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Abstract— We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its
effectiveness by analyzing features from Direct Numerical Simulations (DNS). Combustion scientists use DNS to study fundamental
turbulence-chemistry interactions such as extinction and auto-ignition in turbulent jet flames. Of particular interest is the scalar
dissipation rate, χ, which indicates the local rate of molecular mixing, which is enhanced by turbulent flow. Turbulent strains create
thin pancake-like features of locally high dissipation rate whose thickness provides a direct measure of the local mixing length-scale.
Understanding the relationship between the thickness and the mean temperature within features is of principal interest to study the
relationship between mechanical strains and chemical processes. This analysis is challenging due to the wide range of feature
parameters that must be explored and the massive sizes of the simulation.
In our approach we precompute merge trees of the χ field which encode the set of features for all possible χ thresholds. Furthermore,
we augment the merge trees with attributes, such as statistical moments of various scalar fields, e.g. χ, temperature, etc., as well
as length scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing
step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is
sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary χ thresholds, providing per-feature
statistics, and creating various global diagnostics such as Cummulative Density Functions (CDFs), histograms, or time-series. We
combine the analysis with a rendering of the features in a linked-view browser that allows scientists to interactively explore, visualize,
and analyze the equivalent of one terabyte of simulation data. While we have successfully deployed our framework to analyze
statistical properties of turbulent combustion, its design and implementation are general and applicable to a wide range of scientific
domains.

Index Terms—Topology, Statistics, Data analysis, Data exploration, Visualization in Physical Sciences and Engineering, Multi-variate
Data.

1 INTRODUCTION

Combustion provides the vast majority of the world’s energy needs and
in an effort to reduce our reliance on fossil fuels, there are significant
programs underway in the combustion science community to predict
reliability and pollutant emissions for potential new fuel sources. To
make these assessments scientists use Direct Numerical Simulations
(DNS) of turbulent flames [?], to study effects such as flame auto-
ignition [?] and extinction [?]. One of the primary drivers of these
phenomena is the rate of turbulent mixing, characterized locally by
the scalar dissipation rate, χ . Compressive strain in directions aligned
to scalar gradients, creates thin pancake-like regions in the simulation
whose thickness provides a direct measure of the local mixing length-
scale. Furthermore, experimental evidence [22] suggests that thick-
ness and mean temperature within these features are related. A more
thorough understanding of this relationship would allow scientists to
better characterize the effects of mechanical strain from turbulence on
chemical processes and provide fundamental insights into the proper-
ties of turbulent flames.

However, this type of analysis poses several challenges: The scalar
dissipation structures are typically defined using contours at locally
varying isovalues [25]. Since, a wide range of values produce plau-
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sible structures, a large number of different segmentations must be
explored to determine the sensitivity of the results to changes in pa-
rameters or to find stable thresholds. Furthermore, scientists are inter-
ested in subselecting based on additional criteria such as temperature
variance, introducing yet more free parameters into the analysis which
must be explored. Finally, many of the hypotheses are initially derived
from visualizations of the temporal behavior of the flame. Thus, it is
important to provide visual feedback on the impact parameter choices
have on the nature of the χ structures. These challenges are multiplied
by the massive size of the simulation, which in this case is roughly one
terabyte.

Historically, scientists have relied on conditional statistics, applied
globally, to effectively reduce the data to manageable proportions.
However, even advanced indexing schemes [32, 21] are restricted to
queries based on either function ranges or pre-computed properties.
As will be discussed below, regions of high χ cannot be extracted
through range queries. Furthermore, while pre-computing a single
set of structures is feasible, the appropriate parameter choices are not
known a priory and given the data size, extracting a large number of
different sets for exploring the parameter space, is infeasible. Finally,
traditional statistics typically provide only global averages rather than
per-feature information, making simple queries such as how many fea-
tures exist overall, difficult to answer.

We have developed a new integrated analysis and visualization
framework to support combustion research. Our system enables a free
choice of feature parameters and conditional sub-selections and inter-
actively produces a wide range of diagnostic plots equivalent to the
processing of the entire data set. Furthermore, this statistics viewer is
cross-linked to a visualization of the corresponding three dimensional
structures allowing picking of (sets of) features on either end. For the
visualization, we use a specialized volume rendering technique opti-
mized for sparse, dynamic, and binary segmented volumes.

Instead of extracting a single set of features we compute a multi-
resolution hierarchy, capable of representing features for different pa-
rameters and at various scales. In a single pass over the original data
we pre-compute a large variety of statistics for all finest resolution
features. At run time the user chooses parameters resulting in a set of
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features whose properties are aggregated on-the-fly, allowing the user
to explore an entire family of feature definitions without accessing the
original data. By pre-computing statistics for a base set of features, and
providing the user with several multi-resolution hierarchies to explore,
our system provides significantly greater flexibility in the analysis pro-
cess than the typical range queries of indexing schemes. Addition-
ally, the run-time aggregation avoids most of the costs of recomputing
statistics for each set of features. As a result, our approach delivers the
flexibility of extract-and-analyze techniques at an efficiency compara-
ble to indexing or database schemes. Our system has been deployed
at a National Laboratory and is actively being used to gain insight into
state of the art combustion simulations. Our contributions in detail are:

• On-the-fly aggregation of feature-based spatial and temporal
statistics for large scale simulations.

• An efficient encoding method for various multi-resolution hier-
archies and statistics using feature-based blocked storage.

• A system for interactive creation of spatial and temporal statisti-
cal summaries including conditional empirical Cumulative Dis-
tribution Functions (CDFs), histograms, time-series, and param-
eter studies.

• An interactive feature browser designed using a novel volume
rendering technique.

• A linked view system of statistics and features with picking and
highlighting.

To demonstrate the framework we use an analysis of the relation-
ship between length-scales and temperature of regions of high χ in
turbulent combustion simulations. However, the design and imple-
mentation of our tools are general and can be applied broadly in other
scientific domains where feature-based analysis is relevant.

2 TURBULENT-COMBUSTION MOTIVATION

Combustion currently provides 85% of our nation’s energy needs
and will continue to be a predominant source of energy as fuel
sources evolve away from traditional fossil fuels. Low emission, low-
temperature engine concepts of the future operate in regimes where
combustion is poorly understood. In an effort to reliably predict ef-
ficiency and pollutant emissions for new engines and fuels, computer
simulations are used to study fundamental turbulence-chemistry inter-
actions. Direct Numerical Simulations (DNS) are first principle high-
fidelity computational fluid dynamics simulations in which Navier-
Stokes equations are numerically solved on a computational mesh in
which all of the spatial and temporal scales of the turbulence can be re-
solved [10]. In many practical turbulent combustion situations, turbu-
lence strains the flame, causing molecular mixing of reactant streams.
With increased mixing, chemical reactions are enhanced and overall
efficiency increases up to a point, at which the loss of heat and rad-
icals exceeds their rate of generation due to chemical reaction and
the flame extinguishes resulting in increased emissions. Heat-release
caused by the chemical reactions creates a complex feedback mech-
anism, affecting the intensity of the turbulence through density and
viscosity changes across the flame.

Turbulent mixing is characterized locally by the scalar dissipation
rate, χ , the rate at which scalar fluctuations decay due to diffusive
processes. Compressive1 turbulent strains create thin pancake-like re-
gions of locally high dissipation rate. The morphology of these fea-
tures, characterized according to their first three length-scales: length,
width and thickness, is assumed to be correlated with length scales
of turbulence. The thickness is particularly relevant as it provides a
direct measure of the local mixing length-scale. Understanding the
relationship between the thickness and the mean temperature within
the features is of principal interest in order to study the relationship
between mechanical strain and chemical processes.

There is experimental evidence [22], that the χ-layer thickness dis-
tributions are self-similar as (T/T0)

n. In the the measurements of
Frank and Kaiser [22], it was determined that n ≈ 0.75,T0 ≈ 400k

1By the term ’compressive’, we mean a strain rate tensor which is com-
pressive of scalar iso-surfaces when projected into the direction normal to the
iso-surface.

provided an optimal collapse of the thickness pdfs conditional on var-
ious temperatures. In this paper, we use our framework to extract the
thickness pdfs and determine if the same scaling is valid for the DNS
data considered here.

3 RELATED WORK

Analysis of χ structures: Previous DNS and experimental re-
sults [16, 22, 30] have shown turbulent strain in a non-reactive jet or
shear layer leads to intense mixing rate regions which are oriented
by the directions of principal strain rates, characterized by relatively
large dimensions in the tangent plane of the principal strain rates, and
a much smaller dimension in the direction normal to the principal
strain rate. Reactive flows have been studied more recently [20, 25]
by directly computing and tracking χ within the simulation; however
measurements were limited to thickness only and did not explore the
relationship between regions of high χ and temperature.

Data warehouse technologies: At its core, our system relies on
fast and efficient statistical queries for scientific data. Assuming en-
tirely pre-computed information this problem reduces to finding and
aggregating data from a large collection of records. This is a common
challenge typically addressed by large Database Managment Systems
(DBMSs) [11]. In such systems, each feature would be represented
as one record with its corresponding statistical information collected
as entries in the record. In addition to the raw data, DBMSs compute
multi-dimensional search structures such as B+-trees [12] that provide
efficient searches for sub-selection type queries. However, tradition-
ally DBMSs are desgined to support constantly changing information,
e.g. bank transactions, and thus their index structures have to trade
query efficiency for the ability to change indices on-the-fly. On the
contrary, scientific data is typically computed once and updated rarely
if ever. This allows more efficient data managment relying on static
indices. To distinguish such systems from DBMSs they are typically
refered to as data warehouses [15, 21, 9].

One particularly successful data warehouse technology is the Fast-
Bit system [32]. Instead of search trees, FastBit relies on compressed
bitmask indices [33, 34] to provide efficient subselections and can sig-
nificantly out-perform other approaches [27, 28]. However, this class
of data managment techniques relies almost exclusively on extracting
and aggregating pre-computed information. As a result, data ware-
houses are well suited to access information computed for one partic-
ular set of features. In an exploratory setting, however, when the ex-
act feature definition is unknown, warehouses are often too inflexible.
While it is possible to pre-compute statistics for multiple sets of fea-
tures, this is computationally expensive and the system remains limited
to a small number of pre-defined feature sets. Instead, our framework
uses a general feature hierarchy that allows the user to interactively
change the parameters defining the features and thus explore an entire
family of feature sets. Considering the inherent flexibility of common
multi-resolution hierarchies, pre-computing statistics for all possible
combinations of features is infeasible.

Statistics: To avoid excessive pre-processing, we exploit recent
developments in parallel statistical algorithms [3] to quickly aggre-
gate first through fourth order moments. With recent increases in data
sizes there have been a number of efforts to develop robust, parallel
and/or streaming statistics algorithms. Of particular interest are the
centered moments and co-moments which are the building blocks of
many algorithms. In [31] a single-pass algorithm for the computation
of variance was developed. A more general set of pairwise update
formulas for variance was introduced in [8]. The formulas for third-
and fourth-order moments, which are needed to calculate skewness
and kurtosis of the data set, were derived by [29]. Numerically stable,
single-pass update formulas for arbitrary centered statistical moments
and co-moments are presented in [3]. There also exist a number of
commercial packages such as MatLab [1] and SAS [2] that support
parallel statistics. By coupling, the pair-wise update formulas devel-
oped for parallel statistics computation with a general feature hierar-
chy, our framework provides interactive exploration of feature-based
statistics.



Feature hierarchies: As discussed in Section 4, our system im-
plements a general multi-resolution hierarchy of features [14] in which
a certain number of initial high-resolution features are combined ac-
cording to a scale parameter. Of particular interest in this context
are a number of topology based hierarchies proposed in various set-
tings and using a diverse algorithms. Using a variety of metrics such
as fetaure volume, hyper-volume, or persistence, [7] use hierarchical
contour trees [6] to define anatomical structures. Using persistence
based hierarchical Morse complexes [24] show how different “reso-
lutions” of the Morse complex encode progressively coarser segmen-
tations of bubbles in Rayleigh-Taylor instabilities. Other examples
include threshold-based hierarchies for non-premixed [25] and pre-
mixed [4] combustion simultations and core structures in porous me-
dia [17]. These techniques are particularly attractive for feature based
statistics as their notion of scale corresponds to feature definitions
using, for example, varying iso-surface thresholds. In general, other
types of clustering methods [19] could be suited for this class of tasks.

4 FEATURE-BASED, STATISTICAL ANALYSIS

The framework described in this paper is based on two linked compo-
nents: Fast creation of feature-based statistics and an interactive dis-
play of the corresponding feature geometry. This section will describe
the general structure of a feature-based hierarchy, the specific hier-
archy used in the case study, as well as the run-time system for the
creation of statistical plots.

4.1 Augmented Feature Families
One of the basic concepts of our framework is the notion of a feature
family. Given an algorithm to define and extract features of interest
corresponding to a parameter p, a feature family is a one-parameter
family which for every possible parameter p stores the correspond-
ing set of features. While any feature definition can be used to create
a feature family by exhaustively pre-computing all possible features
for all possible parameters, many popular algorithms natural produce
nested sets of features for varying parameters. For example, cluster-
ing techniques progressively merge elements [?] and a threshold-based
segmentation creates increasingly larger regions [5]. In such cases all
features can be described either by a collection of initial features, e.g.
clusters, or as a collection of differences between features at different
parameters, e.g. regions above threshold a that are below threhold b.

Feature families with a nested structure can be encoded and com-
puted in an efficient manner. In this work, we specify for each feature
in the hierarchy its life span (in terms of the feature parameter), an
arbitray number of children, and a single parent. As is common with
hierarchies, the set of features at a particular parameter p is then de-
fined as all features that are alive at parameter p combined with all
their decendents. More formally we define:

Definition 1 (Feature). A feature f is defined by a unique id and min-
imally contains a parameter range [pmin, pmax], a direction, a collec-
tion of id’s of it children, and the id of its parent:

f = (id,direction, [pmin, pmax],{child0, . . . ,childn}, parent) ∈ F

The id is simply a unique idenifier and typically stored implicitly, e.g.
based on the order in which features are stored in a file. The direction
indicates whether a feature is born at p = pmin and merges with its
parent for p ≥ pmax or, inversely, is born at p = pmax and merged for
p≤ pmin. A feature family is a collection of features definedhierarchi-
cally as described above:

Definition 2 (Feature Family). A feature family F is a set of features

F = { f0, . . . , fm} ⊂ F

Finally, in a time-dependent simulation or an ensemble of simulations
we have one feature family per time or ensemble member:

Definition 3 (Clan). A clan C is an ordered set of feature families

C = {F0, . . . ,Fn} ⊂F

We store feature families in a traditional multi-resolution graph which
is updated on-the-fly as the user changes parameter. At any time we
maintain a set of living features that serve as the representatives for all
their descendents. Furthermore, we support the encoding of multiple
hierarchies associated with a feature family. In this case we simply
store multiple parameter ranges and child/parent ids in each feature,
one for each hierarchy. In this particular case study we use merge trees
to define feature families representing either a relevance or threshold
based segmentation.

Merge Tree Based Feature Families. As discussed above, scien-
tists are interested in regions of locally high χ . As shown in [25, 5]
the merge tree is ideally suited to hierarchically encode such regions.
Given a simply connected domain M and a function g : M→ R the
level set L(s) of g at isovalue s is defined as the collection of all points
on R with function value equal to s: L(s) = {p ∈M|g(p) = s}. A
connected component of a level set is called a contour. The merge
tree of g represents the merging of contours as the isovalue s is swept
top-to-bottom through the range of g, see Fig. 1. Each branch of the
tree represents a family of contours that continuously evolve without
merging as s is lowered. These contours sweep out a subset of M and
thus the branches correspond to a segmentation of M, see Fig. 1. To
increase the resolution in parameter space we refine the merge tree by
splitting its branches at regular intervals and refining the segmentation
accordingly, see Fig. ??.

Fig. 1. (a) Merge trees represent the merging of contours as f is low-
ered through it range. Each branch represents a portion of the domain
as indicated by the colors. (b) Merging all branches above a specified
function value (in color) and ignoring all below constructs a set of fea-
tures (in gray).

In a simple threshold-based segmentation, the branches of the tree
are features with a lifetime given by the function values of their top
and bottom nodes. Given a particular threshold, each branch acts as
the representative of its subtree and, by construction, each subtree rep-
resents a simply connected region of high threshold, see Fig ??. How-
ever, when g spans multiple orders of magnitude relevance [25] is an
alternate metric used that scales g at each node by its local maximum
– the highest maximum in its corresponding subtree. The relevance
lifetime of a branch is thus given by the relevance interval between
its top and bottom node and ranges between 0 and 1, see Fig. ??. To
compute merge trees and their corresponding segmentation we use the
streaming algorithm proposed in [5].

Feature Attributes. In addition to the information necessary to en-
code a feature family we augment each feature with an arbitrary num-
ber, k, of additional attributes (att0, . . . ,attk). Our system currently
supports various descriptive statistics such as minima, maxima, first
through fourth order statistical moments and sums, as well as as shape
descriptors such as volumes and various length-scales. The statistical
information is computed on-the-fly as the merge tree is constructed us-
ing the single-pass update formulas of [3], while the shape descriptors
are added in a post-processing step. For each feature f , we encode
the list of domain vertices that belong to f , see Section 5. We then
estimate the first three length-scales (length, width, and thickness) us-
ing a spectral technique similar to the one introduced by [26]. We
parametrize each shape according to its first non-trivial eigenvector
to compute its length and use the same technique recursively on iso-
contours of the first eigenvector to compute the width and thickness,
see Figure 2.

4.2 Interactive Exploration of Feature-Based Statistics

One of the main advantags of our system is the ability to quickly ex-
plore a wide variety of statistical information based on the given fea-
ture definitions. To achieve this our framework supports three opera-
tors that map feature families, sets of features, and statistics into new
sets of features, or scalar quantities:



Fig. 2. The first three length-scales are estimated using a spectral tech-
nique. Each shape is parametrized according to its first non-trivial eigen-
vector to compute its length, and use the same technique is performed
recursively on iso-contours of the first eigenvector to compute the width
and thickness.

Definition 4 (Selection). A selection S : F ×R→P(F) is an opera-
tor that given a feature family and a parameter returns a set of features
as well as (a subset) of their corresponding attributes.

Note that each feature stores attribute information regarding the por-
tion of the domain it covers, see Fig. ??. A selection will, for most at-
tributes, aggregate all values in the associated subtree on-the-fly as the
hierarchy is navigated. This preserves the flexibility to base different
feature families on the same set of initial attributes. Nevertheless, if
only one type of family is needed, aggregation of attributes can be per-
formed once and stored to accelerate the exploration, see Section 4.3.

Definition 5 (Subselection). A subselection U : P(F)×{0, ...,k}×
R2 →P(F) is an operator that given a set of features, an attribute
index, and a corresponding attribute interval range, returns the subset
of features whose attribute value is contained in the interval.

The subselection operator facilitates the creation of conditional plots,
which are often of significant interest to the scientists.

Definition 6 (Reduction). A reduction R : P(R)→ R is an opera-
tor that given a set of scalar values returns a single scalar value, for
example by computing the mean.

Using the operators described above we create three different types
of plots: species distributions, parameter studies, and time-series. To
simplify the discussion below, we assume that the input to each of the
operators is all feature families in a clan, even though in practice we
support the restriction to subsets of the data.

All plots take as input a feature clan C, a parameter p, subselections
Q={(att i0

min,att i0
max),. . .,(att il

min,att il
max)}, and an attribute index i. First,

the parameter p is used to select an initial set of features from the clan,
which are then further subselected using the subselections Q.

Species distributions plots include histograms and empirical CDFs,
and track the distribution of the attribute att i. For example, a major
focus of our case study is the distribution of the mean thickness of χ

structures conditioned on both the variance and mean of temperature
within each feature, see Figure ??.

A time-series, as the name suggests, shows the evolution of att i

over time, and requires an additional family-wide reduction operator,
R f , as input. For example, one might plot the maximum temperature
variance of features over time. In this example R f is the maximum of
att i which is temperature variance, see Figure ??

Parameter studies are an extension of time-series that show how
att i changes as the parameter p is varied. For these plots a clan-wide
reduction operator, Rc, is required in addition to R f . Extending our
previous example, one might plot the mean of the maximum temper-
ature variance of features as parameter p varies. In this example R f
is maximum of the temperature variance across time steps, and Rc is
the mean of these values. Note that parameter studies can be come ex-
pensive as the range and granularity of p increases, because attributes

are aggregated for each p-value independently, see Figure ??. While
parameter plots are the most expensive to produce they are also often
very useful. In particular, a parameter plot shows how stable or unsta-
ble a given analysis is to the parameter selection. This is crucial in any
exploratory setting to guarantee that the basis of important conclusions
is not an inherently unstable analysis.

We provide a convenient GUI that allows the user to specify which
attributes they would like to explore, loading only those to minimize
memory overhead. Subselection sliders are generated for each spec-
ified attribute automatically and, if multiple hierarchies are available,
the user can toggle between these and can update parameters interac-
tively. Optional log scaling is provided, and radio buttons are used for
selection of family- and clan-wide reduction operators.

The plot viewer is linked to the feature browser described in Sec-
tion 5 to provide context as statistics are explored. Only those features
that have been subselected using the GUI sliders are displayed by the
feature browser. Users can click on an individual feature in the fea-
ture browser to obtain details on its associated statistics. Furthermore,
when the user picks regions of histograms or CDFs, only those fea-
tures that are contained in the selected bins are displayed by the feature
browser, see Figure 3 for an example.

4.3 File Format
We store feature families and the corresponding attributes in a modu-
lar and easily extendable file format. Typically, we save one file per
feature family to easily allow the restiction to temporal subsets, for
example. At the very end each file stores an XML-footer followed
by the file offset to the start of the footer as the last eight bytes in
the file. The XML structure encodes which components are stored for
the feature family, and typically comprises a simplification sequence
storing the hierarchy information in addition to a number of attributes.
Any attributes stored indicate their type in addition to meta-data such
as the name of the source field, how many bytes are used for each
value, and whether data is stored in binary or ascii format. For the
statistical moments we store not only the final value, e.g. mean, but
enough information to further aggregate multiple values as needed by
the parallel statistics formulas of [3]. This requires each n-th order
statistical moment to store all lower-order moments to support aggre-
gation. Most importantly the XML structure stores file offsets to each
corresponding block of data, allowing for the selective loading of sub-
sets of attributes for exploration. One immediate advantage of this file
structure is that it an be easily extended without re-writing entire files.
Given a new set of attributes, we read the XML footer, append the new
data at the end of the old data (overwriting the old footer), update the
footer, and add it to the file.

5 INTERACTIVE FEATURE BROWSER

In addition to a statistical analysis confirming or disproving a given
hypothesis, our framework provides the ability to glean further insight
from the data with a linked feature browser that allows the user to
quickly understand how statistical trends map to the features in the
domain. For each feature we provide the option of storing a list of
the original domain elements that comprise the feature. This sparse
data representation provides maximal flexibility, while using a mini-
mal footprint to display the data. For example, a merge of two features
amounts to a union of the two lists of domain elements. However, ef-
ficient display of features poses technical challenges:

• simulation grid sizes are prohibitively large for de-facto standard
GPU accelerated volume rendering techniques [23];

• The binary segmented data is not suitable for native triliner filter-
ing ont the GPU, rather additional effort must be taken in order
to correctly perform per-fragment linear filtering; and

• the dynamic nature of the data and CPU-GPU (la-
tency&bandwidth) bottleneck necessitates a specialized
update scheme to minimize bandwidth usage.

Even though our data is sparse in nature, using a standard volume ren-
dering method would still require a regular grid spanning the whole
domain. Standard GPU accelerated raycasting techniques [23] gener-
ally use a single 3D texture to store data for a regular grid, and the size



Fig. 3. The plot viewer is linked to the feature browser providing context to the user as statistics are explored. A flexbile GUI supports subselection,
toggling between hierarchies and exploration of parameters. Clicking on regions of a histogram or CDF causes only those features in the associated
bins to be displayed in the feature browser.

of the simulation makes this intractable. By adopting a volume octree
structure on the GPU [13], we have been able to reduce the mem-
ory usage to between 2-20% of that of a regular grid (depending on
the sparsity of the input dataset). This octree structure also facilitates
highly effective empty space skipping, making it possible to perform
ray marching with shorter marching length thereby drastically reduc-
ing rendering time.
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Fig. 4. The diagram on the left demonstrates interpolation between fea-
tures in the GPU. Fragments are represented by rectangular blocks, and
blue blocks have interpolated values. The first row shows that direct in-
terpolation will reference incorrect feature ID. By instead mapping the
neighbouring feature ID to 0-1, correct per-fragment filtering and clas-
sification is achieved. The diagram on illustrates our transfer function
used to mitigate the cost of reloading feature IDs to the GPU. Rectan-
gular blocks represent stored feature IDs (colors indicate different ID
numbers, while white represents empty space). The left column shows
the original feature ID volume, the right column is result of applying the
transfer function showed in the middle.

Further complicating matters, each feature is represented by a set of
voxels that are associated with a common feature ID and it is possible
for adjacent voxels to have IDs that differ dramatically. During render-
ing, interpolating such IDs with a GPU’s native tri-linear interpolation
will give rise to very noticeable artifacts. As shown on the left of Fig-
ure 4, given two IDs (3 and 8), a direct interpolation would include
multiple unapplicable feature IDs. We solve this problem by using a
simple 0-1 mapping approach, as described in [18]. Adjacent voxels
with different IDs are mapped to 0 (the smaller ID) and 1 (the larger
ID), and then tri-linear interpolation in the 0-1 range is preformed us-
ing a shader program. We can then classify the areas with value greater
than 0.5 as belonging to the larger ID and areas with value less than
0.5 as belonging to the smaller ID with per-fragment precision.

Because we are working with a multi-resolution hierarchy, the fea-
tures to be displayed may merge or split and appear or disappear. From
the rendering engine’s perspective, the volume is constantly chang-
ing as the hierarchy is explored. To mitigate the unnecessary cost of
reloading the feautre ID volume into the GPU, we introduce a special
purpose feature ID transfer function generated directly from the fea-
ture hierarchy. As shown on the right side of Figure 4, the column on
the left represents the original feature ID volume, while the column
on the right represents the mapped feature ID. The transfer function
maps a feature ID to itself, another feature ID (it’s agent feature’s ID)
or to empty space and controls a feature’s merges, splits and visibility.
With the possibility of feature counts in the several hundred thousands,
a regular 1D texture would be easily be rendered insufficient. We use
a texture buffer object in OpenGL, capable of supporting a 1D lookup
table as big as 227.

6 RESULTS

Data. In this study the data is a temporally-evolving turbulent
CO/H2 jet flame undergoing extinction and reignition at different

Fig. 5. The χ field from the temporally-developing CO/H2 jet flame.

Reynolds numbers [20]. The simulations were performed with up to
0.5 billion grid points and periodic boundary conditions in the mean
flow (x) direction cause mixing rates to increase until approximately
midway through the simulation, after which point they begin to decay.
Fig. 5 shows the logarithm of χ for one of the 230 timesteps saved for
postprocessing analyses.

The distribution of the χ-thicknesses shown in Figure 6 are com-
puted for segments grouped by the mean temperature in the segment
for four bins 250k wide. To ensure that the results are not confounded
by within-segment temperature variation, only those segments having
an approximately uniform temperature (variance of temperature ¡ 5%
of the maximum) are included. The flexibility to easily and interac-
tively add such restrictions is a key feature of our framework. The
framework detects several very small features which are suspected ar-
tifacts of the segmentation algorithms; to mitigate the effects of these
artifacts, which find their way into the first bin of the histogram ir-
respective of the bin size, the first bin in the pdfs is discarded. The
remaining conditional pdfs show a trend consistent with experimen-
tal observations: the thickness distribution conditional on temperature
is approximately lognormal, and shifts towards larger thickness with
a broader distribution with increasing temperature. The restriction to
segments of uniform temperature limits the sample size from which
the distribution is drawn. Although each bin contains ¿ (how many?)
samples, the exact shape of the pdf is not easy to discern.

In Figure 7, we apply the temperature scaling observed by Frank
and Kaiser [22] to the conditional pdfs, by rescaling the abscissa ac-
cording to:

t∗ = t
(

T
T0

)−n
(1)

with n = 0.75 and T0 = 400 and normalizing the conditional pdfs by
their peak value. As with the experimentally measured conditions, this
value of n is effective to collapse the pdfs, and far less than would be
expected from the value which might be expected from the dependence
of the Batchelor lengthscale (a measure of the smallest scalar lengths
expected in a non-reacing turbulent flow) o temperature through the
kinematic viscosity (discussed in [22]). From the viscosity model used
in the DNS, Batchelor scaling would suggest n = 1.42. In this find-
ing, we illustrate how our framework can be used to interrogate DNS
data to corroborate experimental observations in a quantitative way in
addition to delivering the link to the qualitative features necessary to



develop mechanistic understanding of the phenomena.
• provide details on original data sizes + reduced file formats
• proivde timing details where appropriate (i.e. preprocessing

step)
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Fig. 6. The distribution of the χ-thicknesses are computed for segments
grouped by the maximum temperature int the mean temperature in the
segment.
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Fig. 7.

7 CONCLUSION AND FUTURE WORK

We have presented a novel framework that supports feature-based sta-
tistical analysis of large scientific data and have successfully deployed
it to glean insight regarding fundamental turbulence-chemistry inter-
actions from combustion simulation data. Our framework comprises
three main components:

• An efficient encoding scheme and data format that support mul-
tiple multi-resolution hierarchies augmented with statistics of in-
terest.

• A statistics engine that supports on-the-fly generation and dis-
play of global trends in the data, including conditional CDFs,
histograms, time series and parameter studies.

• A feature browser, built using a new volume rendering technique,
that links to the statistics engine, providing context as conditional
statistics are explored.

Overall, our framework delivers the flexibility of previous extract-and-
analyze methods at an efficiency comparable to indexing or database
schemes, and provides a natural and intuitive work-flow for the explo-
ration of global trends in feature-based statistics.

In the future we will extend our encoding scheme to support fea-
ture hierarchies generated by other topological analysis techniques,
including Reeb graphs and the Morse-Smale complex. We will sup-
port additional statistical analysis capabilities including contingency
statistics, multi-correlative statistics, and principal component analy-
sis. Our framework has been designed in a componentized manner
and we plan to add additional displays, providing further context for
the user. These include a display of the topological hierarchy as well
as feature tracking graphs. Finally, we plan to extend our encoding
scheme to support distributed data structures and parallel files so that
our framework can be deployed in situ, rather than as a post process.
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