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Key Objectives and Approach
Use analytical tools, computer models, and

testing to investigate:
« Component and system performance (small scale)
- What happens when energy is extracted from a

system (large scale)

Outcome

1. Reduce costs for MHK build out with predicative simulations
2. Understanding environmental limits to MHK development
3. Provide MHK specific data sets and assessment tools

Optimize for maximum energy capture with
minimum environmental impact
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MHK Technology Development
Task Structure*

1.3.1 WEC Systems 1.3.2 Current/Tidal Systems

WEC Device Modeling Single Turbine Performance

Modeling
WEC Arrays Array Performance Modeling
Wave Environment Large Scale Hydrology
Hydrology Modeling for Inflow

Turbine Design

*SNL is also the lead for modeling and testing activities in
Reference Model (1.2.5), Market Acceleration (2.1.X) and
1.4.1 Testing and Evaluation tasks
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Single Turbine Performance Modeling
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"CACTUS (Code for Axial and Cross-flow
TUrbine Simulation) Overview

® Marine turbine performance simulation

m Potential flow representation of fluid dynamics

- Lifting-line element description of blade

- Free vortex lattice description of wake

- Panel elements used on boundaries (bottom and free surface)
= VDART3 heritage

- SNL free vortex wake code for Darrieus wind turbines
® Fortran 95 implementation

- Modular code structure
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Rotor Geometry

m Can model both axial
and cross-flow rotors

A
__ chord(s) m General user-specified
(%) chord (s) geometry interface is

R planned

= |

a) Axial turbine blade  b) Cross-flow turbine blade
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Blade Element Metod

m Blade loads from empirical data

Wake vortex 1_('_1-‘
]l H . . . .
tice Y\~ - Steady 2D airfoil data including non-

e rsc . linear effects
¢ C 9 - Attached flow dynamic effects from
pitching flat plate theory
) 1
Ip = EEUCL - Additional models for dynamic stall

effects

m Blades represented as lifting lines
- Bound vorticity on each element given by Kutta-Joukowski theorem
- Spanwise variation in bound vorticity creates trailing wake vorticity
- Temporal variation in bound vorticity creates spanwise wake vorticity

m Bound and wake vorticity model effects of rotor on fluid flow
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m Visualizations of velocity field
and vortex filament traces.

R (Streamwise Direction)
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“Progress and Future Enhancements

Wave Pattern . Point Disturbance . Fnp =06

®m Progress

m Free Surface Verification
m Validation with Sandia 34 Meter VAWT
m Future Activities

m Cavitation onset prediction
- Significant damage is possible for blades operating in cavitating flow
- Onset when fluid pressure reaches vapor pressure
m Panel element blades
- Full description of blade geometry and near field flow
- May be necessary for high solidity rotors
m Acceleration of wake influence calculations
- Wake velocity influence calculation is very expensive
- Parallel implementation on GPU
&% - Calculation easily ported using CUDA programming language
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Array Performance Modeling

(171) Santia Nationa Laboratries




P ———

pdated EFDC Model

SNL-EFDC

Remains Public Domain
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e Turbine energy extraction is

manifest as:
» Decreased momentum
= Altered (usually increased)
turbulent kinetic energy
= Increased turbulence
dissipation rate (turbulent
length scale)

e These quantities (momentum f

and K-¢g) are advected and
dispersed downstream
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~ Momentum Sink: Turbine

1

PMHK = ECT Ak PY 3

1
SQ —~ _ECTAI\/IHKU 2
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Single Turbine Model —
Momentum Sink Only

Velocities
1.916 [Time 0.007] 2.007

MHK Device -- .

Magnitude (m/s)
Depth Averaged
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K— & Modifications: Turbine

Empirical constants

Katul, G. G, L. Mahrt, D. Poggi, and C. Sanz (2004), One- and
two-equation models for canopy turbulence, Boundary-
Layer Meteorology, 113, 81-109. L e
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Single Turbine Model -

K—e Sinks Included

Velocities
1.961 [Time 0.015] 2.003

MHK Device - - .

Magnitude (m/s)
Depth Averaged

Realistic fluid energy loss/wake behavior
Verified with Meyer and Bahaj, 2010
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"Model Domain: Turbine Array Optimization

General Model Conditions

* Grid is 840 m by 4,200 m

e Cellsare 10 mx 30 m

10 vertical layers

« Channel full top width is 840 m
» Bottom width is 600 m

 Max depth is 30 m

Turbine Geometry

30 7\ Flood Stage at Q=42,500 m*/s /
25 1 \ Q=40,000mfs; Vo=22mfs; V= 26m/s /
\ qQ=30,000m/s; V, = 19m/s; V.= 2.2m/ /
0 Q=20,000 75V, = TS T/5 Vo = LTS
E \ /
'§ 15 \ Q=10,000 35 Vo= 0.9 s Vo= 10/ /
0 Q=5,000m/s; V=061 m/s; Vo, =071 m/s
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800

Specific Model Conditions

e Flow is constant 20,000 m3/s

*U,=1.6m/s
» Top width is = 750 m
» Max depth is = 20 m
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0.5 Platform Spacing

1.0 Platform Spacing
1.5 Platform Spacing

2.0 Platform Spacing

2.5 Platform Spacing

3.0 Platform Spacing




Normalized by power output from 1 Platform near center of channel

fects of Horizontal Turbine Spacing

400
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Preliminary .
! Results —
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* The ‘left’ turbines
are affected by
horizontal velocity
profile (slower flow
nearer to bank).

* An increase in
power (above a single
platform by itself) can
be seen as the
turbines are placed
further apart (helping
each other).
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Vegetation Map

0

36 total turbines

12 turbines/array




Large Scale Hydrology
Modeling for Inflow
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Maississippi River, Scotlandville Bend

{

Velocities
[Time 0.158] 2
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Scenario 3

o
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Scenario 2

() Sandia National Laboratories



Maississippi River, Scotlandville Bend

Velocities | [ Velocities
0 [Mme0iss] 2 i 0 [Tme0167] 32
Magnitude {mis) = Magnitude (mis) I

Dopth Averaged | is | Dopth Averaged

Velocitiesfield with the model forced gEi:iiics Velocities field with the model
upstreamwith 20,000 m3/s. No MHK i forced upstream with 20,000
included. m3/s. MHK locations

S corresponding with Scenario 2.
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Wave Environment Hydrology

(171) Santia Nationa Laboratries




,-”'{/’h
WAN and WaveWatchlll — Wave Modeling

e NWW3 - NOAA operational wave model
= Generate deepwater offshore wave conditions

e SWAN - Simulating WAves Nearshore (Delft)
» Propagation of deepwater waves into nearshore

o Refraction, diffraction, shoaling, energy dissipation, breaking

G]Obal Hawa“ Maui Wave height (m) 500 m
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EFDC - Flow and Transport

* EPA open-source code
e Curvilinear orthogonal grid

* Coupled-equation solution
o Mlass conservation
= Momentum conservation
o K-& conservation
o Temperature transport
a Salinity transport
o Dye transport

* Links with SWAN time-series

Shear Stress (dynes/cm?)
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Monterey Bay, CA
Model Domain
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MHK Technology Development
Task Structure*

1.3.1 WEC Systems 1.3.2 Current/Tidal Systems

WEC Device Modeling Single Turbine Performance

Modeling
WEC Arrays Array Performance Modeling
Wave Environment Large Scale Hydrology
Hydrology Modeling for Inflow

Turbine Design

*SNL also modeling and testing activities in Reference
Model and Market Acceleration tasks
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SEDZLJ - Sediment Dynamics

Flumes necessitated the development of improved model

e Simultaneous treatment of cohesive and non-cohesive sediments

* Erosion — Based on site-specific flume data

e Transport — Bedload and suspended load  sediment Model - Cedar Lake
e Bed armoring and consolidation ot Suspended Sedmrt Concenton (ngL)

* Bed-slope effects

e Multiple sediment size classes
 Slope dependence

e Cohesive bed consolidation
 Morphological feedback to flow
e 3-D sediment bed
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