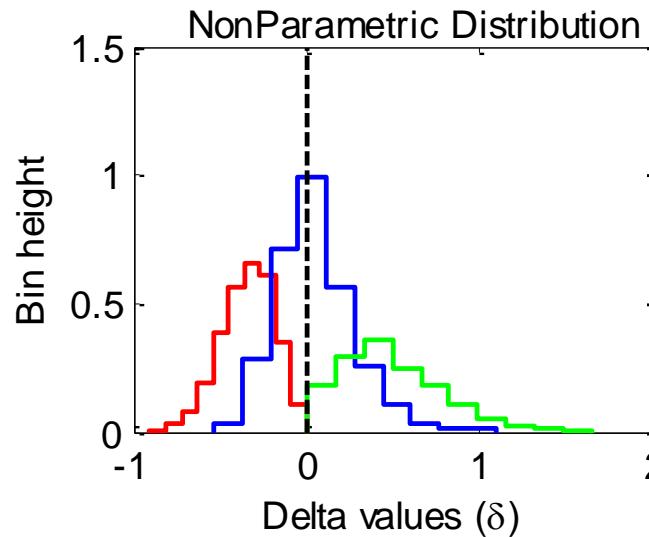
— Neg/Neg — Mixed — Pos/Pos

Error histograms — Normal PDF, 8 samples



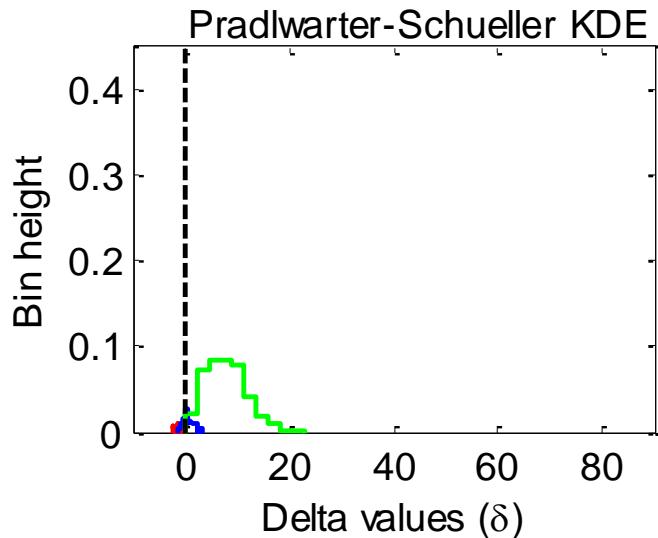
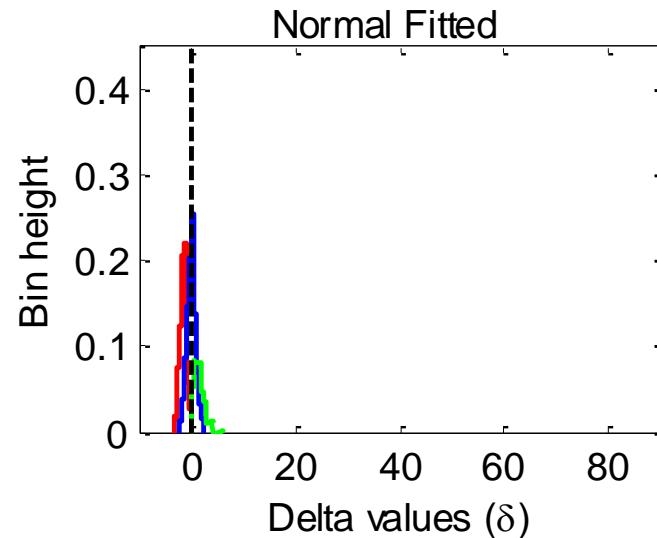
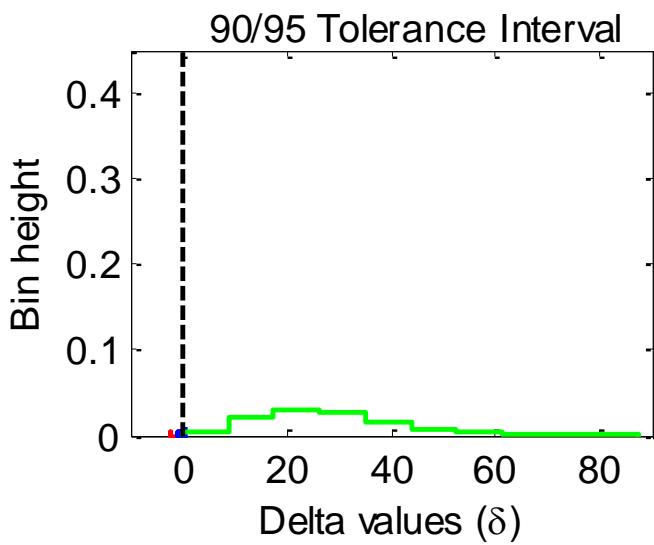
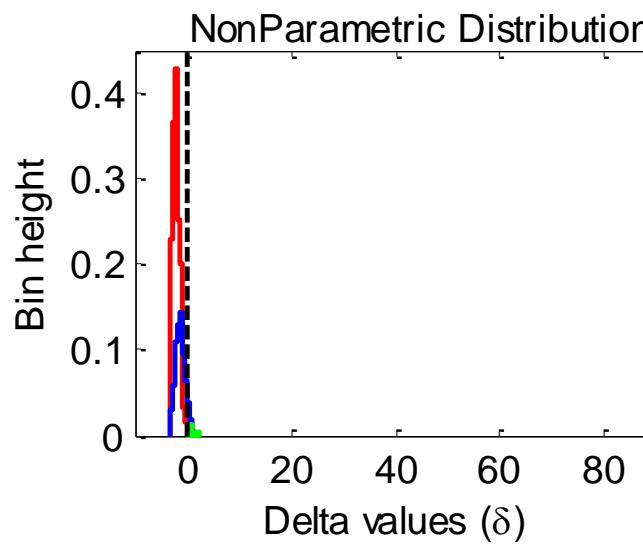
— Neg/Neg — Mixed — Pos/Pos

Error histograms — Normal PDF, 32 samples



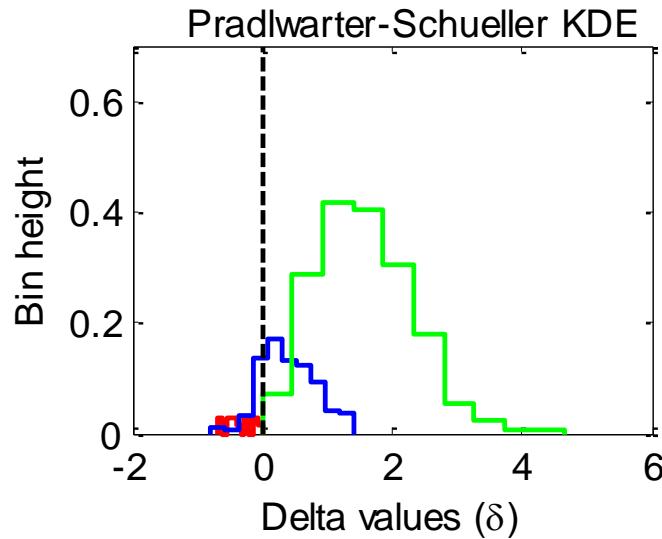
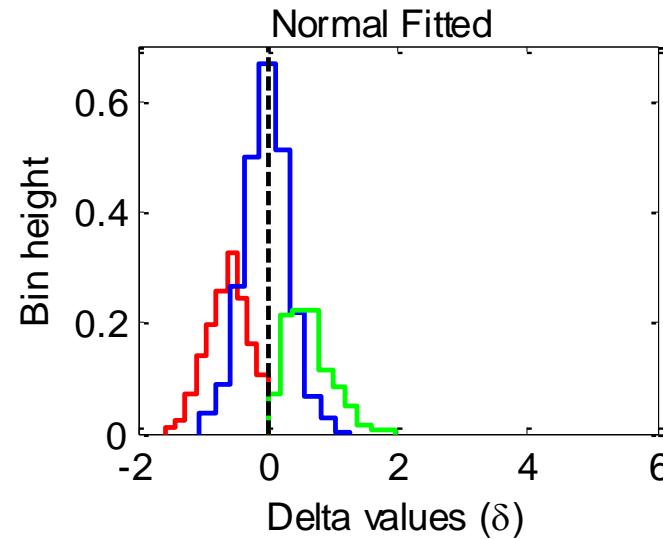
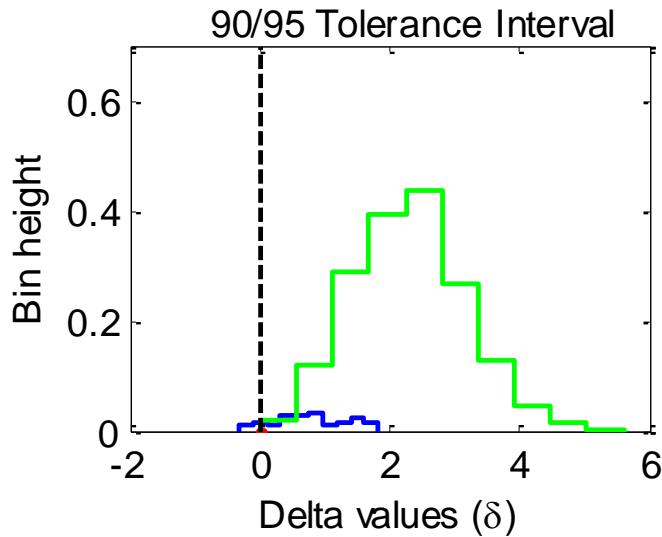
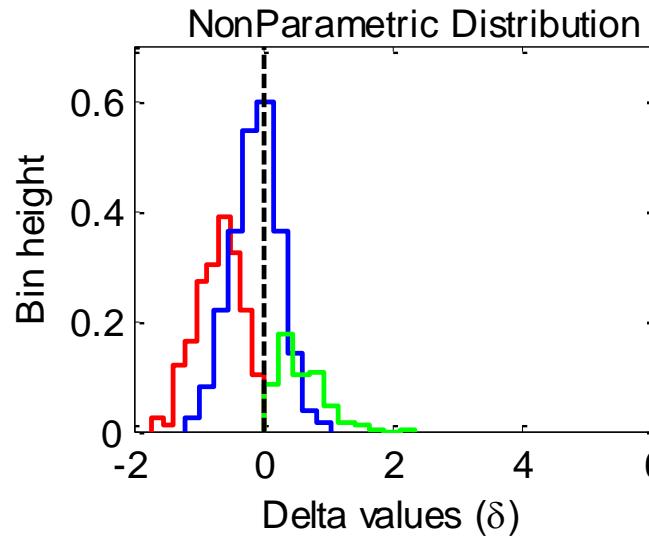
— Neg/Neg — Mixed — Pos/Pos

Error histograms — Convolution, 2 samples



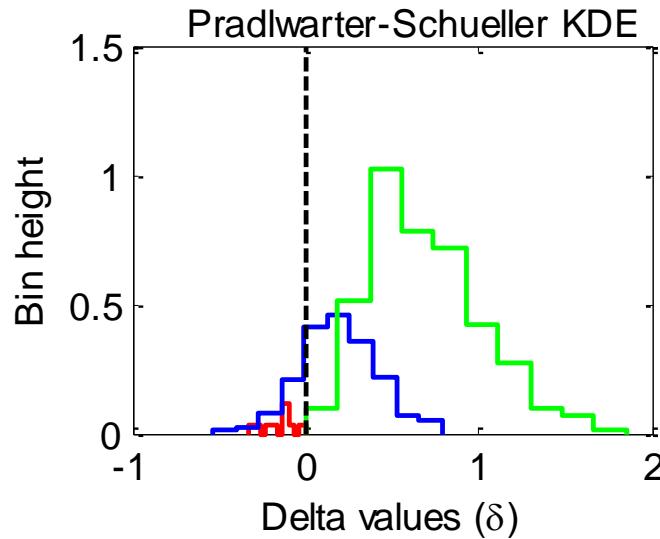
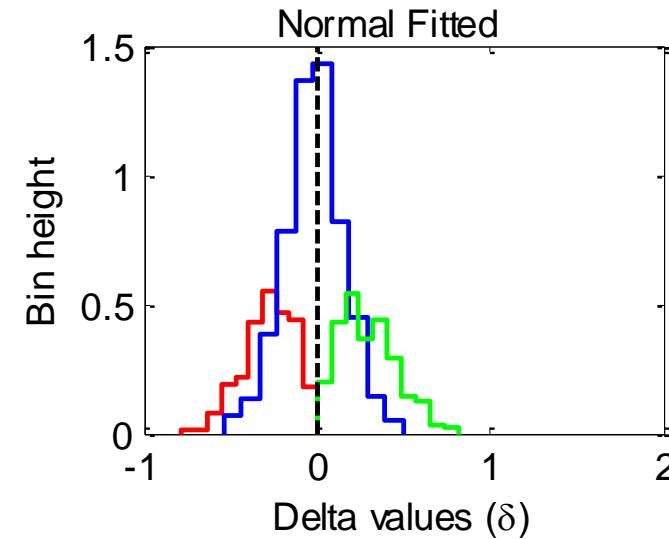
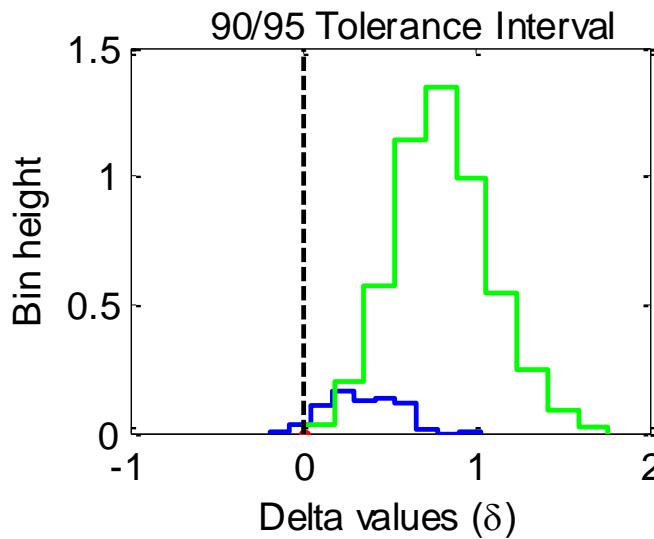
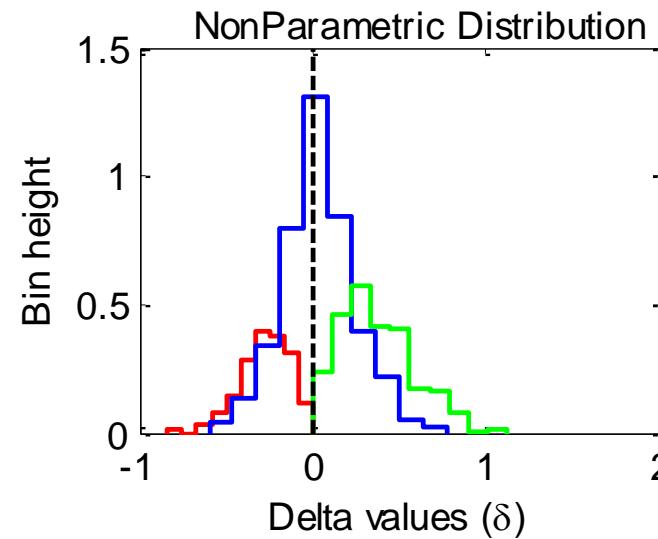
— Neg/Neg — Mixed — Pos/Pos

Error histograms — Convolution, 8 samples



— Neg/Neg — Mixed — Pos/Pos

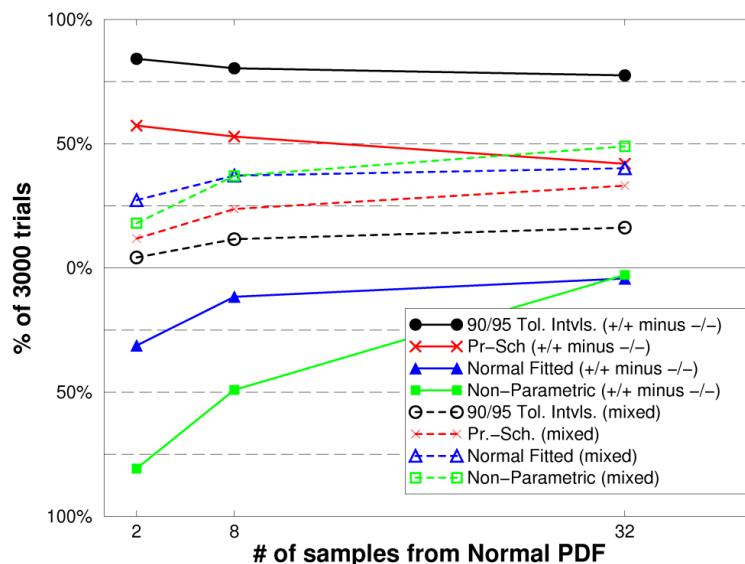
Error histograms — Convolution, 32 samples



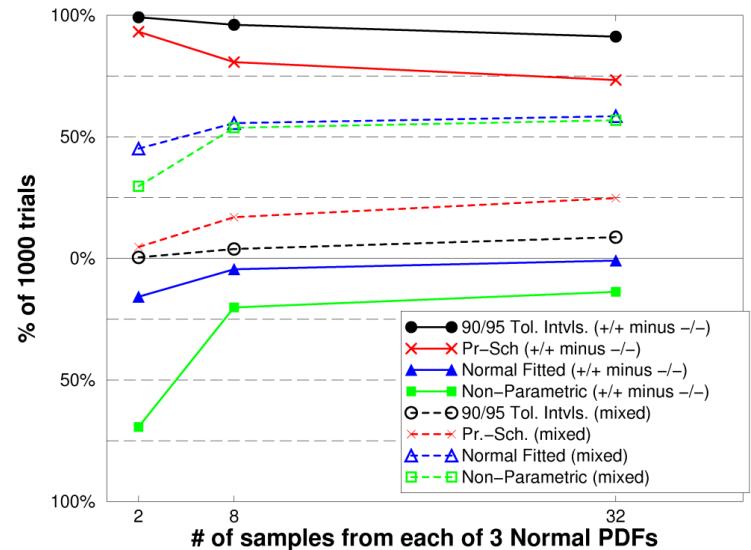
— Neg/Neg — Mixed — Pos/Pos

% of Errors in +/+, -/–, and mixed categories for each Method

Performance in Fitting Normal PDF



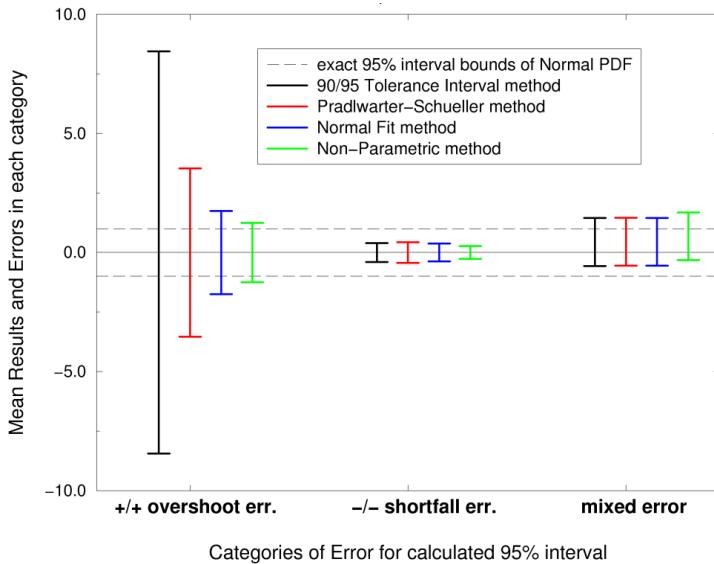
Performance in Convolution



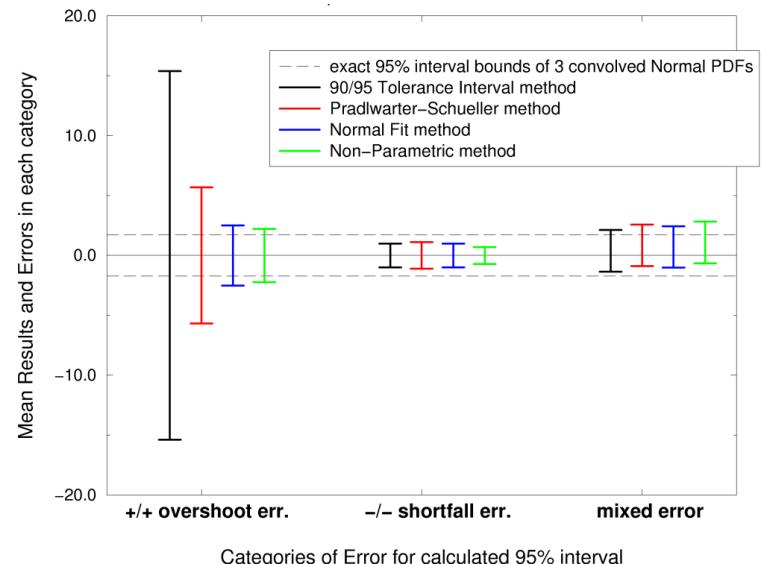
- The higher the solid lines in the graphs, the more net desirable results (%pos/pos results minus %neg/neg results) occurred.
- This desirability measure falls slowly for the better performers (Tol. Intervals and Pr-Sch) with increasing # of samples as the % of less desirable mixed results rises slowly (dashed lines). Proportions of +/+, -/–, and mixed results for Normal-Fit and Non-Para. mthds. improve w/ #samples but still net-undesirable even at 32 samples.
- These trends persist for performance in convolution, with slight improvement generally in desirability of percentages of results in the +/+, -/–, and mixed bins.

Mean Results and Error Magnitudes in each Category for each Method at n=2 samples

Performance in Fitting Normal PDF



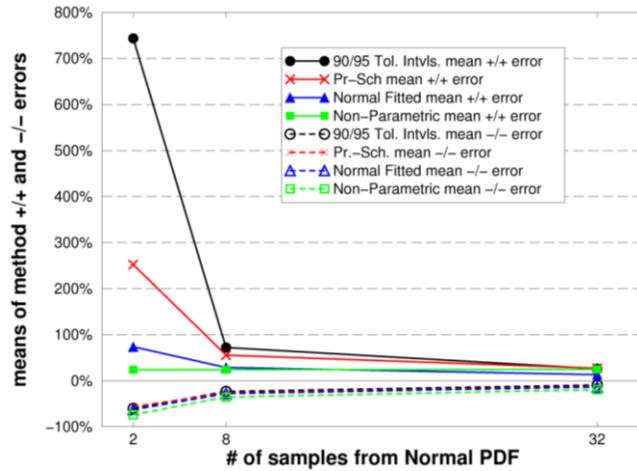
Performance in Convolution



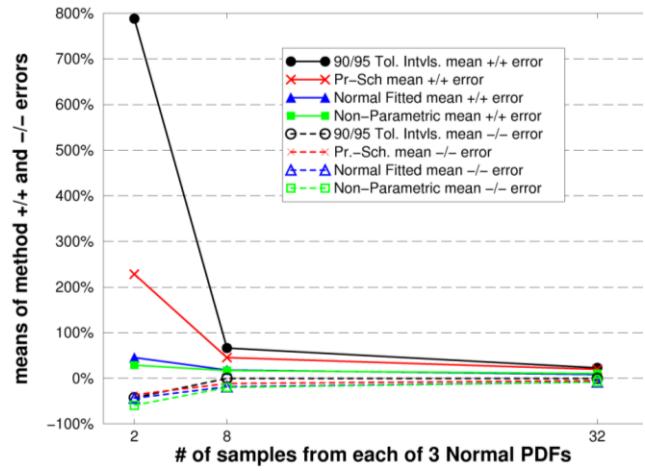
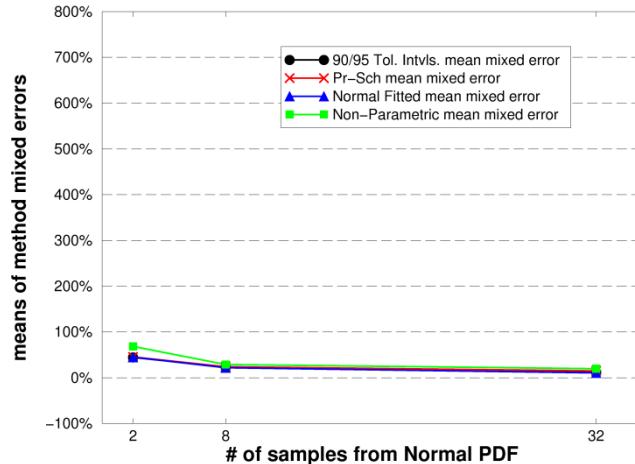
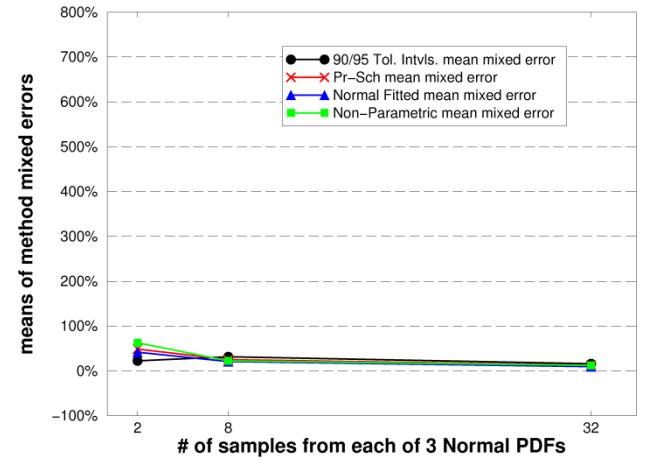
- Tol. Interval method has much larger average overshoot errors (in $+/+$ category) than all other methods, with Pr-Sch next largest, then Normal-Fit and Non-Para. Mthds.
- Tol. Interval method is least desirable in this performance objective, then Pr-Sch, then the Normal-Fit method, with the Non-Parametric method being most desirable.
- Method differences much smaller for $-/-$ shortfall errors and mixed $+/-$ and $-/+$ errors.
- Conclusions same for performance in convolution, where $+/+$ overshoot errors are generally slightly larger %wise, but the $-/-$ and mixed errors are generally smaller %wise (see next slide).

Mean %Error Magnitudes for each method vs. # of samples

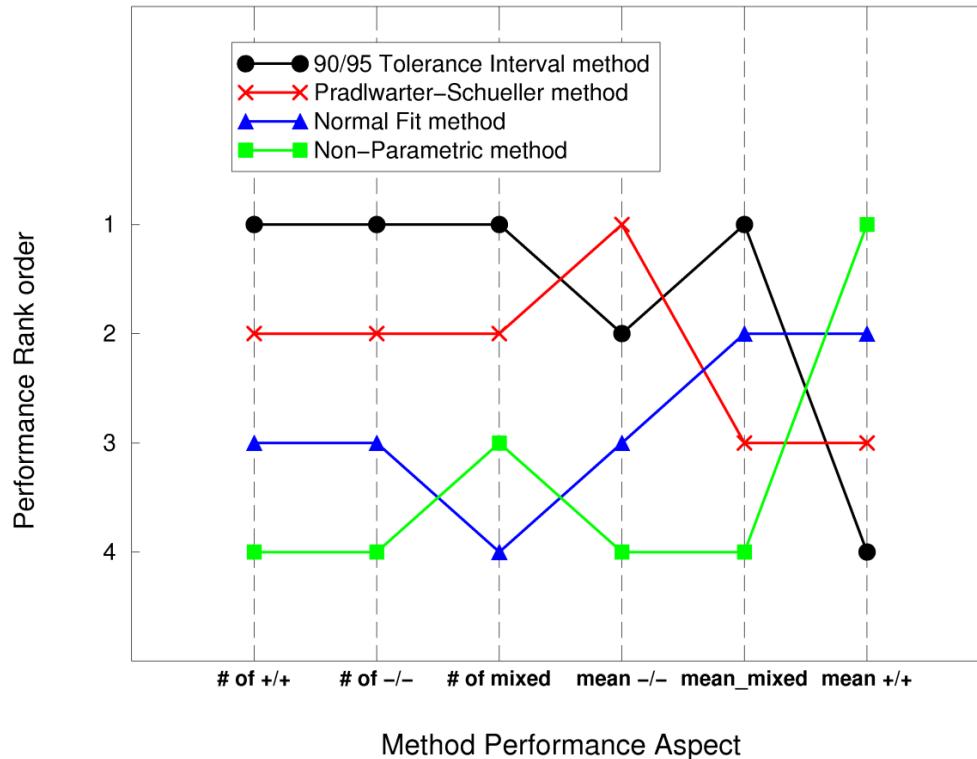
Performance in Fitting Normal PDF



Performance in Convolution



Zeroth-Order Ranking Scheme for Method Performance



- No method consistently best for all six performance attributes.
- Total score across all six attributes yields the following ranking:
1-Tol. Intervals, 2-Pr-Sch, 3-Normal Approximation, 4-Non-Parametric mthd.
- Method ranking on total score is robust whether maximum instead of mean errors are considered, or Normal PDF or Convol., or $n=2,8,32$.

Tentative Conclusions based on this Initial Partial Study (Normal PDFs)

- Tolerance Interval method performed best on balance according to the simple ranking scheme employed. The method is also very simple to use.
- However, the Zeroth-Order ranking scheme used is very simplistic:
 - weights all six attributes equally
 - only considers performance order in each attribute, not *how much better* one method performs vs. another.
- A different ranking could occur with a more sophisticated performance scoring system and when the other aspects of the fuller study are performed.
 - In particular, Pradlwarter-Schueller KDE generally performed well and at low # of samples has less egregious +/- overshoot errors than Tol. Intvls., but also has significantly less desirable +/- results and significantly more undesirable -/- & mixed results than Tol. Intvls. Implementation of the Pr-Sch method is also considerably more involved.
- The disadvantage of large Tol. Intvl. +/- overshoot errors relative to the other methods diminishes by 8 samples, but the advantage in terms % of net desirable results remains through 32 samples.
- The common practice of fitting a Normal distribution to the data underperforms even if the underlying PDF being sampled is Normal!
 - This common practice is inadequate for dealing with sparse data and should be abandoned in favor of the Tolerance Interval or Pradlwarter-Schueller KDE approaches.
- The presence of multiple sources of uncertainty in aggregation (convolution) does not substantially lessen the effect of method approximation errors in representation of the individual contributing PDFs.