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this

• This talk discusses characterization and treatment of uncertainty 
associated with random variability of stochastic materials, systems, and 
processes when limited samples of the randomness are available.

– pervasive and important problem in experimental data UQ and 
model validation or calibration to experimental data

• Sparse sampling introduces epistemic uncertainty that undermines 
accurate characterization of the quantity’s aleatory uncertainty (i.e., of 
its randomness as represented by a probability density function (PDF) 
or “variability distribution”)

• The view is therefore here taken that: 

– One should not endeavor for the impossible (accurate estimation of the 
underlying variability distribution from which the sparse samples come)

– Rather, a pragmatic goal is that the uncertainty representation should be 
conservative so as to bound a specified percentage of the underlying PDF

– An opposing goal (making this a difficult problem) is that the uncertainty 
representation not be overly conservative—i.e., should minimally
over-estimate the specified variability range of the true PDF.

Introduction and Motivation
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• Method 1: Fit the data with a Normal distribution

– An easy and very common approach used in engineering practice.

– But how well does it work?

• Method 2: Tolerance Intervals from classical statistics

• Method 3: PDF estimation by Pradlwarter-Schueller KDE (kernel 

density estimation) approach to fitting the data (slide follows)

• Method 4: PDF estimation by Sankararaman-Mahadevan “Non-

Parametric” PDF fit to the data (slides follow)

• Evaluation criteria:
– how well the approaches perform on the two stated objectives:

• conservative but not overly conservative

• assess on illustrative problem:
– estimate 95% PDF coverage range (central 0.95 percentile)

of exact PDFs from which data samples are drawn

– ease of implementation and use for engineering practice

Four Methods Tried for Sparse-Data 

Uncertainty Representation
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• Approach

– calculate the standard deviation σ of the data

– multiply σ by appropriate factor f from statistical tables

– create interval bars of extent f σ about the mean µ of the data: µ ± f σ

– 0.9/0.95 Tolerance Intervals — in this study, the factors f correspond to 

approximate 90% confidence that the produced tolerance interval 

encompasses the central 95-percentile range (between the 0.025 and 

0.975 percentiles) of the true PDF

• Very simple to use in practice

Classical Tolerance Interval Method for 

Dealing with Sparse Data

# samples f0.9/0.95

2 18.80 

4 4.94

8 3.26

12 2.86

20 2.56

30 2.41

40 2.33

∞ 1.96



• Kernel Density Estimation (KDE) is a technique used to estimate the density 

of a random variable X given n independent samples X1, ..., Xn of it.1

• We used a Gaussian Kernel

• KDE is very sensitive to the bandwidth, h.  Bandwidth estimation typically 

involves optimization (e.g. maximize  a cross-validation likelihood)

• For small samples, we used the approach in Pradlwarter and Schuëller:

find h to satisfy a fixed probability: 

1.  Figure taken from http://en.wikipedia.org/wiki/Kernel_density_estimation
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Pradlwarter, H.J., and G.I. Schuëller, ―The use of kernel densities and confidence intervals to 

cope with insufficient data in validation experiments,‖ Computer Methods in Applied 

Mechanics and Engineering.  Vol. 197, Issues 29-32, May 2008, pp. 2550-2560.

Pradlwarter-Schueller KDE Method for 

Dealing with Sparse Data



Non-parametric Approach

• Discretize the domain of X θi, i = 1 to Q

• PDF values at each of these Q points

– fX(x= θi)= pi for i = 1 to Q

• Interpolation technique (cubic splines used here)

• Construct likelihood as a function of:

– Discretization points θi selected, i = 1 to Q

– Corresponding probability density function values pi

– Type of interpolation technique

• Maximize Likelihood L(p) where p = {pi ; i = 1 to Q) subject to applicable 
constraints

– Estimate f(x)
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Shankar Sankararaman & Sankaran Mahadevan, ―Likelihood-based 

representation of epistemic uncertainty due to sparse point data and/or interval 

data,‖ Reliability Engineering and System Safety, doi:10.1016/j.ress.2011.02.003.

Sankararaman-Mahadevan Method for 

constructing a PDF from Sparse Data

Probability Density Function



Illustrative PDFs or 95% Intervals from 

the Four Methods + a Matlab-KDE Method 

 Three instances of 2 samples 

from a Normal PDF

 2 samples “close” together

 2 samples “far” apart

 2 “intermediately” spaced

far

inter

med.close



Illustrative 95% Intervals from the Four Methods

− 20 trials per method, 8 random samples of a Normal PDF per trial

• Tol. Intvls. most conservative, then Pr-Sch, Normal Fit, and Non-Para.



The Larger Test Matrix

• 1000 trials of each method for fitting sample 

data from each of: 

– normal PDF

– right-triangular PDF

– uniform PDF

– Convolutions of these PDF types (figure at 

right) acting as three equally dominant 

sources of random uncertainty in a linear 

system.

Answer question: does the presence of 

multiple sources of uncertainty smooth 

or mitigate the errors in representing the 

individual PDFs?

• Fit the data for sample sizes of

n = 2, 8, 32 for each PDF

• Initial results reported here and in the paper 

are for Top Row of figure only
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Glimpse of 95% Intervals from the Four Methods

− 20 trials per method, 2 random samples of a Normal PDF per trial

• Method results differ greatly for low numbers of samples.



Glimpse of 95% Intervals from the Four Methods

− 20 trials per method, 8 random samples of a Normal PDF per trial

• Interval estimation improves markedly as # of samples increases to 8.



Glimpse of 95% Intervals from the Four Methods

− 20 trials per method, 32 random samples of a Normal PDF per trial

• Differences in method performance diminish for “large” # of samples.



Quantification of Error of 95% Intervals 

produced by the various methods

∆U-i

∆L-i

rL-i

rL-exact

exact percentile 
range from true 
PDF

rU-exact

rU-i

percentile
range from 
estimation 
method

• Interval estimation error is quantified and 

put into one of three bins as follows:

 +/+ or pos/pos error (both ∆U and ∆L in  

schematic at right are positive)

• estimated interval exceeds true 95% 

range at both top and bottom (estimated 

interval encompasses true interval)

• most desirable according to objective

 +/− or −/+ “mixed” error (∆U and ∆L 

are of opposite sign)

• estimated interval encompasses true 

95% range at one end, but falls short at 

other end

• less desirable

 −/− or neg/neg error (both ∆U and ∆L 

are negative)

• estimated interval falls short of true 95% 

range at both top and bottom

• least desirable



Error histograms — Normal PDF, 2 samples
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Error histograms — Normal PDF, 8 samples
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Error histograms — Normal PDF, 32 samples
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Error histograms — Convolution, 2 samples
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Error histograms — Convolution, 8 samples
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Error histograms — Convolution, 32 samples

-1 0 1 2
0

0.5

1

1.5

Delta values ()

B
in

 h
e
ig

h
t

Pradlwarter-Schueller KDE

-1 0 1 2
0

0.5

1

1.5

Delta values ()

B
in

 h
e
ig

h
t

Normal Fitted

-1 0 1 2
0

0.5

1

1.5

Delta values ()

B
in

 h
e
ig

h
t

90/95 Tolerance Interval

-1 0 1 2
0

0.5

1

1.5

Delta values ()

B
in

 h
e
ig

h
t

NonParametric Distribution

-1 0 1 2
0

0.5

1

1.5

B
in

 h
e
ig

h
t

Pradlwarter-Schueller KDE

-1 0 1 2
0

0.5

1

1.5

B
in

 h
e
ig

h
t

Normal Fitted

-1 0 1 2
0

0.5

1

1.5

Delta values ()

B
in

 h
e
ig

h
t

90/95 Tolerance Interval

-1 0 1 2
0

0.5

1

1.5

Delta values ()

B
in

 h
e
ig

h
t

NonParametric Distribution

 

 

Neg/Neg Mixed Pos/Pos



% of Errors in +/+, −/−, and mixed 

categories for each Method

Performance in ConvolutionPerformance in Fitting Normal PDF

• The higher the solid lines in the graphs, the more net desirable results (%pos/pos 
results minus %neg/neg results) occurred. 

• This desirability measure falls slowly for the better performers (Tol. Intervals and 
Pr-Sch) with increasing # of samples as the % of less desirable mixed results rises 
slowly (dashed lines). Proportions of +/+, −/−, and mixed results for Normal-Fit and 
Non-Para. mthds. improve w/ #samples but still net-undesirable even at 32 samples.

• These trends persist for performance in convolution, with slight improvement 
generally in desirability of percentages of results in the +/+, −/−, and mixed bins.



Mean Results and Error Magnitudes

in each Category for each Method

at n=2 samples

Performance in ConvolutionPerformance in Fitting Normal PDF

• Tol. Interval method has much larger average overshoot errors (in +/+ category) than 
all other methods, with Pr-Sch next largest, then Normal-Fit and Non-Para. Mthds. 

• Tol. Interval method is least desirable in this performance objective, then Pr-Sch, then 
the Normal-Fit method, with the Non-Parametric method being most desirable.

• Method differences much smaller for −/− shortfall errors and mixed +/− and −/+ errors.

• Conclusions same for performance in convolution, where +/+ overshoot errors are 
generally slightly larger %wise, but the −/− and mixed errors are generally smaller 
%wise (see next slide).



Mean %Error Magnitudes for

each method vs. # of samples

Performance in ConvolutionPerformance in Fitting Normal PDF



Zeroth-Order Ranking Scheme for 

Method Performance

• No method consistently best for all six performance attributes. 

• Total score across all six attributes yields the following ranking:
1-Tol. Intervals, 2-Pr-Sch, 3-Normal Approximation, 4-Non-Parametric mthd.

• Method ranking on total score is robust whether maximum instead of 
mean errors are considered, or Normal PDF or Convol., or n=2,8,32. 



this

• Tolerance Interval method performed best on balance according to the simple 
ranking scheme employed. The method is also very simple to use.

• However, the Zeroth-Order ranking scheme used is very simplistic:

– weights all six attributes equally

– only considers performance order in each attribute, not how much better one method performs vs. 
another.

• A different ranking could occur with a more sophisticated performance scoring 
system and when the other aspects of the fuller study are performed.

– In particular, Pradlwarter-Schueller KDE general performed well and at low # of samples has less 
egregious +/+ overshoot errors than Tol. Intvls., but also has significantly less desirable +/+ results 
and significantly more undesirable −/− & mixed results than Tol. Intvls. Implementation of the Pr-
Sch method is also considerably more involved.

• The disadvantage of large Tol. Intvl. +/+ overshoot errors relative to the other 
methods diminishes by 8 samples, but the advantage in terms % of net desirable 
results remains through 32 samples. 

• The common practice of fitting a Normal distribution to the data underperforms
even if the underlying PDF being sampled is Normal! 

– This common practice is inadequate for dealing with sparse data and should be abandoned in 
favor of the Tolerance Interval or Pradlwarter-Schueller KDE approaches.

• The presence of multiple sources of uncertainty in aggregation (convolution)
does not substantially lessen the effect of method approximation errors in  
representation of the individual contributing PDFs.

Tentative Conclusions based on this

Initial Partial Study (Normal PDFs)


