SAND2011-2348C

On Source Code Transformations for Steganographic Applications

Geoffrey Hulette

Computer and Information Science Department

University of Oregon
Eugene, OR, USA
ghulette @cs.uoregon.edu

Abstract—The amount of source code publicly available on
the Internet makes it attractive as a potential message carrier
for steganographic applications. Unfortunately, it is often over-
looked since preserving semantics while embedding information
in an undetectable way is challenging. To encourage discussion
of new and useful techniques, we investigate term rewriting
transformations as a method for embedding messages into
program source code.

We elaborate on several possible transformation strategies
and discuss how they can be applied in a general stegano-
graphic setting. We continue with a discussion on (a) the
implications and trade-offs of preserving original semantic
properties, (b) the relationship between messages and transfor-
mations, and (c¢) how to incorporate existing natural language
processing techniques. The goal of this work is to elicit
constructive feedback and present ideas that stimulate future
work.

Keywords-steganography; source code transformations; term
rewriting;

I. INTRODUCTION/MOTIVATION

The field of steganography studies techniques for em-
bedding information into inconspicuous carriers such that
outside observers cannot easily detect the presence of this
information. One typical application scenario is the discreet
transfer of secret messages between two parties. For ex-
ample, in a country forbidding anti-government rhetoric, its
citizens could communicate by transmitting sensitive mes-
sages embedded in image files. A second scenario, document
watermarking, is a digital rights management method for
determining if copies of media are unauthorized.

In both scenarios, the same steganographic techniques
can, in principle, be applied to embed watermarks or secret
messages, e.g., information is embedded into bitmapped
images by manipulating the low-order bits of each pixel.
Beyond the image example, techniques exist for a wide
range of carriers including: video [1], audio [2], [3], natural
language text [4], and binary executables [5].

One document type often overlooked as a potential
steganographic carrier is source code. This oversight is partly
due to the challenge of preserving semantic correctness
while simultaneously making the embedded information
difficult to detect. For instance, adding dummy methods
never referenced by the original source preserves program

John Solis
Scalable Computing R&D Department
Sandia National Labs
Livermore, CA, USA
Jjhsolis@sandia.gov

semantics, but will likely be identified as suspicious by an
analyst. Why, therefore, is source code an attractive carrier?

The number of publicly available source code reposi-
tories has exploded with the advent of the Internet and
open source software. The total amount of available source
code is staggering once we consider everything from large
repository websites, e.g., SourceForge [6], to individually
maintained repositories and instructional websites including
sample source code. PlanetSourceCode.com alone claims
a database containing over 29 million lines of code [7].
This makes source code an attractive information carrier
because it is likely to be overlooked or dismissed by analysts
— especially if the communicating users have a computer
science or programming background.

In this paper, we investigate some novel techniques for
embedding messages into program source code using term
rewriting transformations. We look into three general ap-
proaches to encoding the transformation and show how each
could potentially be applied in a steganographic setting. We
continue with a discussion on preserving semantic proper-
ties, the relationship between messages and transformations,
and how these techniques can be used in conjunction with
existing natural language processing techniques. We con-
clude with some ideas for potential future work.

II. TERM REWRITING

Our method encodes a secret message in a log of transfor-
mations applied to a given source code text. Crucially, the
transformation must be deterministic, so that the message
can be reliably recovered. At the same time, the trans-
formation must be flexible enough to admit encodings of
a wide variety of messages. Term rewriting [8] gives a
convenient framework and theory for specifying program
transformations. Term rewriting systems are flexible enough
for our purposes, and can be restricted to deterministic
transformations.

A term is an n-ary tree structure representing, in this
case, a program’s source code. Each node is labeled with
a constructor, and may have zero, one, or more children.
Terms are versatile data structures, and are particularly
good for encoding abstract syntax trees. For a programming
language like C or Java, valid terms should be well-defined



with respect to the language syntax. In general there may be
many different ways to construct a term encoding for a given
language — deciding on a consistent and comprehensive term
representation is typically the first step in any term rewriting
exercise.

Term rewriting is a procedure for transforming one term
into another. Primitive rewriting transformations are called
“rules.” A rule contains two components — the first is a
pattern, which is matched against the top-level (outermost)
term, and the second is another term which is used to replace
the input term. Rule application may fail if the pattern does
not correspond to the input. If the application matches, the
rule application succeeds, and the second component of the
rule is the result of the transformation. Primitive rules will
typically allow variables in the pattern, which are bound as
a side-effect of a successful match and can be used in the
rule’s result term.

Given a set of primitive rules, we must then provide a
strategy to apply them. In particular, since primitive rules
apply only at the outermost term, we need a way to apply
them to sub-terms. We also may want to control how many
times to apply a rule in a given term, or other aspects of
the transformation. The most general strategy is to apply
rules non-deterministically, as many times as possible, and
at every sub-term where they may apply; this strategy is
called reduction. Reduction is problematic for stenography
because it may be non-terminating and non-deterministic
in general. We suggest the use of explicit, deterministic
strategies created using rule combinators. An example of
one such set of combinators follows.

A. System S

System S [9] is a core language for term rewriting
strategies. It provides a number of simple combinators that
allow primitive rules to be composed into complex program
transformation functions. For example, the sequence com-
binator allows us to apply two rules in sequence, with the
second rule acting on the output of the first. Similarly, the
left choice combinator will attempt to apply the first rule,
and only try the second rule if the first rule fails. Crucially,
System S permits us to preclude non-deterministic strategies
by eschewing the pure choice combinator, as described
in [9].

To support steganographic applications, we extend System
S with tracing semantics to record rule applications. First,
we assert that primitive rules must be labeled. Second,
successful application of a primitive rule is logged (i.e. its
label recorded) sequentially, in the order of application. The
labels of the rules thus form the alphabet for the obfuscated
message, and the trace itself forms the message string. We
omit the formal semantics for lack of space.

System S treats failure as a special case. It is possible
for a given program in System S to fail, indicating that
no rules were successfully applied and the program was

1 S - 2
m
Figure 1. One-way transform

not transformed. All failures in System S are represented
by a single distinguished token in lieu of a transformed
program, and there is no trace output. For the purposes of
steganography failure could be considered a valid message,
albeit with exactly one form.

III. METHODS

Now we will examine some ways in which the above
machinery might be put to steganographic use. We consider
three separate scenarios. In each of following scenarios, let
F, G, etc. represent term rewriting programs in System S as
described above, let z, y, etc. range over term encodings of
some program source code, and let m, n etc. range over trace
outputs. We write x EN (z',m) to say that the application
of rewriting program F' to the term representation of source
code z is successfully rewritten to another term z’ with trace

. F - . .
m. We write x — | to indicate that the transformation failed.

A. One-way transform

In the first scenario, we construct a transformation F' and
a source code term = such that z = (2',m) where 2z’ is a
valid transformed program and m is the desired obfuscated
message. We expect that F' would be communicated between
sender and recipient through some back channel, and that the
source code x would be available publicly or transmitted
through some low security channel. To recover the message
the recipient simply evaluates the transformation. See Fig-
ure 1 for a graphical illustration.

This approach is conceptually simple, but has the draw-
back that F' must be communicated separately.

B. Two-way transform

In the second scenario, we construct a transformation
F and term z as before, such that = - (z',m) where
x' is a valid transformed program and m is the desired
message. We add the constraint that there must exist a

. F !
transformation F'~! such that 2’ "— (x,m~!), where m~!

is the mirror (reversed) string m. Conceptually, F'~! is the
inverse transformation of F. Under certain conditions and
with some restrictions (beyond the scope of this paper, and
a topic of ongoing research), given F' we can produce F~!
or vice versa.

The advantage of this approach over the first is that the
original source code need not be distributed. Instead, just
the transformed code 2’ can be publicly distributed, and the



m

Figure 2. Two-way transform

2 — 1 = f
S)=m
f@)=m
Figure 3. Recover transform function

message recovered by transforming it with F~! and then
simply reversing the resulting trace to recover the message
(see Figure 2). This may be desirable in cases where,
for whatever reason, the original source code represents
sensitive information. In this case, our method may be used
to obfuscate the original source code in addition to the
message itself.

C. Recover F from differences

In our third and final scenario, the transformation F' is not
communicated, but instead is recovered by examining the
diflfwerences between two terms x and z’ constructed so that
x — (2’,m) (see Figure 3). Notice that in this case, F' must
be unique — that is, if = EN (z',m) and x i (z',n) then we
require that /' = G (and, consequently and crucially, that
m =n).

The advantage of this approach is that there is no need
for a second channel to communicate F', since it can be
recovered from source code alone and then used to transform
x and recover m.

The difficulty of recovering F' from z and 2/, as well
as the restrictions involved, is a topic of ongoing research.
This scenario is therefore presented mainly for theoretical
interest.

IV. DISCUSSION
A. Semantic Properties

In some cases it may be useful to preserve the semantics
of programs under transformation. This would be desirable,
for example, if we foresaw the source code being inspected
for legitimacy — in this case, preserving or mostly preserving
the semantics of the code could make it appear that the
transformation was applied in the service of software devel-
opment rather than steganography. Conversely, a program
that has been transformed in such a way as to render
it broken, inefficient, or nonsensical may invite unwanted
scrutiny.

Ensuring full preservation of program semantics un-
der transformation is quite difficult, even without ulterior
steganographic motives. Adding the constraint that the trans-
formation must also induce a particular message makes the
problem even more so. We expect that this will be an
interesting area for future work.

B. Constructing Messages

We have not fully addressed the question of how to
construct a transformation I’ and source code x so as
to induce a particular, desired message m. This might be
especially difficult if we were given a fixed value for either
xz or F' in addition to m and asked to provide the single
missing element. We expect this case could be a common
one — for example if we wanted to embed a message in an
existing, publicly available code. Even if we are allowed to
choose both F' and x, we currently do not have a procedure
to construct them given m. This is an area of ongoing work.

C. Combining with Natural Language Processing

The methods discussed above naturally lend themselves
to being combined with natural language processing (NLP)
techniques. The Semantilog Project [10] is a comprehensive
bibliography of linguistic steganographic techniques, both
theoretical and applied, for a number languages, including
English, Japanese, Chinese, Persian, and Arabic. In our
context, we treat NLP steganography as a black box capable
of embedding information into the comments and other
documentation found in source code files. The specific in-
stantiation, which may be based on a particular programming
language or documentation style, is irrelevant.

The basic idea is to use existing NLP steganography tools
to create a second information channel in the source text.
Combined with the term rewriting information channel, we
can now use the two separate channels to (a) duplicate the
embedded message or (b) apply cryptographic secret sharing
techniques to split the message.

The first approach improves the robustness of message
recovery. Ideally, the techniques applied to each individual
channel will already be fairly robust, i.e., small changes
do not affect the ability to recover messages. However,
having a second information channel allows us to recover the
embedded message when the first channel is manipulated or
tampered beyond recovery, e.g., by removing all comments
or complete restructuring of source code.

In the second situation, the goal of cryptographic secret
sharing is to make the source code robust against statistical
analysis. A statistical analysis, looking for variations in
entropy across the source program, will not recover any
additional information since the secret share is itself indis-
tinguishable from random. This will be true for both of
the information channels present in the source code. An
alternate strategy is to make the source code documentation
completely separate from the source code itself. In this



situation, an analyst must correctly identify and associate
the documentation file with its corresponding source code.
Note that this mapping can (and should be) independent and
random, e.g., the documentation for source file X is mapped
to source code Y. This mapping can be identified using a
pseudo-random permutation keyed by a shared secret key,
established a-priori, between the communicating parties.

V. RELATED WORK

The field of steganography has been well studied over
the course of its existence. Early results in this field [11],
[12] focused on identifying models and terminology, along
with theoretical limits of information embeddable within
a given carrier. Later results focused on techniques for
embedding information into a specific carrier, including
video [1], audio [3], natural language text [4], and binary
executables [5].

The most closely related area is the sub-field of software
watermarking. These techniques discourage illegal duplica-
tion by allowing authorities to prove ownership. This can
be accomplished through register allocation patterns [13],
dynamic path execution [14], graph-based approaches [15],
and spread-spectrum techniques for robust watermarks [16].
These approaches, applicable to executable code, are not
concerned with the originating source code as a carrier.

Our work differs from previous approaches in that we use
source code as the carrier. In contrast to watermarking, we
are not interested in detecting illegal duplication. Instead,
we would like to investigate how source code, and more
specifically source code transformations, can be used to
embed secret messages or information.

VI. FUTURE WORK AND CONCLUSION

Clearly, there is considerable work to be done. The
immediate next step is to implement a system that in-
corporates the basic capability described in Section III-A.
Such an implementation would allow us to answer open
questions, such as, what is the total amount of information
each transformation is capable of embedding? A concrete
implementation would also help determine the feasibility
of incorporating existing NLP steganographic approaches
as a second information channel. This may turn out to be
impossible if the information capacity of one channel greatly
exceeds that of the other.

The most challenging step will be to develop the theory
to support invertible term rewriting transformations and to
recover unique functions from differences between source
codes. This theory will be a prerequisite for the application
scenarios described in Sections III-B and III-C. It may be
difficult or impossible to guarantee that a transformation is
invertible, or that the inversion is unique. However, the three
approaches we have identified merit further investigation.
We hope that this paper elicits constructive feedback and
stimulates future work in this area.

REFERENCES

[1] H. Noda, T. Furuta, M. Niimi, and E. Kawaguchi, “Applica-
tion of BPCS steganography to wavelet compressed video,”
in ICIP ’04, vol. 4, Oct 2004, pp. 2147-2150.

[2] K. Gopalan, “Audio steganography using bit modification,” in
ICME °03, vol. 1, July 2003, pp. 629-632.

[3] N. Cvejic and T. Seppanen, “Increasing robustness of LSB
audio steganography using a novel embedding method,” in
ITCC 04, vol. 2, April 2004, pp. 533-537.

[4] M. J. Atallah, V. Raskin, M. Crogan, C. Hempelmann,
F. Kerschbaum, D. Mohamed, and S. Naik, “Natural language
watermarking: Design, analysis, and a proof-of-concept im-
plementation,” in JHW °01. Springer-Verlag, 2001, pp. 185—
199.

[5] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding infor-
mation in program binaries,” in Information and Commu-
nications Security, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2004, vol. 3269, pp. 287-291.

[6] “SourceForge.net: Find, create, and publish Open Source
software for free,” http://www.sourceforge.net/.

[7] “PlanetSourceCode.com: The largest public source code
database on the internet,” http://www.planet-source-code.
com/.

[8] F. Baader and T. Nipkow, Term Rewriting and All That.
Cambridge University Press, 1998.

[9] E. Visser and Z. el Abidine Benaissa, “A core language for
rewriting,” Electronic Notes in Theoretical Computer Science,
vol. 15, pp. 422441, 1998.

[10] R. Bergmair, “A comprehensive bibliography of linguis-
tic steganography,” The Semantilog project: http:/www.
semantilog.org/biblingsteg/.

[11] R. Anderson and F. Petitcolas, “On the limits of steganogra-
phy,” Selected Areas in Communications, IEEE Journal on,
vol. 16, no. 4, pp. 474-481, 1998.

[12] C. Cachin, “An information-theoretic model for steganogra-
phy,” in Information Hiding, ser. Lecture Notes in Computer
Science. Springer, 1998, vol. 1525, pp. 306-318.

[13] G. Myles and C. Collberg, “Software watermarking through
register allocation: Implementation, analysis, and attacks,”
in ICISC 2003, ser. Lecture Notes in Computer Science.
Springer, 2004, vol. 2971, pp. 274-293.

[14] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kece-
cioglu, C. Linn, and M. Stepp, “Dynamic path-based software
watermarking,” SIGPLAN Not., vol. 39, pp. 107-118, 2004.

[15] R. Venkatesan, V. V. Vazirani, and S. Sinha, “A graph
theoretic approach to software watermarking,” in /HW ’01.
Springer-Verlag, 2001, pp. 157-168.

[16] J. P. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater,
“Robust object watermarking: Application to code,” in /H "99.
Springer-Verlag, 2000, pp. 368-378.



