

Pore-scale investigation of mixing-induced calcite precipitation and dissolution kinetics in micromodel experiments

Hongkyu Yoon

Geomechanics, Sandia National Laboratories, Albuquerque, NM, USA

Charles J. Werth

Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Albert J. Valocchi

Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Thomas Dewers

Geomechanics, Sandia National Laboratories, Albuquerque, NM, USA

Pore-scale experiments on transverse-mixing induced calcite reactions in a micromodel are being used as a basis for understanding coupled reactive transport systems perturbed by geological CO₂ injection. Pore-scaling modeling captures governing physics of crystal morphology and growth patterns very well and pore-scale observations in the micromodel are well linked to nano-scale observations in the literature. Progress on novel methods for upscaling reaction rates from nano-scale observations and hybrid pore-continuum scale model are discussed.

Hongkyu Yoon and Thomas Dewers were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.