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MotivationMotivation

Goal : Study electron interactions in 1 dimensional systems

 Address multiple 1D subbands regime

 Electron hole asymmetry

 Luttinger liquid theory

Tool : Coulomb Drag measurement

 Direct probe of electron-electron interactions

How : Independent and vertically-coupled quantum wires

 Direct control of the 1D subband occupancy in each wire 
independently

 Smaller inter-wire separation without tunnelling

• Stronger drag signal

• Stronger coupling between the wires

• Smaller influence of phonon drag
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Sample design and fabricationSample design and fabrication

2 �m

• Use 18 nm wide double  quantum well heterostructures with a 15 nm barrier. 

• Fabricated through an Epoxy-Bound And Stopped-Etch technique*

• Fabricate 4.2 �m long vertically-coupled quantum wires

Gates design Gates activated

* M. V. Weckwerth et al. Superlatt. Microstruct. 20, 561 (1996).
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Wires characterizationWires characterization

• Non-ballistic quantum wires 

 After substracting a series resistance, even plateau-like features spacing
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Wires characterizationWires characterization

Upper wire derivative Lower wire derivative

Tracking of the 1D subbands over a large range of gates voltage
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General Coulomb drag measurementsGeneral Coulomb drag measurements

Measured quantity : transresistance

RD =
Idrive

- Vdrag

Vdrag

Idrive
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Coulomb drag resultsCoulomb drag results

• Peaks in the drag signal as 1D 
subbands gets depleted.  
(Previously observed by 
Debray et. al.1)

• Low-density negative drag 
observed when Nwires < 1 
(Previously observed by  
Yamamoto et. al.2)

• Re-entrant negative drag at the 
1st plateau-like feature of the 
drag wire

 Never observed 
previously !1 P. Debray et al., J. Phys. Condens. Matter 13, 3389 (2001).

2 M. Yamamoto et al., Science, 313, 204 (2006).
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Consistency test for Coulomb dragConsistency test for Coulomb drag

• Linear with drive current

• Drag resistance is independent of frequency

• No DC response is measured in the drag wire while 
sending an AC drive current 
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Mapping of the Coulomb dragMapping of the Coulomb drag

• Features in the drag signal can be tracked over large range of gate voltages

• Line up with subband occupancy mapping of the wires
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Interpretation of reInterpretation of re--entrant negative drag entrant negative drag 

• Low-density negative drag : heuristically attributed to Wigner crystallization

• Re-entrant  negative drag occurs at density too high for typical

Wigner crystallization

• Possible explanations : 

 Gate-dependent enhancement of electron-hole 
asymmetry coupled with non-monotonic increase in 
transmission probability of electrons along wire.1

 Local hole-like  dispersion relation in the quantum 
wires band structure

1 A. Levchenko and A. Kamenev, Phys. Rev. Lett. 101, 216806
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Conclusion and future plansConclusion and future plans

Future plans 

• Measure temperature dependence of Coulomb drag in vertical 
structures

• Measure Coulomb drag in devices with a smaller interwire

separation

First vertically coupled quantum wires with :

 Independent control over subbands occupancy

 Independent contacts to each wire

Coulomb drag measurements

 Study drag with multiple 1D subbands regime

 Reproduce qualitatively other 1D drag experiments

 Observe a new re-entrant negative drag regime at high density
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General Coulomb drag measurementsGeneral Coulomb drag measurements
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